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Optimal Scheduling and Routing for Maximum
Network Throughput

Emilio Leonardi, Member, IEEE, Marco Mellia, Member, IEEE, Marco Ajmone Marsan, Fellow, IEEE, and
Fabio Neri, Member, IEEE

Abstract—In this paper we consider packet networks loaded
by admissible traffic patterns, i.e., by traffic patterns that, if opti-
mally routed, do not overload network resources. We prove that
simple distributed dynamic routing and scheduling algorithms
based upon link state information can achieve the same network
throughput as optimal centralized routing and scheduling algo-
rithms with complete traffic information.

Our proofs apply the stochastic Lyapunov function methodology
to a flow-level abstract model of the network, and consider elastic
traffic, i.e., we assume that flows can adapt their transmission
rates to network conditions, thus resembling traffic engineering
and quality-of-service approaches being currently proposed for
IP networks.

Although the paper mainly brings a theoretical contribution,
such dynamic routing and scheduling algorithms can be imple-
mented in a distributed way. Moreover we prove that maximum
throughput is achieved also in case of temporary mismatches be-
tween the actual links state and the link state information used by
the routing algorithm. This is a particularly relevant aspect, since
any distributed implementation of a routing algorithm requires a
periodic exchange of link state information among nodes, and this
implies delays, and thus time periods in which the current link costs
are not known.

Index Terms—Asymptotic stability, computer network perfor-
mance, Lyapunov methods.

I. MOTIVATION AND PREVIOUS WORK

N RECENT years, dynamic routing algorithms have at-
I tracted the attention of the networking community. Several
aspects have been investigated, such as: 1) protocol conver-
gence [1], [2]; 2) overhead impact [3], [4]; 3) implementation
issues [5]; 4) impact of update policies [3]; and 5) performance
issues.

The last topic is of particular interest, and has often been as-
sociated with QoS routing. Indeed, the core of any routing al-
gorithm is a state-dependent cost function that is used to find
the optimal (or at least a good) route across the network by
solving an optimization problem. In particular, given the best-ef-
fort nature of the current Internet, where the majority of data
flows are elastic (i.e., they can adapt to network conditions),
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the most commonly used optimization metric aims either at the
maximization of user throughput or at the minimization of net-
work utilization. Several QoS routing proposals introduced dy-
namic algorithms and protocols that provide advantages over
traditional, topology-based algorithms, such as the shortest path
routing presently used in TCP/IP networks [6]-[8], [10]-[13].

Within QoS routing studies, two main research areas can be
identified. The first area, sometimes also called “traffic engi-
neering,” considers as input to the design of routing algorithms
the information about the traffic pattern that users offer to
the network. We call this class of algorithms “traffic-aware”
QoS routing algorithms. Given the knowledge of the network
topology, and a utility function, the goal of the algorithm is to
find a set of routes that maximizes the utility function, under
technological or performance constraints. Traffic-aware QoS
routing algorithms can be formalized as linear programming
(LP) problems, and efficient solutions are available since the
early seventies [6]. The result of the optimization is, for each
traffic relation, a set of paths and a corresponding set of prob-
abilities that specifies the traffic splitting over each path. The
implementation of such a routing algorithm in the Internet can
be obtained either by using explicit path mechanisms, such
as those offered by MPLS [14], or by exploiting the recent
results in [7], [8], which show that with current IP routing
constraints it is possible to find: 1) an equivalent set of link
costs that implements the same routes as those of an explicit
path mechanism; and 2) a set of rules to implement the same
traffic splitting. The difficulties to quickly detect instantaneous
traffic pattern variations [9], and to solve in a on-line distributed
fashion the LP problems, makes these algorithms better suited
for a static centralized implementation. For this reason, in the
following we refer to them as static routing algorithms.

The second area within QoS routing research assumes that
the traffic pattern is not known. We call the corresponding class
of algorithms “traffic-unaware” QoS routing. In this case, the
optimization of routing is based on direct measurements of the
performance of network elements, like link utilization, queue
lengths, etc. Some exchange of limited state information be-
tween network nodes is often required. Given the current state of
the network, the goal of a traffic-unaware QoS routing algorithm
is to find a set of paths that can be used to accommodate traffic
requests. Among the proposed heuristics, the “Widest-Shortest”
[10] and the “Minimum-Distance” [11] approaches are gener-
ally considered to be good routing algorithms. These findings
have been generalized by recent results that consider resilience
to traffic load variations [12], and more general cost functions
[13]. The characteristics of traffic-unaware routing algorithms

1063-6692/$25.00 © 2007 IEEE
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favor a distributed implementation in which routes are dynam-
ically updated to follow the instantaneous traffic variations and
network state. For this reason, in the following we refer to them
as dynamic routing algorithms.

The performance evaluation of dynamic QoS routing algo-
rithms was traditionally carried out by simulation only. Thus, to
the best of our knowledge, no analytical results are available to
characterize their properties, and in particular to define the net-
work stability region when these algorithms are used.

The recent introduction of powerful theoretical approaches
in network studies, such as the stochastic Lyapunov function
methodology [15], opened new perspectives to theoretical
studies on the impact of routing algorithms. Using this ap-
proach, for example, the authors of [16] considered ad hoc
wireless networks, and defined a packet-by-packet dynamic
routing algorithm and a power allocation scheme, whose joint
use is shown to maximize the network stability region.

In this paper, we consider a more general and abstract flow-
level network model, that allows us on one side to consider the
intrinsic elasticity of Internet traffic, and on the other side to al-
most completely neglect the packet-level dynamics, thus greatly
reducing the complexity of the system under study. Using this
model, we analyze the stability properties of different classes of
dynamic routing algorithms and bandwidth allocation policies.

Our goal is to provide a theoretical support to the perfor-
mance evaluation of routing schemes under dynamic traffic.
We, therefore, focus on distributed traffic-unaware routing
schemes rather than on traffic-aware approaches, and we study
whether the former can guarantee the same performance of
centralized solutions operating on a perfect knowledge of the
network traffic.

More in details, we consider packet networks loaded by ad-
missible traffic patterns, i.e., traffic patterns that, if optimally
routed, do not overload network resources. Under these con-
ditions, we prove that simple distributed dynamic routing and
scheduling algorithms using link state information can achieve
the same network throughput as optimal centralized routing and
scheduling algorithms with complete traffic information.

We also show that such dynamic routing and scheduling al-
gorithms can be implemented in a distributed way, and we prove
that maximum throughput is achieved also in case of temporary
mismatches (possibly due to delays in exchanging state infor-
mation with proper signalling schemes) between the actual link
costs and those used by the routing algorithm. This is a particu-
larly relevant aspect, since any distributed implementation of a
routing algorithm requires a periodic exchange of link state in-
formation among nodes, and this implies delays, and thus time
periods in which the updated state of links is not known, and the
optimal costs cannot thus be computed.

We remark the three main advantages of our flow-level model
with respect to previously considered packet-level models (e.g.,
in [16]). First, optimal dynamic routing strategies defined in our
flow-level model are flow oriented and implement route pinning,
so that they guarantee in-sequence delivery of packets at the des-
tination. On the contrary, each packet is routed at every router
according to some instantaneous local congestion index by the
optimal strategies in [16], thereby possibly causing out-of-se-
quence deliveries at the destination. Moreover, flow-oriented
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routing schemes can be easily integrated with flow admission
mechanisms, so as to meet traffic QoS constraints. This is one
of the reasons why most of the recently defined QoS routing
schemes operate at the flow level (implementing route pinning);
see [10]-[13]. Second, in packet-level models, analytical results
can be obtained usually only under the assumption that packets
are generated by sources according to a memoryless process; in
flow-level models just flows arrivals must follow a memoryless
process. While the former assumption appears rather unrealistic,
the latter is much more acceptable (many LRD traffic models
also assume that flows are generated according to a memoryless
process). Third, flow-level models permit to consider effects re-
lated to the elasticity of traffic, i.e., to the fact that flows duration
are related to the bandwidth that flows obtain in the network.

Even if our contribution is mostly theoretical, some of the
proposed dynamic routing and scheduling algorithms are com-
patible with a practical implementation in a real network sce-
nario.

The rest of this paper is organized as follows. Section II
presents our modeling assumptions, as well as the notation that
is used throughout the paper. Section III introduces the traffic
admissibility and sustainability definitions, and recalls the
stability criterion based on the stochastic Lyapunov function
that is used in later sections. Section IV presents preliminary
results, relating to an idealized scenario, where link utilization
are overestimated. The system state is defined in terms of
flows backlog, i.e., of the remaining amount of information
to be transfered in the network. In this section we prove that
the so-called min-backlogged-path routing algorithm can
achieve the same network throughput as an optimal static
routing algorithm under any admissible traffic pattern. The
proof is also extended to the case of a finite error in the link
cost estimation. Section V presents our main results, proving
that, under any admissible traffic pattern, a network adopting
the min-backlogged-flow routing algorithm, similar to the
min-backlogged-path routing, in conjunction with rate control
at the source and a feasible scheduling policy, called max-scalar
policy, can achieve the same network throughput as an optimal
static routing algorithm. The system state is always defined in
terms of information backlog, and rate control at the source
avoids buffering along flow paths. Some variations and gener-
alizations of the basic routing and scheduling schemes are also
discussed. Section VI instead defines the system state in terms
of number of active flows, and particularizes the result to the
case of exponentially distributed flow sizes, proving throughput
maximization for significant simplifications of previous routing
and scheduling schemes. Section VII extends previous results
when the amount of information buffered at network nodes
is not negligible. Finally, Section VIII concludes the paper.
Finally, Section VIII concludes the paper, with some discussion
of implementation issues.

II. MODELING ASSUMPTIONS AND NOTATION

To simplify the notation we consider discrete-time systems,
even if all results can be easily generalized to continuous-time
systems. The slot duration is assumed to be equal to 1. The dis-
crete-time steps can be seen as corresponding to equally spaced
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snapshots of the system state; the scheduling and routing deci-
sions are updated in correspondence with these snapshots.!

A network is represented by a directed graph G = (V, E)
where V is the set of vertexes (which represent the network
switching nodes), and E' is the set of edges (which represent
the network transmission links). C* = C'0—=) [ e E,i,j e V
denotes the capacity of link /, that connects node 7 to node j. To
simplify notation, in the remainder of the paper we assume all
links to be of the same capacity: C!' = C = 1,Vl € E.However,
this assumption can be easily relaxed, as we will show at the end
of the paper in a special case.

The traffic in the network is modeled at the level of flows,
neglecting individual packets. Elastic flows arrive at the network
according to a Poisson process; each flow is associated with
a source s € V and a destination d € V, as well as a size,
that represents the amount of information (in bits, bytes, or any
other unit—we will refer to bytes without loss of generality) that
has to be transferred. Flow sizes are assumed to be independent
random variables, distributed according to a general distribution
with mean 1/, and finite polynomial moments.

Each flow is routed through the network according to a given
algorithm, and it remains active until its last bit is successfully
delivered to the destination. During its active period, each flow
receives a portion of the network capacity, which varies with
the network congestion (for example, with the number of con-
current flows), i.e., flow sources can adapt their sending rate to
network congestion; the link capacity is allocated to flows ac-
cording to a scheduling policy, which may derive either from
the end-to-end congestion control mechanism implemented at
source nodes, like with the TCP congestion control, or from the
network nodes, like with GPS scheduling policies [20]. Propa-
gation delays (i.e., signals latencies) are neglected in this paper.

Each link / is modeled as a flow-level queue. The queue ¢! =
¢"“=9 1 € E,i,j € V corresponds to link /, that connects
node ¢ to node j.

Let Agq be the average flow arrival rate for each source-des-
tination pair; psq = Asa/p is the average workload associ-
ated with flows from s to d. The traffic in the network is de-
fined by the matrix p = [psa], that is called the traffic matrix.
asq(n) denotes the new amount of work arrived during time slot
n due to flows with origin s and destination d. We note that
Psd = E [asd]~

As soon as flow f from s to d arrives at the network, it is
routed over a path, call it 7, which comprises several links. All
the information associated with flow f are transferred over path
7 for the whole flow duration.

Let 2!(n) represent the virtual backlog at link [; i.e., z!(n)
represents the total amount of information in bytes scheduled
for link [. Note that the virtual backlog at time n does not neces-
sarily equal the physical backlog, i.e., the amount of information
physically enqueued at queue [ at time 7, since some informa-
tion may be physically queued at previous links along the path
or it may be still at the source. More precisely, #'(n) is the sum
three contributions: 1) the amount of information (bytes) phys-
ically enqueued at ¢'; 2) the amount of information displaced

IThe slot duration should be short compared to the flow duration, but suffi-
ciently long to neglect fast packet dynamics, e.g., in the order of a round-trip-
time.
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in in upstream queues belonging to active flows that have been
routed through ¢'; and 3) the amount of information possibly
still waiting for transmission at the source and belonging to the
active flows that have been routed through ¢'.

Let2 X(n) € IN'El be an |E|-dimensional vector,? whose
components are the z'(n).

The routing algorithm is used to associate a path with each
new flow that arrives to the network. A static (tzrafﬁc-aware)
routing algorithm is defined by matrix R e Rl_:fl X IE‘, whose
element fé 4 1s the percentage of flows from source s to destina-
tion d that, according to routing algorithm R, is routed through
link /. Since the routing algorithm is traffic-aware, R is a func-
tion of the traffic matrix p, R = R(p)

Given any source-destination pair, let II(sd) be the set of pos-
sible paths from source s to destination d, and IT = J, , II(sd)
be the set of all possible paths. Let L(7) be the set of links (i.e.,
queues) traversed by path = € II. Let II(1) be the set of paths
(from any source to any destination) traversing link /. An equiv-
alent representation of the routing algorithm R can be given by
assigning the set of values 77, that represent* the percentage of
s — d flows that, according to routing algorithm R, is routed
through path 7 € Hgsd). We define accordingly the path routing
matrix R™ € ZRLYI X,

Notice that it is always possible to decompose the traffic
routed over link / as the sum of the traffic routed over paths 7
that use link /; indeed

N
Tsq = §

ﬂEH(l)ﬂH(sd)

Fea- ey

A dynamic (traffic-unaware) routing algorithm is defined by
a sequence of matrices R(n). The element r’,(n) is the per-
centage of flows from s to d that, according to the dynamic
routing algorithm, is routed through link [ at time n. We con-
sider dynamic routing algorithms in which R(n) is a function
of the network state X(n), R(n) = R(X(n)). An equivalent
representation of the routing algorithm R can be given with the
path routing matrix R™(n), whose elements r7,;(n) represent
the fraction of flows from s to d routed over path 7 at time n.

III. TRAFFIC ADMISSIBILITY AND SUSTAINABILITY

We say that a traffic matrix p is admissible (and the corre-
sponding traffic pattern is admissible) if there exists a static
routing algorithm R under which all the queues (links) in the
network are not overloaded. More formally:

Definition 1: A traffic pattern is admissible if there exists a
static routing algorithm R, such that

> ilapsa <1 VI€EE. )
sd

2We denote with IV the set of nonnegative integers, with IR the set of real
numbers and with 2 the set of nonnegative real numbers.

3We use column vectors throughout the paper.

4We identify |V'|? flows, each labeled by its source/destination nodes s, d;
the notation 77, is redundant, since path @ uniquely identifies the source and
destination nodes s and d. When not strictly required, we will omit to explicitly
indicate sd.
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The problem of finding the static routing algorithm R can be
formalized as a LP problem. Let fsl((f*] ) = 7! 1psa be variables
that represent the average normalized amount of information
from s to d that is routed through link / from ¢ to j. Variables

fsl((f*j ) must satisfy

Z fsl((is_d) = Psd VS, d (3)
-

> S - > F90 =0 Viitsitd (4
i ;

Z fslfji_)d) = Psd \'/s7 d (5)
ZL: fsl((f_’j V<1 W (6)
sd

A7 20 Ws,d. o

Equations (3)—(5) represent the classic flow conservation equa-
tions; (6) forces all the flows routed over a link to be admis-
sible, and finally (7) forces all the flows to be nonnegative. By
selecting an appropriate utility function, the above expressions
can be mapped into an optimization problem that defines the
optimal routing under the chosen utility function. This class of
routings belongs to the static class [6]—[8], and it assumes the
knowledge of the traffic matrix p.

Given an admissible traffic pattern, a system of queues is
stable if all average virtual backlogs are bounded. i.e.:

Definition 2: A network of queues is stable if

limsup E [||X(n)]]] < oo

n—o0o

where || - || is any norm function.

Now we introduce the important definition of traffic pattern
sustainability. Sustainability depends on the scheduling policy,
i.e., on the way in which the different flows queued at the same
queue are served. More formally:

Definition 3: A traffic pattern p is sustainable if there exist a
static routing algorithm R and a scheduling policy such that the
network of queues is stable.

The main difference between admissibility and sustainability
is the fact that the former only guarantees that no network ele-
ments are overloaded, while the latter implies that all the traffic
is effectively transferred through the network with a finite av-
erage delay.

It is immediate to verify that admissibility is a necessary con-
dition for a traffic pattern to be sustainable; the reverse statement
is, instead, less evident. It was indeed proved that in a network
of queues under work-conserving scheduling policies instabil-
ities may arise even in presence of admissible traffic. See, for
example, [21].

We will show in the next sections that, under our assumptions,
and with scheduling policies related to link loads, the two defi-
nitions of admissibility and sustainability are equivalent.

A. Lyapunov Stability Criterion

The stochastic Lyapunov function is a powerful tool to prove
stability (i.e., positive recurrency) of Markovian systems. In this
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Fig. 1. Simple network topology in which some links cannot be fully loaded.

subsection we briefly report one of the main results related to
the Lyapunov function methodology, which will be used in the
remainder of this paper; we refer the interested reader to [15]
for more details.

Theorem 1: Let X(n) be a |E|-dimensional Markov chain,
whose elements z'(n), [ = 1,2,...,|E| are nonnegative inte-
gers, i.e., X(n) € WLEI. If there exists a nonnegative valued

function {L : WJFEl — IR} such that:

E[L(X(n+1)) = L(X(n))[X(n)] <oco  (8)
Jimm sup E[L(X(n+1)) = L(X(n)) |X(n)] < ¢ ©
[1X (n) |~ 00 IX(n)l

for some € > 0, then X(n) is positive recurrent (i.e., stable) and
limsup E [||X(n)]|] < oo.

Inequality (8) imposes that the increments of the Lyapunov
function £(X) be finite. It is immediate to verify that this con-
straint can be met in general if all the moments of X(n + 1) —
X (n) are finite; in particular, for quadratic Lyapunov functions,
it is sufficient that the second moment of X(n + 1) — X(n) is
finite. The second inequality, (9), often termed as the Lyapunov
function drift, requires that, for large values of ||X]|, the rela-
tive average increment in the Lyapunov function from time n to
time n + 1 be negative. The intuition behind this result is that
the system must be such that a negative feedback exists, which
is able to pull it toward the empty state, thus making it ergodic.

IV. RESULTS FOR AN OPTIMISTIC SCENARIO

The results presented in this section are preliminary, since
they refer to an ideal, optimistic scenario, in which we assume
that the capacity of every link [ € E is fully utilized, as long as
the link virtual backlog z!(n) is non-null.

This is not true in general, as it can be understood by con-
sidering the simple example shown in Fig. 1. Remember that
we are considering a flow-level model, and that the link virtual
backlog x'(n) corresponds to the total amount of information
associated with active flows already scheduled for link /. As-
sume that the three links in the figure have the same capacity
and that the virtual backlogs are non-null. We immediately un-
derstand that link 1 is the system bottleneck: if link 1 works at
its capacity, it cannot feed enough data into links 2 and 3 to keep
them fully utilized.
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Nevertheless, with our optimistic assumption (which will be
corrected in the next section) the dynamics of the virtual backlog
on link [ is given by the following equation:

d(n+1)= ) —1,0) +st

where we assume a dynamic routing algorithm.
Using a vectorial notation we can write

X(n 4 1) = max (X(n) — I,0) + RT(n)A(n)

max ( asd

(10)

where X (n) is the vector of virtual backlogs; I is an | E|-dimen-

sional vector with all entries equal to 1; A(n) € Rl_:flz is the
vector whose components represent the workloads provided by
flows arrived during time slot n; i.e., A(n) = [asq(n)]; scalar
operators are extended to vectors by applying the operator on
all components. For example, given any two vectors Vi e Vo,
the vector max(Vy, V) contains components max(v!, v}).

Equation (10) implies that the system dynamics are described
by an irreducible Markov chain whose state descriptor is X.

Under these idealized conditions, it is immediate to realize
that the sustainability and admissibility conditions are equiva-
lent. Indeed, any scheduling policy capable of guaranteeing to
flows service rates equal to or larger than the average virtual
backlog, i.e., to the average amount of traffic routed over the dif-
ferent links, ensures bounded queues for any admissible traffic.

The question we raise now is the following: “Is it possible
to devise a dynamic routing algorithm that can guarantee sta-
bility for any admissible traffic pattern, e.g., without requiring
the knowledge of the traffic matrix p?”

Our answer is positive; the following theorem defines a
simple dynamic routing algorithm that guarantees stability
under any admissible traffic pattern. We call this algorithm
min-backlogged-path routing since newly arrived flows s — d
that arrive during time slot . are routed according to a minimum
cost path strategy in which link costs equal the link virtual
backlogs. That is, the algorithm selects the path = € TI(sd) that
minimizes the sum of virtual backlogs, i.e.,

Z z'(n).

leL(x)

m = arg min
well(sd)

Theorem 2: A dynamic routing algorithm R*(n) defined as

R*(n) = arg Irgn AT (n)RX(n) (11)
stabilizes the network under any admissible traffic pattern.
Proof: We will prove this result by applying the Lyapunov
function methodology. Let us consider the quadratic Lyapunov
function
L(X) =XTX. (12)
Recalling that we consider Poisson arrivals of flows, and finite
variance flow sizes, Inequality (8) holds. Then, consider the Lya-
punov function drift (9)
EIL(X(n+1)) - £(X(n)) [X(n)]
IX(n)
E [XT(n +1)X(n+1)— XT(n)X(n)|X(n)]

X ()
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||x<n>||

| 2E[ATR )X ()] + o (IX(w)])
Xl

B [XT(n)X(n)|X(n)]

X (n)]]

where max(X(n) — I,0) was approximated with X(n) +
o(]|X(n)]|) in the second term, and terms not comprising X (n)
were neglected at the numerator [since we consider large values
of | X (n)|| in 9)].
Observing that max(X — I,0) = mm(X I
E [max (X(n) — I,0)" max ( ]
= X" (n)X(n) — 2min (XT( ),HT) X( )
+ min (X(n)T7 HT) min (X(n), I
= X" (n)X(n) — 20" X(n) + o (||X]))

since min(X%, IT)X = I*X — o(||X]|). Finally
E[L(X(n+1))-L£(X(n)) [X(n)]
1X(n)l
_ 2B [AT(n)R*(n)] X(n)—20" X (n)+o (|[X(n)]])
= . (13)
X ()l
Stability is guaranteed if there exist e > 0, B > 0 such that
the Lyapunov drift is strictly negative for || X(n)|| > B
(E [AT(n)R*(n)] — I'") X(n)
X (n)ll
To prove that the drift is negative, we first define the policy
R/(X(n)) = arg ming E[AT (n)]RX(n); note that

AT (n)R*(n)X(n)= m}inAT(n)RX(n) <AT(n)R/(n)X(n)

< —e. (14)

thus

E [AT(n)R*(n)] X(n) < E [AT(n)] R/(n)X(n).

Being the traffic pattern admissible, there exists a static
routing R such that E[AT (n)]RX(n) < I"X(n). Finally,
since E[AT (n)]R/(n)X(n) < E[AT(n )]RX( ) < I"X(n)

E[AT(n)R*(n)] X(n) — I"X(n)
<E[AT(n)] R'(n)X(n) — I"X(n)
= min £ [A"(n)] RX(n) — I"X(n)

< E[AT(n)] RX(n) — I"X(n) < —¢
hence, the nominator in (14) is negative. [ ]
The proof can be extended to the case in which the routing al-
gorithm operates on a wrong estimate of X(n), as far as the mis-
match E(n) between X (n) and its estimate X(n) is bounded:
Theorem 3: If there exists a finite & such that [|E(n)|| <
k,VX(n), where E(n) = X(n)—X(n), then a dynamic routing
algorithm R (n) defined as
R*(n) = arg Irgn AT(n)RX(n) (15)

stabilizes the network under any admissible traffic pattern.
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We call this algorithm approximate min-backlogged-path
routing.

Proof: We build on the same calculations and on the same
Lyapunov function as in the previous proof. Stability is guaran-
teed if there exist e > 0, B > 0 such that the Lyapunov function
drift is strictly negative for | X(n)|| > B

(E[AT(n)R*(n)] — IT) X(n)
1X(n)l

X(n) — X(n). We note that

< —€.

Define E(n) =
AT ()R (n)X(n) = min AT (n)R(n)X(n)
< AT (n)R*(n) [X(n) + E(n)].
Thus
E [AT)RH ()X (m)]X(n)] < F [AT (n)R* ()] X(n)
+E [AT (n)R*(n)E(n)|X(n)]

being the last term bounded in norm, due to the fact that E(n)
is bounded in norm by k.
Similarly

E [AT (n)R* (n)X(n)|X(n)]
= B [AT ()R (m)X(n)|X(n)]
B [AT ()R (n)E(n)|X(n)]
—E[AT( IR ()X ()X ()] + o (IX(n)]]).
As a consequence
(2 [AT (m)R* (n)]
Xl

<

—I")X(n)

(£ [AT(n)R*(n)] -
X ()

which concludes the proof, since we have already proved that

sy (E’ [AT(n)R*(n)] — Z[T) X(n) .
||4£'<n>||foo 1X(n)]] <o

|

Repeating the same arguments, stability of approximate min-

backlogged-path routing can be proved in the two following
more general cases:

1) E[E(n)] < oo] and E[ET(n)E(n)] < ocl;

2) E(n) depends on X(n) being possibly un-
bounded when || X(n)l| — oo;  however
Bt (ny oo (v ETET (M) E)X(m)]/IIX(n)]]) = 0.

In both cases, by Cauchy—Schwarz inequality, it results

E [AT(n)R(n)E(n)]
< \/E [((AT(n)R) (RTA(n))] E [ET(n)E(n)]
= o([X(n)[]) -

This last result is of particular interest, since it allows us to
conclude that the nice properties of the min-backlogged-path
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routing algorithm are maintained even when there are some mis-
matches between the current network state X (n) and the set of
costs X(n) used by the routing algorithm to route new requests.
This mismatch can be due for example to a delay in distributing
updated link cost vectors, or to errors due to finite precision rep-
resentation of costs. We can thus state that finite delays in propa-
gating the link state information may affect general performance
indexes, such as average file transfer times, but do not reduce the
stability region of the routing algorithm.

We will not repeat the proof in case of wrong estimate of
X (n) for the more general cases considered in the next sections,
but the same arguments hold also for those cases.

V. RESULTS FOR FEASIBLE SCHEDULING POLICIES

In the previous section we have considered an idealized sce-
nario where links are always fully utilized whenever their virtual
backlog is not null. This optimistic situation is not sustained in
practice, as already shown in example of Fig. 1.

Thus, (10) must be rewritten as

X(n+1) =X(n) — W(n) + RT(n)A(n) (16)
where W (n) is a vector whose /th element w'(n) represents the
amount of work provided by link (queue) ¢! to all the enqueued
flows during time slot n, i.e., W (n) is the result of the sched-
uling policy implemented at the different links.

In general, the maximum amount of work that can be pro-
vided at a link [ is not fully specified by the virtual backlog !,
since it is also constrained by the dynamics of the flows that are
physically available at the link, and possibly by the blocking
properties of node architectures.

In this section, we consider scheduling policies according to
which each flow in the network receives the same amount of
work by all queues along its path. This assumption assures, in-
deed, that the sequence of selected W (n) is physically sustain-
able. With reference to the example of Fig. 1, the assumption we
introduce in this section automatically forces w?(n) +w?(n) =
wl(n) < 1. We notice that in packet networks, the presence
of buffers at nodes allows to sustain short-term mismatches in
the amount of work provided to a flow by the physical queues
along its path. Under our assumption, instead backlog build-up
is never experienced in the buffer at network nodes. However,
note that the presence of end-to-end congestion control mecha-
nisms for elastic traffic (such as the one imposed by TCP, or by
explicit rate control mechanisms [17]-[19]) dynamically adapts
the transmission rate of the source to the instantaneous avail-
able bandwidth along the path, by limiting the in-flight packet
number for each flow to few units; it essentially forces the phys-
ical queues along the path to provide the same amount of work
to in-transit flows, neglecting very short-term effects. Note that
we are neglecting propagation delays, and (finite) transients at
flow establishment and termination.

Let w™(n) > 0 be the amount of work provided to the flows
routed on path 7 by all the queues [ € L(w) by time n, and
W7 (n) the corresponding column vector. Let ™ (n) be the vir-
tual backlog at time n due to flows routed on path = € II(sd)
on every queue [ € L(w) (this is identical for all queues due
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to the assumptions of this section). Let X™ (n) the vector of the
x™(n).

Definition 4: Vector W (n) is physically sustainable if

w'(n) = Z w™(n) <1 Vi (17)
well(l)
w™(n) <z™(n). (18)

We call feasible scheduling policy a policy that at each time slot
finds a sustainable W (n).

The scheduling policy computes either the vector W (n), i.e.,
the amount of provided work, or a set of guaranteed service
rates, from which the provided work is derived according to
some algorithm (e.g., using GPS [20]). We call b™(n) the min-
imum guaranteed service rate associated with the flow routed
on path 7 at all queues, and B™(n) the corresponding column
vector. The b™ (n) are constrained by a relation similar to (17)

) <1 v

well(l)

19)

but do not need to satisfy the equivalent of (18), and do not
necessarily depend from X (n). A simple way of deriving w™ (n)
from b7 (n) is the following:

w™(n) = min (2" (n),b" (n)). (20)

The dynamics of the path virtual backlogs can be written as

X" (n+1) = X"(n) — W™(n) + (R™(n))" A(n). (21)
Since physical backlog at network queues is negligible, the el-
ements 2™ (n) of X™ acquires the meaning of the amount of
information belonging to flows that have been routed on path 7
still waiting for transmission at the source.

We are now in a position to generalize the results presented
in the previous section, proving that, under any admissible
traffic pattern, a network adopting a routing similar to the
min-backlogged-path routing in conjunction with a generic
feasible scheduling policy is stable.

However, we first need to prove that traffic admissibility and
traffic sustainability are equivalent also under the assumptions
made in this section. The basic statement is that this equivalence
holds if the service rates provided by the scheduling policy are
matched with the average loads routed through network nodes.
A GPS-like scheduler easily achieves this result.

A. Sustainability Versus Admissibility

To prove that sustainability is equivalent to admissibility, we
must show that there always exists a static routing function R
and a static (time invariant, so that we drop the dependence from
n) feasible scheduling policy such that

b™ > 7lpsa V7 (22)
i.e., the service rate guaranteed to active flows routed on 7 by
queues along 7 is greater than the average workload arrival rate
on path 7.

Lemma 1: Any admissible average arrival vector E[A] is

sustainable.
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TABLE 1
SUMMARY OF CONSIDERED DYNAMIC ROUTING ALGORITHMS
Routing algorithm Definition
min-backlogged-path | arg ming AT (n)RX(n)

argming~ AT (n)R™ X" (n)
arg ming~ AT (n)R™V(G™ (X" (n)))
arg ming eri(sq) Maxier(z) €' (n)

min-backlogged-flow
min-congested-flow
min-congested-link

TABLE 11
SUMMARY OF CONSIDERED SCHEDULING POLICIES
Scheduling policy Definition
max-scalar path arg maxyw W72 X" (n)
generalized max-scalar path | arg maxyw WTV(G™(X™(n)))
s

max-backlog-proportional b™(n) = Lﬂ)l

maxe 1, (x) T (1)

Proof: According to the definition of admissibility, given
an admissible traffic pattern, there exists a static routing algo-
rithm R, such that, for some € > 0

RTE[A] < (1 — 2e).

Let us assign to each path 7 € II(sd) a static service rate bT; =
(1 + €)FTpga. Call b = > remq) bea the link working rates,
and B the corresponding column vector.

By construction, B = (1 + €)RTE[A] < I defines a set of
sustainable link working rates that stabilizes the network.  H

Note that, from the previous Lemma, it immediately follows
that, for each admissible average arrival vector A, RTE [A] lies
in the convex-hull of the sustainable service rates B.

B. First Result

We now extend the result of Theorem 2 to the general case
of feasible scheduling policies, i.e., to the case where W (n)
is constrained to be sustainable. Therefore, we need to define
a scheduling algorithm that computes W (n) when the chosen
dynamic routing algorithm is adopted.

Definition 5: We define the max-scalar path scheduling
policy as the feasible scheduling policy computing the provided
work W*™(n) that maximizes the scalar product W2 X™(n).
That is, according to W*™(n), the amount of work provided
along paths w™(n) > 0 is selected for which

W*"(n) = arg max WIX™(n)

with W subject to (17) and (18).

We now define a modification of the min-backlogged-path
routing.

Definition 6: A dynamic routing algorithm R*™ (n) such that

R*"(n) = arg mritn AT (n)RX™(n) (23)
is called min-backlogged-flow routing.

This routing algorithm selects the path with the minimum vir-
tual backlog, without accounting for the hop count along the
path.

To help the reader in recalling all the definitions, Table I sum-
marizes all considered routing algorithms, while Table II sum-
marizes scheduling policies.

We introduce the following a preliminary result:
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Lemma 2: Let
B*"(n) = arg max BYX"™(n)

with B subject to (19). It results

[B*"(n) — W*(n)]" X"(n) < (B*"(n))" B*"(n)

ie, the difference between (B*"(n))TX™(n)
(W*™(n))TX™(n) is bounded by a finite constant.
Proof: Recalling (20), we have

and

[B*"(n) — W*”( N X" (n)
= (B*"(n))" X" (n) — max WX"(n)
< (B*"(n))" X™(n) — min (X"(n), B*"(n))" X" (n)
T

= [B*"(n) — min (X" (n )B*”( )" X7 (n)
= max (B*"(n) — X" (n),0)" X" (n)

< max (B*™(n) — X" (n),0)" B*"(n)

< (B*"(n))" B*"(n).

Note, indeed, that max(b — z,0)z < max(b — z,0)b holds for
everyxz > 0,0 > 0. [ ]
We are now ready to introduce our first main result.
Theorem 4: For any sustainable traffic pattern, a network is
stable if the min-backlogged-flow routing and the max-scalar
path scheduling policy are adopted.

Proof: We prove this result by applying the Lyapunov
function methodology, following the same approach used in the
proof of Theorem 2. Let us consider the quadratic Lyapunov
function, as in (12). Stability is guaranteed if there exist ¢ > 0
and B > 0 such that, for [|X(n)|| > B, the Lyapunov function
drift is strictly negative
EL(XT(n+1)) = L(X(n)) [X"(n)]

X ()]
2{ B [AT(mR*"(n)] = (W™ ()" } X7 (n)
Xl o

having neglected at the numerator terms not comprising X(n).
To prove that the drift is negative, we define the routing algo-
rithm R'™(n) = arg ming E[AT (n)]RX™(n); note that

AT (n)R*"(n)X"(n) = min AT (n)RX™(n)
<A(n)R'™(n)X"(n)

thus

E[AT(n)R™ ()] X7(n) < E[A(n)] R ()X7(n).

Finally
E[AM)]" R ()X (n) — (W (n))" X" (n)
= min £ [A" (n)] RX"(n) — (W*"(n))" X" (n)
<E[AT(n )]1:1 (n) = (W*"(n))" X" (n)
= E [AT(n)] R"X"(n) — max WIX™(n)
< E[AT(n)] R™X"(n) m}gLXBTX”(n)
+o(IX"()]) < —¢ X" (n)]
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where R™ is a static routing leading to admissibility. In the

second-last equality the provided work W™ was approximated

with the service rates B™ thanks to Lemma 2. Moreover, the

last inequality holds since E[AT (n)]R™ is in the convex hull

of sustainable service rates B™ (due to Lemma 1) if A is

admissible. |
Note that we do not need that

W*™(n) = arg mV%xWTX’T(n).
We just need
W ()X (n) > E [AT (n)] R™X™(n).

C. Considering Generalized Virtual Backlog Costs

A further extension of the previous result can be obtained
considering generalized cost functions of the virtual backlog.
Let g"(z) be a set IRT — IRT functions in C*°[0, 00],

that are strictly increasing and convex, with ¢™(0) = 0,
(dg™(z)/dz)|x=0 > 0 and
dg™ "t ()
dx —
A iy =0
dx
We use g™ (™) as congestion index related to path =, i.e., we

define as link / congestion index g'(n) = > ren 97 (27 (n)).
Let us modify the min-backlogged-flow routing. Let
G™(X"(n)) be the vector with components g™ (z™(n)).

Definition 7: A dynamic routing algorithm R*™ (n) such that

R*"(n) = arg mritn AT (n)RV (G™ (X" (n))) (24)

being V(G™(X7™(n))) the vector whose elements are
g™ (x™)(0g™ (™) /0x™), is called min-congested-flow routing.

This routing algorithm selects the least congested path among
all paths from qs to d according to the congestion definition
above.

Definition 8: We define the generalized max-scalar path
scheduling policy as the feasible scheduling policy computing
the provided work W*™(n) that maximizes the scalar product
WTV(G™(X™(n))).

That is, according to W*™(n), the amount of work provided
along paths w™(n) > 0 is selected for which

W*™(n) = arg max WLV (G™ (X™(n))) (25)
subject to (17) and (18).

Theorem 5: For any sustainable traffic pattern, a network
is stable if the min-congested-flow routing and the generalized
max-scalar path scheduling policy are adopted.

Proof: This proof is a straightforward extension of the
proof of Theorem 4.
Consider the Lyapunov function

£(X(n)) = (G™ (X" (n)))" G™ (X" (n)).
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It results

E[L(XT(n+ 1)) = L(X"(n)) [X"(n)]
=2F [(2ATR*™ — (W*")T)] V(G (X" (n)))
+o([IGT(XT(m))I)-

Proceeding exactly as in the proof of Theorem 4, the result can
be obtained. [ |

D. Considering Simpler Scheduling Algorithms

Unfortunately, the implementation of the max-scalar sched-
uling policy or its generalization can be difficult, since it re-
quires the solution of a difficult optimization problem [as de-
fined in Definition 5, or (25)] which is hard to implement in a
distributed scenario.

We thus need to look for other pairs of dynamic routing
algorithm and feasible scheduling policy that guarantee max-
imum throughput, while also being easy to implement in a
distributed environment. We define in the following a general
framework that allows to characterize pairs of dynamic routing
algorithm and feasible scheduling policy that guarantee max-
imum throughput.

Definition 9: A scheduling policy is (6, €) efficient if, for
every € > 0, there existsa § > 0 and a B > 0 such that, defined

2!(n)

J =qle F|l————
5 () {E |maxl,eExl'(n)

> 1—6} (26)

whenever maxy ¢ ! (n) > B
w'(n) >1—¢ Ve Ji(n).

The previous definition states that whenever the network link
congestion exceeds B, the amount of work provided by bottle-
neck links (i.e., links in set J{) is almost one.

Theorem 6: 1f flows from s to d are routed on path 7, with

7 =arg min max z'(n)
#€ll(sd) le L(#)

and the network adopts a (6, ¢) efficient scheduling, then the
network is stable under any admissible traffic.

In the case of ties, i.e, when two paths 7; and 7o exist,
such that max;er(x,)2'(n) = maxer(x,)a'(n), the path
with the least loaded second highest-load link is selected. In
case of further tie, the third highest-load link is considered,
and so on. In case links of m; present the same congestion
on the sequence of highest loaded links of ms, the shortest
path will be selected. This routing algorithm will be called
min-congested-link routing, since flows s — d are routed along
the path whose highest-load link is least loaded.

Proof: The proof is reported in Appendix A. [ |

A possible (9, €)-efficient policy is the allocation of guaran-
teed service rates according to

27 (n)

b™(n) = ——M—~-——.
(n) maxjer,(r) o' (n)

27)
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Using (20)

w™(n) = min (b™(n), 2™ (n))

=b"(n)
= _ o) for max z'(n) > 1.
max;cg rt(n) I€EE

Summing both sides for 7 € TI({), and choosing § = e, we
easily find that this policy is (6, €)-efficient.

We call this scheduling policy max-backlog-proportional
scheduling; it provides service to flows proportionally to their
virtual backlog with respect to the virtual backlogs of flows
sharing the most congested link along the path. Note that it
does not guarantee to fully utilize the link capacities, and that
it does not require any knowledge of traffic matrix p.

A generalization of the max-backlog-proportional scheduling
is possible. Indeed

w(n) > — ¥ () l
maxer(x) ' (n)

for max z'(n) >1 (28)

leL(x)

being y™(n) any set of nonnegative numbers satisfying the
property

2t (n) < T(n) < max z'(n) VI
W< 32 ) < ')

can be easily proved to fall in the class of (6,¢) policy. We
call this class of policies generalized max-backlog-proportional
scheduling.

VI. SYSTEM STATE IN TERMS OF NUMBER OF FLOWS

In previous sections the network dynamics was expressed in
terms of flows backlogs. This requires that link state metrics ac-
count for the backlogs of the different flows, which may be dif-
ficult to implement. In this section we instead define the system
state in terms of the number of active flows. We start by consid-
ering exponentially distributed flow durations.

If flow lengths are exponentially distributed, the network can
be modeled by a Markov chain whose state descriptor Z™ (n) is
an | E|-dimensional vector whose rth element 2™ (n) represents
the number of flows that are traversing path 7 at time n.

The dynamics of z7™(n) are described by

2 (n+1)=2"(n) + Y va(n)rly(n) — d™(n)
sd

where ~ys4(n) represents the number of new flows from node s
to node d arrived at the network during time slot n, and d™(n)
is a random variable that denotes the number of flows that com-
pleted the data transfer at time slot 7.

Rewriting the previous equation using vectorial notation, we
obtain

Z™(n+1) =Z"(n) + R™(n)"T(n) — D™(n) (29)
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being easy to verify that i) E['(n)] = pFE[A(n)], and ii)
E[D™(n)|Z™(n)] — uWT(n) for ||Z7(n)|| — oo. Thus, for
127 (n)|| — oo

E[ZT(n+ 1) — Z™(n)|Z7(n)]
— (R (n)" E [A(n)] — kW7 (1) + o(1)

which highlights the fact that the structure of (29) is asymp-
totically (for large ||Z™(n)||) identical to the structure of (21),
under the variable substitution X™ — Z™. As a consequence,
the results obtained in the previous section can be immediately
extended for “companion” routing algorithms and scheduling
policies that operate on Z™ rather than X™. A formal proof can
be obtained by applying the stochastic Lyapunov functions ob-
tained by substituting Z™ to X".

Therefore, the following results can be immediately derived.

We can redefine the dynamic min-backlogged-flow routing
algorithm as the routing algorithm R*(n) such that:

R*"(n) = arg mfin AT(n)RZ™(n).

We can redefine the max-scalar path scheduling policy as the
policy W*"(n) that maximizes the scalar product W7'Z™ (n).
That is

W*™(n) = arg max WTLZ™(n)

subject to (17) and (18).

Let 2(n) = Y cpg#"(n). We can redefine the
max-backlog-proportional scheduling policy or its general-
izations to operate on the flow number Z™ rather than the
path backlog X™, also explicitly considering different link

capacities.
The max-backlog-proportional scheduling becomes
2" (n)
™ (n) = ———— 30
being U the network bottleneck (.e.,

I' = argmax;cp(2(n)/CH)).

We can finally redefine the min-congested-link routing algo-
rithm as follows:
#'(n)

min max

= argirGH(sd) 1eL(z) CU.

Then, we can state the following two theorems, which are
direct consequences of Theorems 4 and 6.

Theorem 7: 1f flow lengths are exponentially distributed, for
any sustainable traffic pattern, a network adopting the min-back-
logged-flow routing algorithm and the max-scalar-path sched-
uling policy is stable.

Theorem 8: If flow lengths are exponentially distributed, for
any sustainable traffic pattern, a network adopting the min-con-
gested-link routing algorithm and the max-backlog-propor-
tional scheduling policy is stable.

This latter theorem refers to a routing algorithm that is similar
to what has been proposed in actual packet networks, since it
corresponds to a minimum distance routing adopting the L,
norm (i.e, where only the bottleneck link is considered) [11].
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The assumption of exponential flow sizes may be unreal-
istic. However, the results just obtained for exponentially dis-
tributed flow sizes can be extended to flows with generally dis-
tributed size (with mean 1/ and finite polynomial moments).
Indeed, we observe that in our model each link can be described
by a single-server processor sharing queue if we assume that
the flows uniformly share the available capacity (i.e., a max-
backlog-proportional scheduling policy is adopted). Thus, we
claim that the following property holds in our system:

EfllpX(n) - Z7(n)|l]
1Z7 (n)|

=0 31)

1Z™ (n)|| =00

being p* a constant which depends on the flow length distribu-
tion. Under the above property the number of flows becomes a
good estimator of the residual workload at the queue when the
workload in the network becomes arbitrarily large. This prop-
erty is satisfied by systems subject to the state space collapse
phenomenon(or multiplicative state space collapse)’ [22], [23],
which has been already proved for several queuing systems,
among which the G/G/1 Processor Sharing queue [24].

Under the state space collapse assumption, we can extend the
results obtained for exponentially distributed flows also to the
generally distributed flow size, since 1) routing algorithms and
scheduling policies that operate on Z™(n) and X™(n) become
equivalent when ||Z™(n)|| — oo; and 2) policies operating on
X™(n) were already proved to maximize network throughput.

VII. MODELING BUFFERS ALONG THE PATH

In this section we explicitly consider the effect of buffers in-
side the network; buffers allow to sustain a temporary mismatch
in the amount of work provided to a flow along its path. In this
case, since the physical backlog enqueued in the network is no
longer negligible, the virtual backlog of active flows routed on
path ™ may be different at different queues.

We extend to this general case the theoretical framework de-
veloped in previous sections. In order to properly describe the
virtual backlog dynamics in the network, we have to directly
represent the evolution of the backlog at the sources.

Let 2™ (n) be the virtual backlog at queue ¢' due to flows
scheduled for path 7 that at time n must still be forwarded by
link [. Let 2°™(n), instead the backlog at source s, i.e., the
amount of information belonging to flows routed on path 7 that
has still to be transmitted from source s. Let w" ™ (n) the amount
of work provided by link [ in time slot n to flows routed through
path 7. Let w®™(n) be the amount of information injected on
path 7 by the source s.

The dynamical evolution of virtual backlog in the network
and at the source nodes is driven by

o4 (n 4+ 1) =2 (n) — wh™ (n) + Z riy(n)asa(n)  (32)
sd

5Space collapse is an asymptotic property of many multidimensional Mar-
kovian (possibly over general space states) queueing systems, which appears in
heavy-traffic conditions, i.e., under diffusion scaling, when the system load ap-
proach 1. If space collapse occurs the queueing system asymptotically lives in
a lower dimensional subspace of the original space state, with particular prop-
erties.
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¥ (n+1) =2%™(n) )+ Z riy(n)asa(n). (33)

Let p!™(n) the physical backlog at time n at queue [ due to
flow routed along path 7, i,e., the amount of information (bytes)
belonging to flows routed through path = that are physically
enqueued at time 7 in queue ¢'.

We remind that, by definition, 2/™(n) is the sum of three
contributions: 1) the physical backlog contribution, p"™(n), at
queue ¢'; 2) the physical backlog contribution that is enqueued
in upstream queues; and 3) the backlog at source s, 257 (n).

As a consequence, being m the link preceding [ along 7, we
have

e ={

if [ is the first link of
otherwise.

b (n) — ™™ (n) >0,

b (n) — 25™(n) >0,

(34)
Now we generalize the definition of sustainable amount of
work provided to flows by links and sources.
Definition 10: The amount of work provided to flows by links
{wh™(n),w*™(n)} is physically sustainable if

> whtm)<1 VI
w€II(l)

wh(n) < pi’”(n) +w®™(n), iflis the first link of 7
p"™(n) + w™™(n), otherwise

(35)

wl(n) =

(36)

w*™(n) < 57, (37)

We call feasible scheduling policy a policy that at each time
slot finds a sustainable set {w"™(n), w*™(n)}. We notice that
the class of feasible scheduling policies studied in the previous
sections forces w*™(n) = w'™(n) = w™(n) forany [ € L(r)
and, therefore, are a proper subset of sustainable policies con-
sidered in this section.

As before, the scheduling policy can compute either directly
the amounts of work {w"™(n),w*™(n)} to provide along the
path, or a set of guaranteed service rates {b“™(n),b>™(n)},
which are constrained by

Z blﬂ'

well(l)

y<1 Vi (38)

In this case, the relationships between {b"7 (n), b*>™ (n)} and
{w"™(n),w*™(n)} are more complex

w7 (n) = min (b>™ (n),z*™(n))

and (39), shown at the bottom of the page.

It is worth to note that, if p>™(n) = 0, then w'™(n) =
w*™(n) = w™(n) and b~"(n) = b™(n) for every | along T,
(39) becomes equal to (20).

Under this general framework it is possible to extend the re-
sults found in previous sections.
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Theorem 9: 1f flows from s to d are routed on path 7, with

T = arg min

’
max E 4™ (n)
well(sd) leL(x
well(sd) le (ﬂ—)ﬂ"eﬂ(l)
. !
min  max z'(n)

= ar
gﬁ-el’l(sd) 1EL(7)

and the network adopts any (9, €) efficient scheduling policy,
then the network is stable under any admissible traffic.
Proof: The proof of this result is similar to the proof of
Theorem 6 and is given in Appendix B. [ |
In particular, we can consider a scheduling policy that allo-
cates bandwidths at links according to the following rule:

zb™(n)
at(n)

b (n) = (40)
It is easy to verify that (40) defines a (6, €) efficient scheduling
policy, which relies only on information available at each link,

i.e., on local information.

VIII. CONCLUSION

In this paper, we considered packet networks loaded by ad-
missible traffic patterns, i.e., traffic patterns that, if optimally
routed, do not overload network resources. We proved that sev-
eral combinations of simple distributed dynamic routing algo-
rithms and scheduling policies based upon link state informa-
tion can achieve the same network throughput as optimal cen-
tralized routing and scheduling algorithms with complete traffic
information.

Our proofs are based on abstract flow-level models of the net-
work, consider elastic traffic, and exploit the Lyapunov function
methodology.

We showed that maximum throughput is achieved even in
case of temporary mismatches between the actual link costs and
those used by the routing algorithm. This implies that our proofs
hold even for distributed implementations, which lead to errors
in the estimation of routing metrics.

Special attention was given to the case of exponentially dis-
tributed flow sizes, which permit particularly simple routing and
scheduling algorithms.

Although the contribution of this paper is mostly theoretical,
we believe that the implementation of our algorithms is not unre-
alistic in the framework of currently considered QoS approaches
for the Internet. A discussion on the implementability of our
schemes can be found in [25].

APPENDIX

A. Proof of Theorem 6

Let z'(n) = > renq) 2" (n). Given the state of the system
x™(n), there exists a sufficiently large constant mg such that

min (b"™(n), p'™(n) + w>™(n) ,

I
(n) = { min (bl”r (n),p"™(n) + wm”’(n)) ,

if [ is the first link along m

otherwise (39
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the min-congested-link routing algorithm can be defined, for

m > mg, as
DN

R*(n) = arg ngn Z asd(n
TFEH sd) IGL(TF)

(4D
We have replaced the maximum operator by a sufficiently large
power. Note that this requires the ties resolution approach de-
scribed for the theorem. From (41), clearly

Yaaln) Y riEm) Y (a'(m)"
sd w€l(sd) leL(w)
> )

<Y aa(n)
sd TFGH(Sd) IEL(TI')

where 77, defines a static routing algorithm that stabilizes the
network. Note that, for any routing algorithm R

Yawam) > rmm) Y (o)

sd well(sd) leL(n)
:Z Z Zasd(n)r wl(n))m.
I men(l) sd
Thus
DD D sl (+'(m)"
I mel(l) sd
SZ Z Zasd(n)T xl(n))m.
I men(l) sd

Since the network traffic p is admissible, under R the average
load on every link must be strictly less then 1. Let uas be the
maximum link utilization under R.. Thus

> pafli<un <1 VIEE.
well(l) sd

(42)

We prove the stability of the min-congested-link algorithm
defined by (41) by using the following Lyapunov function for
an appropriate large m:

_ (xl)m+1
LX) = 21: m+1

—Z

Since all the polynomial moments of flow sizes are finite, in-
equality (8) holds. As a consequence, we have just to show that
the Lyapunov drift is negative when the queue size becomes
large, i.e., that (9) also holds. Let us now compute the Lyapunov
function drift. We define Az!(n) = 2!(n + 1) — z!(n)

Zx

7T€H(l)

£(X(n +1))

a:ln+1
:;< &nﬁf 23

B Z (n+ 1))m+1 — (xl(n))

m+1
—Z (n) + Aat(n))" " —
:El:iﬂ n

— L(X(n))

m+1 m—+1

(«'(n))
m+ 1
m+1

(a:l(n))m+1

m+1

)" Az (n) + o (IX(n)||™).
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Noticing that Az!(n) = 2™(n + 1) — 2™(n) =
D edq @sd(n)rif(n)—w™(n), we get

E[L(X(n+1)) - £L(X(n)) [X(n)]
=30 0 |2 parii(m) = w ()| (o))"
I well(l) L sd
+o(IXm)™)-

When ||X(n)|| > B, since the scheduling policy is (6, €)
efficient, for each € > 0 there exists a § > 0 such that

w'(n) = Z w'(n)>1—e VYlieJg(n) (43)
well(l)
Moreover, there exists a m such that:
! " 1
—_— — Vi& J(n). 44
<maxl/ ;1:”) B Z J5(n) “4)
Thus
Y% [Z puariF (n) - <n>] (' (n))"
1 mer(l) L sd

B> [z

1eJ; weri(l) L sd

-5 5 [Srarion-uron] o
1¢J* met(l) L sd

<Y | X St -a| ()"
leJ; [meli(l) sd

+3 5 [ St @
1¢J; mem(l) L sd

S Z(’U,]\[ — 14+ E) (a:l(n))m

leJ;
+ Z (uM —w (n)) (a:l(n))m
1gJ;
< Z(uM —1+4e¢) (a:l(n))m + ups Z (z'(n
leJ; g}
<=3 2e(a' )" +unr Y (o' (n)
leJ; g7}

where u)s was defined in (42), and the last inequality holds
for any choice of € such that 3¢ < 1 — up;. We note that the
second term can be made strictly smaller in module than the
first term for sufficiently large B in (44). Indeed, by choosing
B > (|E|/e), it results

Z (a:l(n))m < emax (xl(n))m <e Z (xl(n))m

1¢J; leJ;
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B. Proof of Theorem 9

This proof is very similar to the proof of Theorem 6.

Letz!(n) = D remq) 257 (n). Alsoin this case, there exists a
sufficiently large constant 1 such that the min-congested-link
routing algorithm can be defined, for m > my, as

INEDY

R*(n) = arg mrin Z asa(n
sd well(sd) leL(m)

(45)
from which, clearly

Sasaln) > m) Y (')
sd well(sd) leL(w)
Yooy (x

<Y asa(n)
sd well(sd) l€L(7r

where 77} ' defines a static routing algorithm that stabilizes the
network. In addition

2.2 2 malw)

well(l) sd

Considering the Lyapunov function already applied in the
proof of Theorem 6

zlhymH zh)m
N N
we get
E[£(X(n+1)) = £(X(n)) [X(n)]
—Z Yo 1Y parii(m) = wt ()| (2t (m)"
+0 Erne;((i)nm) :

Now, since the scheduling policy is (9, €) efficient, for each
€ > 0 there exists a § > 0 such that

w'(n) = Z wh™(n) > 1—€ Vi€ Ji(n). (46)

well(l)

In addition, for any large B > 0, there exists an m such that
7! " < 1

maxy ol B

Thus, following the same scheme of Theorem 6, being w ;s
the maximum link utilization under R, we obtain

vigJ;. 47)

EL(X(n+1)) = L(X(n)) [X(n)]

< - Z 2¢ (z'(n)

leJ;

)m + unr Z (xl(n) "

1gJ;
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where the last inequality holds for any choice of e such that 3¢ <
1 — ups. From which, proceeding as in the proof of Theorem 6,
we obtain the result. [ |
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