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Singular Higher Order Divergence-Conforming
Bases of Additive Kind and Moments Method
Applications to 3D Sharp-Wedge Structures

Roberto D. Graglia, Fellow, IEEE, and Guido Lombardi, Member, IEEE

Abstract—We present new subsectional, singular divergence-
conforming vector bases that incorporate the edge conditions
for conducting wedges. The bases are of additive kind because
obtained by incrementing the regular polynomial vector bases
with other subsectional basis sets that model the singular behavior
of the unknown vector field in the wedge neighborhood. Singular
bases of this kind, complete to arbitrarily high order, are described
in a unified and consistent manner for curved quadrilateral and
triangular elements. The higher order basis functions are obtained
as the product of lowest order functions and Silvester-Lagrange
interpolatory polynomials with specially arranged arrays of inter-
polation points. The completeness properties are discussed and
these bases are proved to be fully compatible with the standard,
high-order regular vector bases used in adjacent elements. Our
singular bases guarantee normal continuity along the edges of the
elements allowing for the discontinuity of tangential components,
adequate modelling of the divergence, and removal of spurious
solutions. These singular high-order bases provide more accurate
and efficient numerical solutions of surface integral problems.
Several test-case problems are considered in the paper, thereby
obtaining highly accurate numerical results for the current and
charge density induced on 3D sharp-wedge structures. The results
are compared with other solutions when available and confirm the
faster convergence of these bases on wedge problems.

Index Terms—Basis functions, boundary integral equations,
curvilinear geometry, electromagnetic analysis, electromag-
netic diffraction, electromagnetic scattering, Galerkin method,
high-order modelling, method of moments (MoM), numerical
analysis, singular vector functions incorporating edge conditions,
wedges.

. INTRODUCTION

HE method of moments (MoM) is one of the most widely
T used numerical techniques for solving electromagnetic
scattering and radiation problems, and MoM practitioners
have been using subsectional vector basis functions defined on
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planar triangular or quadrilateral patches for more than two
decades (see, for example, [1]-[3]). Higher order vector bases
on curved patches have been introduced more recently (see [4]
and references therein) to reduce the order of the MoM system
matrix necessary to get numerical results of a given desired
accuracy, as well as to avoid the discretization errors that occur
when surfaces with curvature are modelled.

The most useful vector bases for MoM applications are the
divergence-conforming ones [3], [4]; these bases guarantee the
continuity of the normal component of the vector unknown
across adjacent patches (or elements) and are appropriate for
the discretization of the electric field integral equation (EFIE)
operator. Unfortunately, a deficiency of the commonly used
vector bases, including high-order ones, is their inability to
accurately model the charge and current densities close to a
sharp edge [5, Ch. 10]. It is well known that the charge and
current densities near an edge could exhibit a singularity [6],
[7]; by including this singularity in the basis functions one can
avoid erroneous results near the edge and improve convergence.

The interest in incorporating edge conditions in MoM solu-
tions dates back to the mid seventies of the last century [8],
with more recent contributions available in [9]-[12]. In partic-
ular, singular higher order complete vector bases of the curl-
and divergence-conforming kind have been presented in [12],
with several numerical results that confirm the faster conver-
gence of the singular curl-conforming bases on wedge prob-
lems modelled by the vector Helmholtz equation. One of the
purposes of this paper is to prove that the same holds when sin-
gular divergence-conforming bases are used for the MoM solu-
tion of wedge problems modelled by integral equations, where
incorporation of the edge conditions in the MoM basis functions
improves the numerical convergence and permits one to avoid
erroneous results near the edge. This paper, however, is not in-
tended to provide and does not provide analytical results for the
rate of convergence of the MoM-solution of integral equations;
rather, it shows with several numerical experiments that use of
our singular functions provide a substantial reduction of the er-
rors in the near-field region for problems where the induced
current density is singular. In fact, to analytically establish the
rate of convergence of the MoM-solutions in the singular cases
where the induced current density is not square integrable one
should work with (negative) fractional-order Sobolev spaces
[13]; this analytical study would be even more involved for the
three-dimensional cases here considered to fully take into ac-
count the use of singular subsectional vector bases of additive
kind. As a matter of fact, in general, this kind of analytical study

0018-926X/$25.00 © 2008 IEEE



GRAGLIA AND LOMBARDI: SINGULAR HIGHER ORDER DIVERGENCE-CONFORMING BASES

can eventually provide only estimates for the current errors (see,
for example, [13]) whereas, for example, the results reported
in Section V-C for the rate of convergence of our numerical
solutions to the exact singular currents are not estimates, but
were obtained numerically by comparing our numerical solu-
tions with other exact results available in the literature.

As stated in [12], our singular divergence-conforming bases
are intended to deal with impenetrable (conducting) wedges;
these bases are directly defined in the parent domain of the ele-
ments, incorporate the edge conditions, and are able to approxi-
mate the charge and current distributions in the neighborhood of
the edge of a wedge for any order of the singularity coefficient
v, that is supposed given and known a priori. As noticed in [12],
our singular bases contain as a subset the regular bases already
discussed in [4], as well as another Meixner subset that contains
singular terms; this second subset is named after Meixner be-
cause it models singular as well as other nonsingular irrational
algebraic terms of the Meixner series (see [12, Eq. (1)], [6], [7D)-
One of the most important features of our singular bases is their
additive kind, which consists in the possibility to increment a
given singular base with other Meixner subsets, each one asso-
ciated with a different singularity coefficient. In the simpler case
where only one Meixner subset is used, the order of the singular
bases is given by a couple [p, s] of integer indexes, where p is the
order of the regular part of the base, which completely models
regular vector fields and their divergence up to the polynomial
order p, while s is the order of the singular part of the basis set
[12]. Similarly, the order of bases made of two or more Meixner
subsets will be given by a set of integers [p, s1, 2, ..., $m], m
being the number of the Meixner subsets considered. By use of
this notation, the lowest order of the singular bases containing
only one Meixner subset is [0, 0] (see [12]).

The present paper modifies some of the singular lowest order
divergence-conforming vector basis functions reported in [12,
Table I11] because those functions model the divergence of the
unknown field in a way that is not completely satisfactory under
the physical point of view. Furthermore, it turns out that the
singular functions of the [0, O]th order triangular base given in
[12, Table 111] are constrained by some dependency relation-
ships that need to be considered when multiplying this base
times complete higher order polynomials, so to form bases of
higher [p, s]th order, with s > 1. Because of their complex ex-
pression, those dependencies can hardly be revealed without ex-
perimenting on the higher order bases and were overlooked by
[12]. The lowest order bases presented in this paper overcome
the previous two drawbacks and permit one to straightforwardly
build singular higher order complete vector bases of the diver-
gence-conforming kind.

In this paper, in Section Il, we briefly revise the Meixner ap-
proximation for the current and charge density in the neighbor-
hood of a sharp wedge, to reformulate this approximation in
terms of edge- and height-vectors of the elements attached to the
edge of the wedge. Our new singular lowest order divergence-
conforming bases fulfil the four properties already discussed
in [12, Sec. I1]; these bases are then presented in Table I of
Section 111, where we also prove their completeness and discuss
their modelling capabilities. In Section 1V, singular higher order
bases are obtained by forming the product of the lowest order
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ones with complete Silvester interpolation polynomial factors.
Several numerical results are then presented in Section V and,
perhaps, before diving for the many mathematical details re-
ported in Sections -1V, the reader could first go over Table |
and Section V to immediately appreciate the advantages pro-
vided by the use of these bases. A strong mathematical effort
was devoted to derive the Table | bases, thereby trying several
alternative definition methods; one of these alternative methods
based on the use of special potentials to define singular diver-
gence-less basis functions is briefly discussed in the Appendix
at the end of this paper.

Il. SINGULAR ELEMENT REPRESENTATION AND MEIXNER-LIKE
APPROXIMATION ON EDGE SINGULARITY ELEMENTS

In the following we assume the reader to be comfortable with
the definitions and element representation given in [4], [12],
and adopt the same notation used in [12] to present and discuss
our new singular divergence-conforming bases. In the neigh-
borhood of the edge profile, the wedge faces are meshed by
using edge singularity quadrilaterals and/or two types of sin-
gularity triangles: the edge (e) and the vertex (v) singularity
triangle, with local edge numbering schemes shown in Fig. 1.
The vertex singularity triangles have only one vertex attached
to the edge-profile; the presence of these elements is unavoid-
able whenever a wedge structure is meshed by triangular el-
ements only. With respect to the mesh used in the neighbor-
hood of the wedge region, the vertex singularity triangles are
element fillers with modelling capability of lower quality (see
Section I11-D). As already stated in [12], there is no interest in
considering vertex singularity quadrilaterals since the only el-
ement-filler required to mesh in the neighborhood of the edge
profile is the vertex singularity triangle.

The local edge-numbering scheme sketched in Fig. 1 asso-
ciates the 7 = 1 labels to the element edges departing from the
edge profile; the behavior of the vector basis functions along
these edges, and in the neighborhood of the edge of the wedge,
can be given in terms of a dummy variable x which varies lin-
early from zero to unity along the (i & 1) edges, with x = 0 on
the edge profile and x = 1 on the vertex opposite to the edge
profile [12]. With reference to Fig. 1, one has

_J1=&
X‘{a

where ¢; is the normalized element coordinate (parent coordi-
nate) that vanishes on the ¢th edge of the element and that is
equal to unity on the edge or vertex opposite to this ith edge.
For edge singularity elements and small y, the coordinate lines
x = const. are parallel to the edge-profile because the ith edge
(& = 0) of these elements is lying on the edge-profile [Fig. 1
and (1)]. On the elements of Fig. 1, any vector quantity can be
expressed in terms of the mutually orthogonal edge-vector £;
and height unit-vector h; defined in [4], with h; parallel to V.
On each edge singularity element x is equal to ¢;, and the unit
vector normal and tangent to the edge-profile are h;(x = 0) and
£;(x = 0), respectively.

for vertex singularity triangles
for edge singularity elements

@)
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TABLE |
LOWEST ORDER DIVERGENCE-CONFORMING BASES

Basis Functions

Surface Divergences

< Dependency Relations

Regular Functions [4]
AB(T) _ §ﬁ+2‘7eﬁ*1

forf=4i+2,i+1

Eir1 Aira(r) + &1 Ay (r) =

0
1
J & Ai(r) +&ira Aia(r) = 0

Edge Singular Functions ¢
Aix1(r) = (l/fffl — ]) A (r)

Viga(r) = (&7 = 1) Agpa(r)

Quadrilateral Base
The subscripts are counted
modulo 4, fori = 1,2,3 or4

ve/ -1

i1 °Air1(r) +&i—1°Ai-1(r) = 0

Regular Functions [4]

Agp(r) = % (ép+1€5-1 — Ep—1€p41)
forg=i,i£1

L1 A () + &1 A (1)
+&Ai(r) =0

Qe

CAz:!:l("') = (ng_l - 1) Azil("')

o
2
g
E
% g | Vertex Singular Functions*®
e © N
? § | Ay (r) = XaAiil(r)$Xb%
—_— —
El }
2 S0 Vi) = xeAi(r) 1+v) Q=& =2 | &G "Dia(7r) + &1 "Aina (7)
i %é with xo = (1-&)"'—1 J +&"Vi(r) =0
Q —
2 v = (1-v)(1-&)""
1]
o
= i ions < ®
= Edge Singular Functions v(1+v) ) vt Aip1(7) + 1 ®As_1 (1)

+&%A(r) =0

yields V - ®Ajr1(r) = V- V(1) =

triangle.

& The vertex singular functions are singular at the vertex §; =

© All the basis functions appearing in each row have identical surface divergence. In particular, for the singular functions, (1)
[vx"~' —1] /J for the quadrilateral base; V -
[(1+w) x*=! — 2] /T for the vertex singularity triangle, and V - “A;11(r) = [v (1 +v) x*~! — 2] /.J for the edge singularity

& The edge singular functions are singular on the i-th edge (where &; = 0), and vanish for v = 1.
1, and vanish for v = 1.

& The ghost function 9A;(r) = (1/&”1 — 1) A;(r) appearing in the dependency relation at right does not belong to the edge singular
triangular basis set because its divergence contains a non-physical
function & 9A;(r) is physical (see (17)), the algorithm to construct independent higher-order edge-singular triangular bases has
to discard all the functions obtained by multiplying the ghost function times a polynomial of the parent variables because of the
reported dependency relation, or because the divergence of these functions contains non-physical hyper-singular terms.

UAiil(T') = V. UVZ'(’I‘) =

=2 term. Although the divergence of the higher-order edgeless

7

and vertex
triangles with local edge numbering scheme. The vertex singularity triangles
have only one vertex attached to the edge-profile, whereas the th edge of each
singularity element lies on the edge-profile. Two edge-singularity elements can
have a common edge, but the singular basis functions cannot model a corner
singularity.

Fig. 1. Edge singularity quadrilaterals and edge singularity

A. Meixner Approximation and Singularity Coefficients for a
Sharp Rectilinear Wedge

For a sharp rectilinear wedge, in terms of the  variable and
for x ~ 0, the approximate behavior of the surface current J
and of the charge density p on each edge-singularity element

takes the following form (only the leading order terms of the
series considered in [6], [7], [14], [15] are reported)

)
@)

where v (typically not an integer) is a frequency independent
singularity coefficient known a priori, whereas A,;, By and
C)s are appropriate coefficients which change element by ele-
ment and depend on the material and geometrical properties of
the wedge, as well as on the geometrical configuration, angular
frequency and polarization of the electromagnetic sources [7].
On each element, C, is related to Ay, and By, by the conti-
nuity equation; if A, is constant, Cy, is related only to B, and
the longitudinal current component (in the £; , —( direction) is
divergence-less.

A complication of the wedge problem is due to the fact that
the current and charge densities in the wedge neighborhood ex-
hibit, in principle, infinite terms of the form (2), (3), each one
relevant to a singularity coefficient of a different v-value [7],
[14]-[16]. For example, Fig. 2 shows the behavior of the lower

J =" Al =0 — X" Barhix=o
pvx’ 'Oy
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3 1 Region of unbounded wedge-current an v & ]
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» 05§ ; N . . . ]
0 30 60 90 120 150 180 210
Wedge aperture angle o (degrees)
Fig. 2. Singularity coeffrcrents » for a PEC-wedge of aperture angle  [7], in
the range n . The dashed-lines show the coefficients
- ( and integer) associate to terms of the form *;

these terms arise by expanding in series the Bessel functions of fractional order
which appear in the rigorous solution of the infinite straight-wedge problem
[15], [16]. Integer values of the singularity coefficients are marked by circles;

all the coefficients become integer at ° (flat plate) and at °.
The plus marker shows the points ; ;L for and integer, and
i . Inthe figure, these points occur only at °,90°,120°, and 180°;
onIythe plus point ( ° 4 ) does not belong to any
of the reported lines. Furthermore in the region n , the
solutions of 2 occur only at °and °, where

1 and » are both integer.

singularity coefficients v,, (for n < 7) of a perfect electric con-
ducting (PEC)-wedge as functions of the wedge aperture angle
a (see [7]). For the sake of completeness, Fig. 2 reports by
dashed-lines also the singularity coefficients v,, + 2m (with in-
teger m = {1, 00}) obtained by expanding in series the Bessel
functions of fractional order that appear in the rigorous solution
of the infinite straight-wedge problem [15], [16]. It is instruc-
tive to note in Fig. 2 that, as the PEC-wedge degenerates to a
flat plate (« = 180°), all the terms of the form (2), (3) degen-
erate into higher order polynomial forms (with integer v,, = n)
that can be modelled by regular higher order divergence-con-
forming bases.

A further complication occurs for source and scatterer config-
urations with particular symmetry [7], [16], [17], where some
of the field singularities are not excited and where the domi-
nant singular term is different from the leading one, that is when
the Ans, By and Cyy coefficients relative to the lowest v-value
vanish. The bases presented in this paper permit one to deal with
these problems because of their additive kind. In fact, although
this paper presents bases able to deal with only one singular
v-term of the form (2), (3), one can easily enlarge the bases
to include other Meixner’s subsets able to model different sin-
gular terms (v1,v9,...) up to a prescribed order v,. For the
sake of brevity, this extension is omitted in this paper because
of three reasons. First of all, this extension is rather simple, al-
though it requires numerical integration schemes more sophisti-
cated than those required to consider just the dominant singular
term. Secondly, MoM practitioners are particularly interested
in including in their numerical models the strongest singularity,
that is the field behavior [(2), (3)] for v less than unity. Finally,
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as opposite to what happens for v < 1, the field behavior relative
to a non integer singularity coefficient v,, > 1 can be approxi-
mately modelled with good results by regular vector polynomial
basis functions of higher order, that is by using [p, s]-bases with
p=> 1

B. The Meixner-Like Approximation for a Sharp Wedge With
Curved Edge-Profile

We now consider a wedge with a curved edge-profile meshed
by curved singular elements (Fig. 1). In this case, in view of
numerical applications of the MoM technique and in order to
discuss the results of Section I, it is convenient to generalize
[(2), (3)] and postulate the following local behavior in terms
of the variable edge (¢;) and height (h;) vectors of each edge-
singularity element [18]

A B
J ﬁXV_l?li — Xug_hl (4)
,_1C
~ — 5
PV ©)

where v is again known a priori (see Fig. 2 for PEC-wedges), J
is the Jacobian of the edge-singularity element, /; is the mag-
nitude of the edge-vector £;, and A, B and C' are appropriate
variable coefficients, with C related to A and B by the con-
tinuity equation. Once again, if A is constant or y dependent,
the longitudinal current component (in the £; direction) is di-
vergence-less because V - (£;/J) = 0 (see [4, Appendix]) and
because of the orthogonality of £; and V. Notice that (4), (5)
agree with (2), (3), in case of rectilinear triangular and rectan-
gular elements, where 7, £; = £;(x = 0) and h; = h;(x = 0)
are constant. Equations (2)—(5) are valid only for y ~ 0 and ne-
glect higher order terms of the x variable.

The lowest order Meixner subsets discussed in Section I11
model (4), (5) in case of constant A, B and C coefficients,
whereas the higher order subsets model the case of non con-
stant A, B and C coefficients, and other higher order terms not
explicitly reported in (4), (5). Obviously, higher order bases can
model (4), (5) in case A, B and C vary along the edge-profile,
that is along constant x coordinate lines.

Il. SINGULAR LOWEST ORDER COMPLETE
DIVERGENCE-CONFORMING BASES

Table I reports the new singular divergence-conforming bases
of the [0, 0]-order for quadrilateral and triangular elements to-
gether with their dependency relations, to be discussed in de-
tail in Section IV. These bases contain the regular zeroth-order
bases of [4], which are also reported at top of each sub-table
forming Table I. For example, the [0, 0]-order base of the vertex
singularity triangle is the union of the regular triangular basis set
with the three vertex singular functions of Table I. The quadri-
lateral and triangular edge-singularity element have three and
two singular functions, respectively; for these elements, once
again, the [0, 0]-order base is formed by the union of the reg-
ular set with the corresponding singular-functions set of Table I.
To guarantee the additive nature of the bases, all the singular
basis functions of Table I vanish at v = 1, which is the v value
where (2)—(5) are already modelled by regular basis functions.
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Flg 3. Quadrilateral basis functions of the lowest order set. (a) The regular function

i+2 . Noticethat® ;> isedge-less.

i+1, (b) edge singular function © ;1 , (c) edge singular function

Fig. 4. Triangular basis functions of the lowest order set. (a) The regular function
is edge-less.

v ;+1 , (d) the vertex singular function © ,; . Notice that”

A vector field plot of the quadrilateral and triangular basis func-
tions of Table | is reported in Figs. 3 and 4, respectively.

In the following subsections we illustrate the modelling prop-
erties of these bases, particularly of their Meixner subsets with
reference to (4), (5).

A. Conformity of the Lowest Order Bases

As shown in [4], the regular functions Ag(r) given in Table |
have, for rectilinear elements, a constant normal component
and a linear tangential (CN/LT) component along each element
edge; for curvilinear elements the variation is more complicated
because the edge vectors and the Jacobian 7 also vary along
the edge, but the normal components remain continuous across
element boundaries. However, in this subsection we consider in
detail only the Meixner subsets of our bases, since conformity
of the regular subsets is thoroughly discussed in [4].

The singular functions ¢V,,, and "V, of the quadrilateral
and triangular set, respectively, are element-based because they
have a vanishing normal component along each of the element
edges. To reflect the edgeless property, the symbol used to rep-
resent ©V,» and ¥V, has been obtained by overturning A. The
subscripts (7 + 2) and s still appear in these symbols merely
because “V; o is given in terms of the regular quadrilateral
function A; 12(r), whereas "V is given in terms of the regular
triangular function A, (r). The remaining singular functions of
Table I, as well as all the regular functions, are edge-based and
associated only with the edge quoted in their subscript, since

, (b) edge singular function ©

i+l i+1, (C) vertex singular function

the normal component of these functions along the other ele-
ment edges (not quoted in the subscript) is always equal to zero.
Irrespective of whether one considers the quadrilateral or the tri-
angular element, the normal component of the edge-based sin-
gular functions along side 3, for 8 = i £ 1, always reads as
follows:

v—1
vy -1
o ©

where ¢3 is the magnitude of the edge-vector £5 at {3 = 0 and
fw(éﬁ = 0) is the unit outward normal to the element along
the Ath boundary edge. Recall that /5 and fz@ are not constant
along the Sth boundary edge of a curved element, and that x
is zero along the edge profile shown in Fig. 1, with x = &; or
x = (1 =¢;) for “Ag(r) and "As(r), respectively [see (1)].
Our basis functions are conforming to adjacent zeroth-order
regular elements attached to the ith edge of the singular ele-
ment, and to the (¢ + 2)th edge of the edge singularity quadri-
lateral. In fact, in our bases, only the regular function A;(r)
and the regular quadrilateral function A;;»(r) have a non-van-
ishing normal component along these edges. As far as the two
remaining edges (¢ £+ 1) are concerned, conformity to adja-
cent elements is ensured in the usual way [4], [12], since the
normal component of our basis functions along their associated
edge is either regular (for A;+(r)) or singular (for °A;11(r),
YA, +1(r)), with the singular normal component taking the gen-
eral form (6). Hence, to ensure normal continuity across element
boundaries, one has only to fix the sign of these functions in

e’A’g(T) . iLﬂ

= UA][;(QI“) . ’Alﬂ £5=0
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accordance to an arbitrarily selected reference direction across
adjacent elements.

B. Completeness to the Regular Zeroth-Order

The bases of Table I are complete to the regular zeroth-order
because they contain the regular zeroth-order base (see [4]).
This permits one to deal with all cases where the singularity of
the fields is not excited and does not require one to limit the size
of the mesh in the neighborhood of the edge of the wedge (i.e.,
sub-meshing is not required). The regular zeroth-order base can
also model the nonsingular divergence-less part of the current
component normal to the edge of the wedge, whenever this cur-
rent is present, as opposite to what happens when using the sin-
gular bases of non-additive kind given in [11] (see, in particular,
[11, Sec. V: Conclusion]).

C. Completeness to the Singular Lowest Order

Equations (7)—(9), (11), and (12) prove that our Table I bases
are able to model the leading terms [(4), (5)] of the Meixner se-
ries in case of constant A, B, and C coefficients; for this reason
we call these bases complete to the singular lowest order, and
the bases of Table | of [0, O]th order.

Completeness of the Longitudinal Vector Component to the
(v — 1)th Order: The longitudinal component of the current
density in the neighborhood of the wedge, whenever singular,
variesas Ax”~14; /7, where A is an appropriate coefficient [see
(4)]. This behavior is properly modelled by the basis functions
of the edge singularity elements of Table I. In fact, irrespective
of whether one considers the edge singularity triangle or quadri-
lateral, the singular current component parallel to the edge pro-
file (i.e., parallel to the ith edge) is modelled by the following
divergence-less linear combination of the lowest order edge-sin-
gularity basis functions:

v—1 tl 1 e e
X' =y {[Ai1(r) +°Ai1 ()] = [Aia(r) +°As 1 (T)]}

()

Completeness of the Normal Vector Component to the
vth-Order: In terms of the variable y, the normal component
of the current density at the edge of the wedge vanishes as
—x”B/{; [second term on the right-hand side of (4)]. This
behavior is properly modelled by the basis functions of the edge
singularity elements of Table I. In fact, for the edge singularity
triangle, one contains

1/ U E SIS

where the two different and independent vector terms
[Aix1(r) + “A;11(7)]/v on the right-hand side of (8) are
exactly those subtracted on the right-hand side of (7). Similarly,
for the edge singularity quadrilateral, one has

X~ ugalr) + “Visalr)] - b ©)

where one can further notice that the quadrilateral functions as-
sociated with the (¢ &= 1)th edge do not contribute to the current
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component normal to the edge profile since, in the quadrilateral
case, one has

Aigi(r) - hi = “Aiga(r) -h; =0 (10)
This latter result together with (9) explains why, for the edge
singularity quadrilateral, one needs to introduce the edgeless
function ©V, 5 (r) to properly model the normal component of
the current density; conversely, no edgeless function is needed
for the edge singularity triangle because of (8).

Divergence Completeness to the (v —1)th-Order: The charge
density in the neighborhood of the wedge, whenever singular,
varies as vy’ ~1C/J [see (5)], with x given in (1) and where C'
is an appropriate coefficient. This behavior is properly modelled
by the divergence of the basis functions of the Meixner subsets
of Table I, as apparent by considering the following (twelve)
linear combinations of the quadrilateral basis functions, for 5 =
it 1,442

14

7 “Viga(r) + Ag(r) (1)

as well as by the following linear combinations of the triangular
basis functions, for 3 = 4,7+ 1

Xu—l 1

X' g {P’Aiil(r)-i-l\ﬂ(")

14

7 T ag " () +As(r)

v ‘ { YAixa(r) + Ag(r)

- (1+v) UVi(r) + Ag(r).

(12)

D. The Vertex-Singularity Triangle Special Peculiarities

Wedge-structures are often meshed by using vertex-singu-
larity triangles (VST) as element-fillers. These elements have
only one vertex attached to the edge of the wedge, which is
called the VST singular vertex. The singular vertex of a VST
is a point of possible discontinuity for the vector tangent to
the edge-profile. As opposite to what happens for edge-singu-
larity elements, this wedge tangent-vector cannot be evaluated
by using only the geometrical information relative to the VST,
even when this tangent vector is continuous on the VST sin-
gular vertex (as in the case of a straight wedge). For a VST, (4)
is meaningless because the vectors tangent and normal to the
edge-profile are not defined on the VST singular vertex; for ex-
ample, at the singular vertex, the edge-vector £; of a VST is in
general not tangent to the edge-profile because the ith edge of a
VST is always opposite to the edge-profile (see Fig. 1).

Thus, the vector base associated with a VST is simply ob-
tained by imposing its conformity to adjacent elements, the reg-
ular zeroth-order completeness of the base, and its capability
to model a singular divergence in the wedge neighborhood. In
spite of this limitation, it is interesting to observe that results
similar to (7), (8) and (9) are obtained by combining the basis
functions of the vertex singularity triangle as follows:

V_l% - % {[Aig1(r) + "Aiga(r)]
—[Aioa(r) +"Aica ()]} (13)
_% = = [Ai(r) + " Vi(r)] - h. (14)
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In case of smooth edge-profiles, the above equations merely
show that it is convenient to make the ith edge of each VST
parallel to the edge-profile, whenever this is possible. If this is
done, not only (14) still holds (with h; possibly normal to the
edge-profile), but the expansion coefficients of the vertex sin-
gular functions “A; 11 and YA;_; could result to be numerically
equal but with opposite sign, so to yield to a divergence-less
term of the form

1—(1—-w)x" 1!
J

Since the equality (but for the sign) of the expansion coefficients
of YA; 41 and YA;_, can be numerically obtained only within a
limited number of figures, it is of importance to point out that
it is not convenient to force this equality from the outset, oth-
erwise one would risk to numerically force current components
of the form of (15) also in the geometrical region (which could
be relatively wide) covered by the edge-singularity elements at-
tached to the VST, where these singular components could be
weak or not present.

The reason why VSTs are prone to yield numerical results
not completely satisfactory in the neighborhood of their singular
vertex is due to the fact that VSTs do not properly model the cur-
rent component normal to the edge-profile (whenever it makes
sense to define it) because of (6), which is a mandatory equation
needed to guarantee the element conformity. In this connection,
we further observe that vertex-singularity triangles usually spoil
the condition number of the MoM system matrix. For these rea-
sons, in order to guarantee good numerical results, one should
avoid using on each wedge-face two (or more) vertex-singu-
larity triangles with a common singular vertex; if this occurs,
the mesh should be locally modified to merge into one element
the VSTs with a common vertex (though, for example, we have
not done this to the mesh used to get the results of Fig. 18). Ac-
tually, it would be better not to use VSTSs, but rather mesh the
structure in the wedge neighborhood by using only edge-singu-
larity triangles and quadrilaterals. Although we warn the reader
not to use VSTs whenever possible, all the meshes used to obtain
the results of Section V contain several elements of this kind to
show that vertex singularity triangles can be used with caution
to obtain good results although, possibly, these results could not
be completely satisfactory in the vicinity of the singular vertex
of each VST.

In spite of the fact that the wedge-modelling properties of the
vertex singularity triangle are not as good as those of the edge-
singularity elements, the vertex singularity triangle counts three
singular basis functions, that is one function more than those
of the edge-singularity triangle. This higher number of degrees
of freedom is not surprising because, as said, two of the VST
functions are needed to guarantee element conformity, while
the third is needed to model the singular divergence of the un-
known surface field (i.e., the charge density). As a matter of fact,
the two edge-based singular functions ”A; 11 (r) are obtained by
superimposing the edge-less function “V,(r) to the two diver-
gence-less functions [V A;+1(r) —¥ V;(r)], which are just those
required to guarantee conformity to adjacent elements.

Aii(r) —"Aima(r) = ¢ (15
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IV. SINGULAR HIGHER ORDER DIVERGENCE-
CONFORMING BASES

Higher order bases are obtained by multiplying the lowest
order basis sets times complete higher order polynomials. In the
following, we illustrate the procedure to form higher order bases
that contain only one Meixner subset, thereby starting from the
lowest order bases of [0, 0]th order given in Table I. If one con-
siders m different singularity coefficients (v, va, ..., vm), the
order of the lowest order base where to start from would be spec-
ified by the array [0, 01,02, . ..,0,,], made of m + 1 zeroes.

The set of the polynomial factors used to build the higher
order singular bases could take one of several different forms
(see [4]). However, for this construction, we prefer to use the Sil-
vester-Lagrange interpolation polynomial factors already used
in [4], [12], and explicitly reported in [12, Table I]. The regular
part of the [p, s]-order bases is built by using polynomial factors
of (integer) order p, whereas the higher order Meixner set is ob-
tained by using complete polynomials of (integer) order s.

As discussed in [4], [12], for values of p, s > 1 the vector
functions obtained in this manner are not linearly independent
(that is, they are not unisolvent [19]). In contrast to other forms
of the bases, these dependencies are particularly easy to spot
for higher order bases obtained by use of interpolatory polyno-
mials. In this case, the dependencies occur only if the polyno-
mial factor interpolates an element internal point, and one easily
individuates those dependencies just by considering the depen-
dency relations reported on the right-hand column of Table |
which, for the regular basis subsets, were thoroughly discussed
in [4].

A. Dependency Relations

The dependency relations in Table | are all written in terms
of the vector functions belonging to the lowest order bases, with
the exception of the dependency relation valid for the edge-sin-
gular triangular functions A;+; (7). In fact, this relationship is
given in terms of the ghost function

Ai(r) = (vE/ ™" — 1) Ai(r) (16)
which does not belong to the lowest order edge-singular trian-
gular set because its divergence contains a non-physical £/ ~2
term (to be more specific, this term is hyper-singular and clearly
non-physical for v less than unity). In spite of the fact that the di-
vergence of the higher order edgeless function £ A, (r) is phys-
ical, with

[1/2517’71 —1+v(2-v)& - §&]
J

the algorithm to construct independent higher order bases has to
discard all the functions obtained by multiplying the ghost func-
tion 9A;(r) times a polynomial of the parent variables (hence,
also the function 7 A; (r) must be discarded) because of the de-
pendency relation reported in Table | (case a), or because the
divergence of these functions contains non-physical hyper-sin-
gular terms (case b). Case (a) occurs whenever the Silvester-La-
grange multiplying polynomial contains a &; factor, whereas

V-G A(r)] = 17
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case (b) considers all the remaining interpolation polynomials
that do not contain the &; factor. These latter Silvester-Lagrange
polynomials, which do not vanish at £&; = 0, are exactly those
interpolating points along the sth triangular edge [4].

With reference to the edgeless function &7A;(r) just dis-
cussed, which has to be discarded, we notice that the edge-sin-
gular triangular base reported in [12] erroneously contains an
edgeless function ¢V, (r). Actually, this latter function must
also be excluded from the lowest order base because it does
not model the divergence in a satisfactory way; in fact, the di-
vergence of ©V;(r) given in [12] is singular at the two vertices
&+1 = 1 of the triangular element. As a matter of fact one
does not need to introduce any edgeless function for the edge
singularity triangle because, as previously noticed in this paper
[see (8)], the vanishing current component normal to the edge
of the wedge is already modelled by the functions “A;1; (r) of
Table I; in this connection, notice also that the edge-singular
triangular functions ©A;+1(r) given in [12, Table I11] already
have this modelling capability.

Thus, with respect to the singular triangular functions of [12,
Table I11], the new singular lowest order functions of Table I
exhibit two important features. First of all, the dependency re-
lations of Table I are quite simple, whereas the dependencies of
the singular higher order triangular functions of [12] can hardly
be revealed without experimenting. Secondly, the divergence of
all the singular basis functions of Table | always gets the same
physical (¢, x”~! —co)/J form, with ¢y = 1 or 2, and ¢, equal
to a constant. As in [4], [12], the divergence of the vector func-
tions belonging to the regular part of the lowest order bases is
always equal to ¢o/J, with ¢ = 1 or 2; for curvilinear ele-
ments, this ensures the regular zeroth-order completeness of the
divergence with respect to 1/7 as a weighting factor.

B. Higher Order Quadrilateral Bases

The [p, s]-order bases are obtained by the union of the nor-
malized regular vector set of order p given in [4] with a Meixner
set of order s. This latter set

Nilplr) = a5 Al
eV;ﬁ;id(T) = azt;%d(&g) ﬁVi+2(T)

is obtained by forming the product of the edge singular functions
of Table | with the complete Silvester interpolation polynomial
factors o't} (s,€) and a’t2 (s, €) reported in [12, Table 1]. As
explained in [4], the dependency in the regular subset for p > 1
is easily eliminated by discarding some regular basis functions;
the number of degrees of freedom (DOFs) for the regular quadri-
lateral set is 2(p + 1)(p + 2). Similarly, the dependency of the
singular edge functions for s > 1 is eliminated by discarding
all the s(s + 1) functions AL} () for b = {1,5}; a,c,d =
{1, s+1}, orall the s(s+1) functions f"Aﬁ;j,d(r) ford = {1, s};
a,b,c = {1,s + 1}. Hence, the total number of DOFs per sin-
gular quadrilateral is 2(p + 1)(p + 2) + (s + 1)(2s + 3).

The normal continuity across element boundaries is enforced
by adjusting the sign of the edge-based basis functions to corre-
spond to an arbitrarily selected reference direction across adja-
cent elements.
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C. Higher Order Triangular Bases

The [p, s]-order bases are obtained by the union of the regular
vector set of order p given in [4] with a Meixner set of order s.
The Meixner set is either vertex or edge singular, depending on
the type of the singularity triangle one considers. These sets are
obtained by forming the product of the vertex and edge singular
functions given in Table I with the complete Silvester interpo-
lation polynomial factors a'<! (s, £), o, (s, €) reported in [12,

abe

Table I]. They can be succinctly written as

(M) =0tlng) b g
Viope(r) = agy(s,€)  UVi(r)

where the superscript « is either equal to e or v according to the
type of the singularity triangle at issue. As explained in [4], the
dependency in the regular subset for p > 1 is easily eliminated
by discarding some regular basis functions; the number of DOFs
for the regular triangular set is (p + 1)(p + 3). Similarly, the
dependency of the singular vertex functions for s > 1 is elim-
inated by discarding all the s(s + 1)/2 functions *V, (r) for
a={1,s};b,c={1,s+1}. Hence, the total number of DOFs
per vertex singularity triangle is (p+1)(p+3) + (s + 1) (s +3).

As far as edge singularity triangles are concerned, all the
(s + 1)(s + 2) basis functions given in the first of (19) are inde-
pendent because the ghost function 9 A;(r) (and all the functions
it generates) has already been eliminated from the lowest order
base. Therefore, the total number of DOFs per edge singularity
triangle is (p + 1)(p + 3) + (s + 1)(s + 2).

Once again, the normal continuity across element boundaries
is enforced by adjusting the sign of the edge-based basis func-
tions to correspond to an arbitrarily selected reference direction
across adjacent elements.

V. NUMERICAL RESULTS

To illustrate the benefits of singular higher order divergence-
conforming vector bases we present several results obtained in
the frequency domain by a Galerkin solution of the EFIE for
plane wave illumination. The test-cases considered are all rela-
tive to zero-thickness PEC-structures in free-space, with wedge
aperture angle a = 0°; this, with reference to Fig. 2, corre-
sponds to the lowest possible value of the singularity coefficient
v = 1/2, and to the strongest singularity. All the test-cases are
defined in a cartesian reference frame {«, y, z} and were studied
by using regular bases of higher order [p], as well as by using
singular bases of [p, s]-order containing only one Meixner set;
all the elements attached to the edge-profile(s) were considered
to be singular when studying the test-cases by use of singular
[p, s]-order bases.

A. Square Plate

The first test-case is that of a square PEC-plate of zero thick-
ness at normal and at oblique incidence, illuminated by a lin-
early polarized plane-wave with incident magnetic field of am-
plitude H* equal to 1 [A/m] in the y-direction. The side length
of the square-plate is equal to one free-space wavelength A,
with top-right and bottom-left corner of the square located at
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NUMBER OF UNKNOWNS FOR THE

TABLE Il

SQUARE PLATE PROBLEM AT NORMAL AND SKEW INCIDENCE

Normal Incidence

Skew Incidence

Mesh A: 636 triangles, Mesh B: 60 triangles, Mesh with 240 triangles,
with singular bases on 64 with singular bases on 14 and singular bases on 36
vertex singularity and 68 vertex singularity and 22 vertex singularity and 44
Base Order edge singularity triangles edge singularity triangles edge singularity triangles
p=0,regular | 920 -usedinFigs.6,7,9 | 79 -usedinFig.7
p=0,s=0 | 1116 -usedinFig. 8
p=0,s=2 | 2300 -usedinFig. 8
p =1, regular 278 - usedin Fig. 7 1156 -usedin Fig. 11
p=1,s=0 | 3308 -usedinFigs.7,8,9 1272 - used in Figs. 10, 11
p = 2, regular 597 -usedin Figs. 7,9
p=2,s=0 647 - usedin Figs. 6, 8,9
The number of unknowns is printed in boldface; the figures referenced in the Table were obtained for an incident
y-polarized magnetic field H* = § exp(—jk'-r) [A/m], with k* = 27z/\ at normal incidence, and k' =
m (2 - :c\/?_)) /\ at skew incidence. The incident electric field is E* = Zop, exp (—jk’ - r) [V/m], with p, = & at
normal (or p, = (& + 2+/3)/2 at skew) incidence, and where Zj is the intrinsic free-space impedance.

mesh A mesh B

Fig. 5. Triangular meshes for the square PEC-plate problem at normal inci-
dence. The dense mesh (A) consists of 636 triangular elements; the coarse mesh
(B) counts 60 triangular elements.

(@ = A2,y = A/2)and (x = —A/2,y = —\/2), respec-
tively. Table Il summarizes the data relative to the meshes used
to numerically study this problem, the number of unknowns of
the obtained MoM-systems, and the expression of the incident
fields at normal and at oblique incidence. Numerical results for
the current induced at normal incidence on this same square
PEC-plate are reported in [3], [5, ch. 10], [20]; the current den-
sity induced at plane-wave incidence on a zero-thickness rect-
angular PEC-plate with length-to-width ratio equal to 0.7 has
been studied in [21] by the method of the Kobayashi potential.

The dense (A) and the coarse (B) triangular meshes we have
used to numerically study the square plate problem at normal
incidence are shown in Fig. 5, where the horizontal and vertical
axes are the - and y axis, respectively. Notice that the length of
the largest side of each triangular element of mesh B is roughly
equal to 0.2603 ), that is a bit more than A/4.

Fig. 6 shows the magnitude of the x-component of the cur-
rent density (.J,.) and the magnitude of the charge density p at
normal incidence. A 64 color-scale is used to report with a small
colored circle the value of the solution at each sampling point
of Fig. 6. The sampling points are chosen never to lie on edges
or vertices of the triangular elements, where the numerical so-
lution could be discontinuous (across elements’ boundaries) or
unbounded, as it happens on the sides of the square when sin-
gular elements are used. This rendering technique, used also in
other figures of this paper, permits one to recognize the elements
and, above all, does not involve any fancy data post-processing

which could eventually ameliorate the results, as it happens, for
example, when using color-filled contour plots (see for example
Fig. 12(c) and (d)). The results at left of Fig. 6 were obtained by
using the zeroth-order regular base [p = 0] on the dense mesh
A of Fig. 5, thereby solving a problem with 920 unknowns;
the results on the right-hand side were obtained by using the
coarse mesh B and the singular base of order [p = 2,s = 0],
which reduces by 29.67% the number of unknowns and yields
to a problem with 647 unknowns. These numbers mean that, on
an average, the density of the unknowns to obtain the results at
left of Fig. 6 is roughly equal to one unknown per square of
side-length equal to A/30, whereas the density to get the re-
sults at right is roughly equal to one unknown per square of
side-length equal to A/25; in MoM applications, these densi-
ties are commonly considered to be very high and are seldom
used for far-field analysis, though they are used to obtain good
near-field results.

In Fig. 6(b), the (three) brighter spots located along the two
vertical sides of the plate in the neighborhood of the singular
vertex of the vertex singularity triangles correspond to results of
higher value, and are due the poorer modelling capability of the
vertex singularity elements discussed in Section I11-D. A similar
comment holds also for the charge density results of Fig. 6(d)
where, along the two horizontal sides of the plate, one can no-
tice some color dribbling from the edge singularity triangles to
the vertex singularity triangles attached to them. However, it is
rather evident that the quality of the results on the right-hand
side of the figure is much better than that of the results on the
left-hand side of Fig. 6. In fact, the color of each element on the
left-hand side of Fig. 6 is almost uniform for the current density
results, and completely uniform for the charge density results.
In spite of the fact that we used a base with singular order s = 0,
the solution within the singular elements of Fig. 6(b) and (d) is
not uniform in the vicinity of the singular edges, though eventu-
ally infinite at these edges. The use of a base with a second order
regular part (p = 2) together with the additive nature of our
bases made in fact possible to properly model this behavior. As
amatter of fact, to improve the quality of the results in the neigh-
borhood of the edge-profile, one does not really need to increase
the order s of the singular part of the base, but rather increase
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the order p of the regular part with s kept equal to zero (see also
Fig. 8 and relative discussion). This turns out to be particularly
convenient for MoM applications, where the numerical evalu-
ation of the integrals involving bases of singular order s > 1
is rather delicate because of the presence of a singular Green’s
function; to avoid numerical problems in MoM applications, we
recommend using bases with s = 0 if the order p of the regular
part of the used base is higher than unity.

The superior modelling capability of our singular diver-
gence-conforming vector bases are better appreciated by
considering the normal-incidence results reported in Figs. 7
and 8 which show, for the same square PEC-plate, the mag-
nitude of the z-component of the current density (.J,.) along
the vertical axis x = 0, at left [Figs. 7(a) and 8(a)], and along
the horizontal axis y = 0, at right [Figs. 7(b) and 8(b)]. In
these figures, the reference solution reported by a solid-line
was obtained by using mesh A (Fig. 5) and the singular base
of order [p = 1,s = 0], thereby solving a problem with 3308
unknowns. Since the numerical results along the considered
axes are symmetric with respecttoy = 0 and = = 0, Figs. 7 and
8 show, case by case, the results only over one semi-axis. Fig. 7
reports the results obtained by using the regular [p = 0]-base on
mesh A and B, and the regular polynomial vector bases [p = 1,
2] on mesh B. Similarly, Fig. 8 reports the results obtained by
using the singular vector bases [p = 0, s = 0, 2] with mesh A,
and [p = 2, s = 0] with mesh B.

By considering in detail Fig. 7(a), one observes that reg-
ular bases always yield to non-satisfactory results in the
neighborhood of the edge-profile, with solutions that exhibit
a non-physical oscillating behavior with (at least) one over-
shoot in the vicinity of the edge-profile, which becomes rather
evident when higher order regular bases are used; this phe-
nomenon is well known [5, Ch. 10], [8] and quite similar to
the Gibbs’ phenomenon observed when expanding in Fourier
series periodic functions with a jump discontinuity. Notice
also in Fig. 8(a) that the results provided by the singular
vector bases never suffer for this problem. Fig. 8 further
proves that the advantage one gets by increasing the singular
order s from s = 0 to, say, s = 2 is actually negligible even
for p = 0 (see the Fig. 8 results associated with the negative
semi-axes) and, at any rate, certainly not comparable with
the big advantage obtained by increasing the order p of the
regular part of the base, for s kept equal to zero. Singular
higher order divergence-conforming bases with s > 2 can be
used for the numerical solution of integral equations provided
the MoM potential and testing integrals are evaluated with
a very high degree of accuracy; this, at present, is very
expensive and would require large computational times. The
potential advantage of using bases with s > 2 is only related
to the possibility of obtaining solutions which are almost
continuous on the edges of the singular elements also in the
direction tangent to these edges; the divergence-conforming
nature of our bases already guarantees the continuity of the
normal component of the vector unknown across the element
edges. The fact that higher order divergence-conforming
bases eventually yield to solutions with tangent component
almost continuous on the element edges should be evident
by considering the dual case of application of higher order
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curl-conforming functions to the finite element (FE) solution
of partial differential equations [12], [22]; under the numer-
ical point of view, these FE applications are much simpler
than the present one because they do not require numerical
integration of a singular Green’s function. A technique for
machine precision evaluation of potential integrals involving
singular Green’s kernels and higher order regular basis func-
tions has been recently presented in [23].

Since our singular bases improve the quality of the numer-
ical results in the wedge near-field region (indeed they were
derived to that purpose), the reader may wonder if they have
also some beneficial effect on the far-field results with respect
to the case when one uses regular bases only. These effects
are in general expected to be negligible in the far-field be-
cause: a) the radiation integral-operator cuts off the highest
spatial-frequency components of the charge and current den-
sities arising from the singular behavior of these quantities in
the wedge neighborhood; b) the MoM-Galerkin method used
to approximately evaluate the surface charge and current den-
sities is variational (see [24, Ch. 1.8], [25], [38] and references
therein). At any rate, in the attempt to quantitatively clarify
these effects, Fig. 9 shows few bistatic results for the elec-
tric field scattered in the far-field region by the zero-thickness
square PEC-plate at normal incidence. Numerical results for
the bistatic scattering from thin square plates one wavelength
on a side are available in [26]. In Fig. 9, a spherical reference
frame {r, 6, ¢} centered at (z,y,z) = (0,0,0) is understood,
with 7 = z at § = 0° while, for § = 90°, one gets + = z, y at
¢ = 0° and 90°, respectively. Fig. 9(a) shows the bistatic radar
cross sections o, (6, ¢ = 90°) and o¢(f, = 0°) at normal in-
cidence in the principal plane = = 0 and y = 0, respectively,
with

ES
0¢39(07 ¢) = 1111’11 47['7"2@

RalTAR 0
and where, in our case, E’ is z-directed (see Table 11). These
radar cross section results were normalized w.r.t. the area of
the plate (\?), and agree with the results available in the lit-
erature (see for example [27], [28] and references therein).
Fig. 9(b) and (c) reports the relative error of the far-scattered
field components E4 and Ej, in the principal plane z = 0
and y = 0, respectively. The reference solution to evaluate
these errors is the one obtained by using the singular base of
order [p = 1, s = 0] on the dense mesh of Fig. 5 (3308 un-
knowns). In the two considered principal planes, in the for-
ward (6§ = 0°) and backward (¢ = 180°) scattering direc-
tion, the Ey and E, components are relative to the same scat-
tered electric field vector; this is why in the figure one has
oy = og (and |Eg| = |Ey4]) at § = 0°, 180°. Although in
this PEC-plate case the far-field error obtained by using the
regular base of order [p = 0] (with dense Mesh A-920 un-
knowns) and [p = 2] (with coarse mesh B-597 unknowns) is
less than 1%, the error is still numerically detectable and at
least three times higher than the error due to the use of the
singular [p = 2, s = 0]-order base on the coarse mesh B (647
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Fig. 6. A zero-thickness square PEC-plate at normal incidence. The incident field and the number of unknowns are specified in Table Il. The magnitude of the

current density in the -direction (a), (b), and of the charge density (c), (d), normalized w.r.t.

i, are reported by using a 64 color-scale. The maximum value

(dark-red) of the scale used for the normalized current and for the normalized charge density is 8.73 and 3.615, respectively. The results at left (a), (c) were obtained

by using the zeroth-order regular base
singular base of order [ , 1

unknowns). Notice also in Fig. 9(b) and (c) the regular pat-
tern of the error as a function of 8; the error diminishes by
increasing the order of the used regular base and is minimum
for the singular [p = 2, s = 0]-order base. Although the error
in the far-field region due to the use of regular (high order)
bases is usually neglected, there are applications where this
error is of some importance.

Figs. 10 and 11 report the current induced at skew incidence
on the same square PEC-plate previously considered at normal
incidence. In this case, the angle between the incident propaga-

tion unit vector k = (2 — /3%) /2 and the 2 unit-vector is 60°,
with incident magnetic field of amplitude H? equal to 1 [A/m]
again polarized in the y-direction (see Table II); the phase of
the incident E* and H" field is zero along = = 0. The triangular
mesh used to solve this problem (240 elements) is recognizable
in Fig. 10, which reports the magnitude (at left) and phase (at
right) of the induced current component .J,.. The largest side of
each triangular element is roughly equal to 0.13 ), that is a bit
more than \/8. At this skew incidence, the induced current ex-
hibits two hot zones on the upper and lower edge whereas, at
normal incidence (Fig. 6), only one hot zone is present along
these edges. Fig. 11 shows the behavior of the phase of J,
along four different line-cuts of the square-plate. In particular,

on the dense mesh A of Fig. 5. The results at right (b), (d) were obtained by using the coarse mesh B and the

Fig. 11(a) shows results obtained by using the regular base of
order [p = 1] (1156 unknowns), whereas Fig. 11(b) reports re-
sults obtained by using the singular base of order [p = 1, s = 0]
(2272 unknowns). From this figure one can readily observe that,
in the vicinity of the edge-profile, the use of regular bases spoils
also the phase results (the fact that regular bases spoils the
magnitude results was put on evidence while discussing Figs. 7
and 8); in fact, by using regular elements, the phase exhibits
non-physical peaks in the vicinity of the upper and lower side
of the square-plate [see Fig. 11(a)]; conversely, the phase results
provided by singular bases do not suffer for this problem. It is
also interesting to notice that the phase of the induced current
J. is not zero along the 2 = 0 line, while the phase of the inci-
dent field is zero over there.

B. Long Narrow Strip

The second test-case considers a rectangular (10X x 1))
PEC-strip of zero thickness at normal incidence illuminated, as
specified in Table 111, by a linearly polarized plane-wave with
incident electric field in the z-direction, and incident magnetic
field of amplitude H® equal to 1 [A/m] in the y-direction.
The top-right and bottom-left corner of the PEC-plate are at
(x =5\ y=X/2) and (z = =5\, y = —\/2), respectively.
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Fig. 7. Normalized magnitude of the current component . ona square PEC-plate at normal incidence: (a) along the vertical axis ; (b) along
the horizontal axis . The incident plane-wave is the same considered in Fig. 6. The results, computed by using regular vector bases of order , 1, and
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mesh A (Fig. 5) by using the singular base of order [1, 0].

The mesh used to numerically study this case counts 266 trian-
gular elements and is shown in Fig. 12(a), where the horizontal
and vertical axes are the z and y axis, respectively. Although not
completely evident at glance, the mesh used in this case is rather
coarse because, for the great majority of the used elements, the
length of each side of the triangles is comprised between A/4
and A/3. This structure has then been modelled by using the
[p = 2,s = 0] singular base on the mesh of Fig. 12(a), thereby
solving a problem with 2885 unknowns. This means that, on
an average, the density of the unknowns is slightly less than
one unknown per square of side-length equal to A/17, which
is a density adequate to guarantee good numerical results in the
near-field region, also because the order of the regular part of
the used base is [p = 2].

The results of Fig. 12(b) and (c) show the magnitude of the
x-component of the current density (.J,.) by using a 64 color-
scale. The maximum value (dark-red) of the scale used to rep-
resent the current is 4.38; this rather low value is due to the fact
that we never sampled the results in the close vicinity of the
edge-profile. The current in the neighborhood of the edge pro-
file is unbounded and by choosing samples more close to the

square PEC-plate at normal incidence: (a) along the vertical axis
. The incident plane-wave is the same considered in Fig. 6. The results, computed by using singular vector bases of order [0, 0], [0, 2],
and [2, 0], are reported only over a semi-axis because of their symmetry with respect to

and . The reference solution (solid-line) was obtained with mesh A

J IH

0.5 Mesh A: p=0,s=0
) ¢ Mesh A: p=0,5=2 © Mesh B: p=2, s=0
® | —Mesh A: p=1,5=0[R]| — Mesh A: p=1, s=0 [R]
0|
-0.5 0 0.5
X/
(b)

, (b) along

and . The reference solution (solid-line) was obtained with

edge-profile one eventually looses the possibility to show the
dynamic of the results in the interior of the strip. Fig. 12(c) is the
color-filled contour plot of the same results shown in Fig. 12(b),
whereas Fig. 12(d) is zooming on the region bounded by the
black-frame of Fig. 12(c). A quantitative representation of the
strip results is provided in Fig. 13, which reports the magni-
tude of .J, along different vertical [Fig. 13(a)] and horizontal
[Fig. 13(b)] axes individuated by different values of the z and y
coordinates, respectively.

Itis instructive to note in Fig. 12(c) and Fig. 13(b) the pseudo-
periodicity of the results along the z-axis, with a pseudo-period
equal to 1. This test-case was considered also in [11] although,
inthere, the pseudo-periodicity of the results was not pointed out.

C. Circular Plate

The scattering from a circular disk is a problem amenable to
a wide variety of analytical treatments and it was extensively
studied in the literature. Historically, the first results were
derived by using Babinet’s principle to convert the circular
aperture results into the appropriate results for the disk [29].
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Fig. 9. Far-field scattered by a square PEC-plate at normal incidence:
(a) normalized RCS and in the principal plane and ,
respectively, (b) relative error for the component in the principal plane
, (c) relative error for the component in the principal plane
The incident wave is the same of Fig. 6, with forward and backward directions
corresponding to °,180°, respectively. The reference solution to evaluate
the errors was obtained by using the singular base on the dense
mesh of Fig. 5.

For plane wave incidence, several far-field scattering results are
readily available in [29], together with typical results for the sur-
face current density induced on the disk. Numerical estimates
of the surface current components induced on a thick disk at
grazing incidence are available in [30], whereas scattering re-
sults in the disk far-field region are available in numerous papers
(see for example [30]-[35] and references therein). MoM-re-
sults for the current induced on a circular disk at plane-wave
incidence are reported in [34].
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Because of the importance of this problem, and in order to
show that our singular bases can be used on curved elements, we
consider, as athird-test case, a zero-thickness circular PEC-plate
with diameter equal to one wavelength . The plate is illumi-
nated by a linearly polarized plane-wave with incident electric
field in the z-direction, and incident magnetic field of amplitude
H' equal to 1 [A/m] in the y-direction. The mesh used for this
problem, readily recognizable in Fig. 14, counts 64 (quadratic
curvilinear) triangular elements. The problem was discretized
by using the regular [p = 2] base and the singular [p = 2, s = 0]
base which yield to 648 and 696 unknowns, respectively (see
Table I11). In both cases, the number of unknowns corresponds,
on an average, to a very high density of the unknowns, roughly
equal to one unknown per square of side-length equal to /29,
which one would expect to guarantee extremely accurate nu-
merical results in the near-field region.

Fig. 14 reports colored results for the current and charge den-
sity obtained with the singular [p = 2, s = 0] base. The quan-
titative results given in Fig. 15 for the circular PEC-plate show
the magnitude of the z-component of the current density (.J,)
along the vertical (x = 0) axis [Fig. 15(a)], and along the hor-
izontal (y = 0) axis [Fig. 15(b)]. Along the vertical-axis, .J,. is
the azimuthal current-component whereas, along the horizontal
axis, it corresponds to the radial current-component. The results
for the charge density along the horizontal (y = 0) axis are re-
ported in Fig. 16. Figs. 15, 16 report also the results for the reg-
ular [p = 2] base to show, once more, that regular bases yield to
solutions with non-physical oscillating behavior in the vicinity
of the edge-profile.

Among the text-case problems considered in this paper, the
PEC circular disk at plane-wave incidence is the only one with
available and well established analytical solutions. Although
these solutions usually involve rather complex series expansions
in terms of oblate spheroidal wave functions, a simple and very
accurate low frequency approximation for the singular surface
current density induced on an infinitely thin disk at normal inci-
dence has been obtained by Bouwkamp and published in 1950
[36] (see also [29]). The truncated series expression obtained
by Bouwkamp for the disk current density J has been used to
evaluate the convergence of our numerical solutions to the exact
one by studying the relative error

= (21)

for the MoM-computed current J . Notice here that the rel-
ative current error (21) is defined differently from what usu-
ally done when dealing with smooth scatterers, where one can
define and use the 2 current error because of the bounded-
ness of the induced surface current, which is always square in-
tegrable whenever the electromagnetic sources do not lie on
the smooth-scatterer surface [13]. In the present case, the cur-
rent density on the infinitely thin disk is not bounded and not
square-integrable, since the singularity factor v is equal to 1/2.
The Bouwkamp truncated series for J has an error of the order
(wd/X) , d and X being the disk diameter and the free-space
wavelength, respectively. In order to consider the Bouwkamp
result as a reference, we numerically studied the induced
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Fig. 10. Normalized magnitude (a) and phase (b) of the current density in the -direction induced on a
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PEC-plate of zero thickness at skew incidence

(see Table I1). The solution has been obtained with a 240 triangular element mesh, easily recognizable in the figure, by using the singular base of order

, thereby solving a problem with 1272 unknowns.

Fig. 11. Phase of the current density . induced on a

PEC-plate of zero thickness at skew incidence. The incident plane-wave is the same of Fig. 10.

The figure reports the phase behavior along four line-cuts of the square-plate, schematically represented in the insets. The results were obtained with the same

mesh of Fig. 10 by using: (a) the regular base of order

current density on a disk of diameter d = A/100, thereby
proving, although indirectly, that our code does not breakdown
in the low-frequency limit.

In Fig. 17 we compare the relative current error results ob-
tained by using regular vector functions of order p = 0, 1, and 2
with those obtained by using singular vector functions of order
[p =0,s =0]and [p = 1,s = 0]. The results were obtained
with five different meshes made with 32, 64, 256, 512, and 1024
quadratic curvilinear triangular elements. The number of the de-
grees of freedom (that is, the dimension of the MoM system
matrix) relative to the use of the regular bases ranges from 40
(when using the p = 0 base on the 32 element mesh) to 5304
(when using the p = 2 base on the 512 element mesh); the nu-
merical problem has 1504 unknowns for the p = 0 base on the
1024 element mesh. The number of the degrees of freedom rela-
tive to the use of the singular bases ranges from 72 (when using
the [p = 0, s = 0] base on the 32 element mesh) to 2656 (when
using the [p = 1,s = 0] base on the 512 element mesh); the
numerical problem has 1728 unknowns for the [p = 0,s = 0]
base on the 1024 element mesh.

; (b) the singular base of order

The results of Fig. 17 show that the error obtained by using
regular vector functions weakly improves by increasing the
order of the expansion functions. Conversely, when singular
functions are included in the numerical model, the relative
current error considerably diminishes and the rate of conver-
gence of the numerical results improves for increasing order
of the regular part of the bases. Notice however that the errors
obtained by using the singular bases for the coarse 32-element
mesh are worse than what expected by following the relevant
slope-lines because of the poor geometrical modelling of the
rim of the disk, that is of the region where the current density
goes to infinity. Finally we remark that, to the best of our
knowledge, no result (or estimate) is available in the open
literature for the current error on 3D-structures with edges [13].

D. Square Plate With an Offset Circular Hole

The fourth test-case is relative to the square PEC-plate
already considered in Figs. 5-8 but, this time, the plate
has a circular hole of radius » = A/10 centered at



3782

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 12, DECEMBER 2008

TABLE 111
NUMBER OF UNKNOWNS FOR THE TEST PROBLEMS 2, 3, AND 4 AT NORMAL INCIDENCE

Fig.12. A

PEC-strip normally illuminated by a linearly polarized plane-wave with incident electric field in the -direction, and incident magnetic field

inthe -direction. (a) Triangular mesh; (b, c) normalized magnitude of the current density .. inthe -direction computed by using the singular base
(see also Table I11); (d) normalized magnitude of . in the region bounded by the black-frame shown in Fig. 12(c).

(r = —0.15)\,y = 40.15)). The structure is numerically
described by the 128 (quadratic curvilinear) triangular ele-
ment mesh given in Fig. 18(a), which contains six couples of
vertex-singularity triangles with a common singular vertex on
the hole-rim. The perforated plate is normally illuminated by
a linearly polarized plane-wave with incident electric field in
the z-direction, and incident magnetic field of amplitude H*
equal to 1 [A/m] in the y-direction. Fig. 18(b) and (c) show
the magnitude of the charge and current density, respectively.
These results have been obtained by the singular base of
order [p = 1,s = 0], thereby solving a problem with 696
unknowns (recall that the results of Fig. 6(b) and (d) for the
solid plate problem were obtained by solving a problem with
647 unknowns). Fig. 18(d) quantitatively compares, along
the z = —0.15)\ axis, the results for the magnitude of the
x-component of the current density obtained by the singular
base with those obtained by using the regular base of order

[p = 1] (614 unknowns). Once again, the results of Fig. 18(d)
prove the superior modelling capabilities of our singular bases
with respect to those of regular higher order vector bases.

E. Sphere With Aperture

The last test-case is the same one described in [11, Fig. 5],
[37] and considers an infinitely thin, spherical PEC-shell with
an aperture angle (measured from the sphere center) 6y = 120°.
The sphere center is at (z,y,z) = (0,0,0). The radius a of
the spherical surface is equal to A/(27) (thatis, ka = 1; a ~
0.1591)) and the negative z-axis passes through the center of
the aperture, which lies in the plane z = —a/2 and has a cir-
cular rim of radius » = av/3/2 ~ 0.1378\. The PEC-surface
is illuminated by a plane-wave propagating in the positive 2 di-
rection with vector wavenumber k' = 272/, and incident field
H=3% (-k -r)[AIM,E = o (- k' -r)[VIm],

o being the intrinsic free-space impedance. Fig. 19 shows the
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Fig. 13. Normalized magnitude of the current density . induced at normal incidence on a
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PEC-strip: (a) along the vertical axes located at the

different values of the -coordinate reported in the inset and (b) along the horizontal axes individuated by the different values of the -coordinate given in the inset.

The incident plane-wave is the same of Fig. 12.

Fig. 14. Normal incidence on a circular PEC-plate (  in diameter). The re-
sults were obtained by using the base on a 64 triangular element
mesh (see Table 111). Normalized magnitude (w.r.t. ) of: (a) the total current
density, (b) the charge density, (c) -component, (d) -component of the cur-
rent density. A 64 color-scale is used, and the maximum value (dark-red) of the
scale for the normalized current and charge densities is 5.0799 and 2.2765, re-
spectively.

magnitude of the total current induced on the spherical-shell by
using a 64 color-scale where this time, for rendering purposes,
the used color-scale is logarithmic. In fact, the magnitude of the
current in the vicinity of the aperture rim is so high that only
the logarithmic scale permits one to distinguish the difference in
the current out of the rim. Two different views of the illuminated
structure are shown in Fig. 19, which reports the results obtained

by modelling the shell-surface with 30 quadratic curvilinear tri-
angles on which we used the singular [p = 2,s = 0]-order
base. In this case, our MoM systems has 328 unknowns (with
a density of the unknowns roughly equal, on an average, to one
unknown per square of side-length equal to A/37), while 636
unknowns were used to solve the same problem in [11] with
non-additive basis functions of zeroth-order that incorporate the
edge conditions.

In Fig. 20, a spherical reference frame {r, 6, ¢} centered at
(z,y,2) = (0,0,0) is understood, with # = 2z at § = 0°,
and + = & at (#,¢) = (90°,0°). The ¢ directed current at
¢ = 90° is reported in Fig. 20(a), while the results in Fig. 20(b)
show the @ directed current at ¢ = 0°. Fig. 20 reports also the
results obtained by using the regular [p = 2]-order base on the
same mesh of Fig. 19, which yields to a MoM system with 306
unknowns. The wiggly behavior of the results for the §-directed
current around the point # ~ 100°, ¢ = 0° [Fig. 20(b)] is due to
the fact that, in the vicinity of this shell point, the 30-elements
mesh of Fig. 19 has a vertex-point in common to five different
triangular elements, two of which are vertex singular triangles.

To further clarify the modelling problems encountered in
dealing with wedge structures by using regular vector bases,
Fig. 20 reports also the results obtained with the regular
zeroth-order base on a very dense mesh (1056 quadratic
curvilinear triangles, 1564 unknowns, with a density of the
unknowns roughly equal, on an average, to one unknown per
square of side-length equal to A/81). Once again notice how
regular bases badly model the singularity of the current; in fact,
in Fig. 20(a), the regular bases results oscillate in the range
{85° @  115°}, and are always in error for §  110°.
Furthermore, in Fig. 20(b), the results provided by use of the ze-
roth-order regular base on the dense (1056 elements) mesh are
quite unsatisfactory for {85° < # < 115°}; in this wide-range
these results seldom coincide with those obtained by using the
singular [p = 2, s = 0]-base and, when this happens, it occurs
only at specific 6 values, never on a range of values.

VI. CONCLUSION

New subsectional, singular divergence-conforming vector
bases that incorporate the edge conditions for conducting



3784

Fig. 15. Normal incidence on a circular PEC-plate of diameter equal to
the regular vector base of order
and (b) along the horizontal axis

Fig. 16. Normalized magnitude (w.r.t. to  *) of the charge density along
the vertical axis of a circular PEC-plate of diameter equal to . The
normally incident plane-wave is the same of Fig. 14. The results were computed
by using the regular vector base of order , and the singular base of order
[2, 0].

Fig. 17. Relative surface current error for a infinitely thin disk of diameter

at normal incidence as a function of the used number of unknowns
(number of degrees of freedom). The order of the used expansion functions is
reported in the inset.

wedges are developed. The bases for curved quadrilateral and
triangular elements are obtained by incrementing the regular
polynomial vector bases with other subsectional basis-sets that
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. The incident plane-wave is the same of Fig. 14. The results were computed by using
, and the singular base of order [2, 0]. Normalized magnitude of the current component ,.: (a) along the vertical axis ,

Fig. 18. Normal incidence on a square PEC-plate with a hole of ra-
dius centered at ;the incident magnetic
field is polarized in the -direction. (a) Triangular mesh (see Table I11), (b) nor-
malized magnitude (w.r.t. %) of the charge density, (c) normalized magnitude
of the total current density, (d) normalized magnitude of the -component of
the current density along the axis. The maximum value (dark-red)
of the color-scale used for the normalized charge (b) and current (c) density is
3.301 and 10.940, respectively.

model the singular behavior of the unknown vector field in the
wedge neighborhood. The additive nature of our bases permits
one to deal with all cases where the singularity of the fields is
not excited and does not require one to limit the size of the mesh
in the neighborhood of the edge of the wedge. The regular part
of our bases can also model the nonsingular divergence-less
part of the current component normal to the edge of the wedge,
whenever this current is present.
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Fig. 19. A spherical PEC-shell of radius and aperture angle

° isilluminated by a plane-wave propagating in the positive direction. The
sphere center is at . The negative -axis passes through the
center of the aperture, which lies in the plane and has a circular rim of
radius . By using a logarithmic 64-color scale, the figure shows the
magnitude of the total current induced on the shell seen from two different points
of view: © ° at left, and e ° at
right. The hidden part of the shell was not removed from the figures, and brighter
results relative to the hidden part of the shell shine through the blue triangle
located in the middle of (b).

Fig. 20. Normalized magnitude (w.r.t. ¢) of the currents induced on the
spherical PEC-shell of Fig. 19 as function of the angle (in degrees). (a) The
singular  directed current at °, (b) directed current at °. The
figure reports the results obtained by using the regular -order base
(306 unknowns) and the singular -order base (328 unknowns)
on the same 30-elements mesh of Fig. 19. The results obtained with the
regular zeroth-order base on a very dense quadratic curvilinear triangular mesh
(1056 elements, 1564 unknowns) are reported to further clarify the modelling
problems encountered in dealing with wedge structures by use of regular vector
bases.
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Singular bases of this kind, complete to arbitrarily high
order, are then described in a unified and consistent manner.
The higher order basis functions are obtained as the product
of lowest order functions and Silvester-Lagrange interpolatory
polynomials with specially arranged arrays of interpolation
points. The completeness properties of our bases are discussed
by first deriving and then considering a generalized expression
of the Meixner approximation that deals with curved edge-pro-
file. The bases are also proved to be fully compatible with the
standard, high-order regular vector bases used in adjacent el-
ements. Our singular bases guarantee normal continuity along
the edges of the elements allowing for the discontinuity of
tangential components, adequate modelling of the divergence,
and removal of spurious solutions. The paper considers several
3D wedge-structures as test-cases, thereby obtaining highly
accurate numerical results for the current and charge density in-
duced on these structures. The results are compared with other
solutions, when available, and confirm the faster convergence
of these new bases on wedge problems.

APPENDIX |
SHARP-EDGE POTENTIALS FOR SINGULAR DIVERGENCE-
CONFORMING BASES

The singular edge-based vector functions given in [11] were
derived by integrating a surface divergence with the correct sin-
gular behavior, to later impose the continuity of the normal com-
ponent along one of the element edges and the vanishing of the
normal component along the remaining edges. A similar pro-
cedure has been supplemented in [12] and in the present paper
by other derivation methods since our vector bases are always of
additive kind, as opposite to what happen for the basis functions
of [11], which simplify into the regular ones in case of singu-
larity coefficient v equal to unity.

In order to clarify the superior quality of our Table | bases
with respect to that of other singular bases definable by alterna-
tive methods, this Appendix briefly reviews a method based on
the use of special potentials to define singular divergence-less
(solenoidal) basis functions on the singular elements, together
with one singular edge-less function per element [18]. The edge-
less function defined by these potentials is always related, by an
appropriate dependency relation, to the edge-based solenoidal
functions defined by the same potentials on the same element
(see (26) and [18]).

At the lowest singular order, two solenoidal basis functions
per singular element are obtained by defining two potentials
¢i+1, each one associated with the element edge quoted in its
subscript (see Fig. 1). Among the several possibilities to define
appropriate potentials we consider, in particular, those summa-
rized in Table V. This Table reports four different potential fam-
ilies: the A1/A2-type and the B1/B2-type potentials, which all
vanish at v = 1 in order to guarantee the additive kind of the sin-
gular vector functions they generate. ¢;4.1 are the potentials of
the edge-singularity quadrilateral, whereas ¢¢;+1 and ¥ ¢; 41 in-
dicate the potentials for the edge- and the vertex-singularity tri-
angles, respectively. These potentials vanish on all the element
edges, with the exception of edge 3 quoted in their subscript. In
terms of the dummy variable x defined in (1), the expression of
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TABLE IV
POTENTIALS TO BUILD SINGULAR DIVERGENCE-LESS FUNCTIONS

the potential on the edge quoted in the subscript always simpli-
fies into

Pples=0 = “Pples=0 = "Pples=0 = dp(x)  (22)

with ¢4 (x) explicitly reported in Table IV. The Al- and B1-type
potentials, as well as the A2- and B2-type potentials, are equal
in the limit for x = 0; in fact, for example, the ratio of ¢3(x)
of the B-type potentials over the ¢ 5(x) of the A-type potentials
is exactly equal to (1 — x).

By calling # the unit vector normal to the element face, the
vector functions

ONix1 =10 x Viay (23)

generated by these potentials are divergence-less by construc-
tion and exactly tangent to the element edges where ¢;+; was
set to zero. The potentials are constructed to guarantee that °A ,
in the direction normal to the Sth edge, has a singular behavior
in agreement with Meixner’s theory. In fact, along side 3, for
(8 = i+£1, the normal components of the solenoidal functions is

) 1
OAs(r) - haleymo = ——22

24
o x (24)

with ¢g/ x also given in Table IV, and where fzﬁ(gﬂ =0)is
the unit outward normal to the element along its Sth boundary
edge, whereas ¢z is the magnitude of the edge-vector £3 along
this same edge. Equation (24) guarantees the base-conformity,
and in fact it is rather similar to (6).

Since the divergence of °A,4 is zero, a singular surface
charge density has to be modelled by one edge-less function per
element. Irrespective of whether one considers quadrilateral or
triangular elements, and A- or B-type potentials, the required

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 56, NO. 12, DECEMBER 2008

edge-less function V(r) and the relevant dependency relation
can always be written as

Vir) = bi—18i1 } bit1bit1

V(r) 4+ & A (r) — & Ai 1 (r) =0

where, element by element, ¢;4, are the potentials belonging to
one of the families of Table IV. Clearly, the polynomial coeffi-
cients that combine the vector functions in the dependency re-
lation (26) have different order, as opposite to what happens for
the dependency relations of Table I. This is a first drawback of
divergence-conforming bases defined by potentials which ren-
ders the construction of higher order bases more difficult; in fact,
it is not quite simple to use (26) to eliminate the dependency in
the higher order vector sets obtained by applying the construc-
tion technique of Section IV. However, as we will see in the fol-
lowing, the major drawback of these lowest order bases with re-
spect to those of Table | is that either some of their singular basis
functions contain a fractional term, as it happens when using
the A-type potentials ¢¢;+1 on edge-singularity triangles, or that
they contain some other spurious higher order term for the other
elements (i.e., the quadrilateral and the triangular vertex-singu-
larity element) in case one uses the B-type potentials. In MoM
applications, the presence of these undesired terms considerably
complicates the numerical evaluation of the required integrals to
the desired accuracy [38].

In the following, for the sake of brevity, we discuss only the
wedge-modelling properties of the vector functions obtained
by using the Al-type potentials; although similar conclusions
can be drawn for the bases provided by the other potentials of
Table 1V [18]. In particular, by using Al-potentials, one can
prove that irrespective of whether one considers the edge singu-
larity triangle or quadrilateral, the divergence-less current com-
ponent parallel to the edge profile can be modelled by the fol-
lowing divergence-less linear combination of the lowest order
edge-singularity basis functions
¢ 1 0 0
7= Wi )= Aa (0]~ (Aia (1) + A (r)

@7)
which is a result similar to (7). For vertex singularity triangles,
the Al-potentials also yield to the following result, similar to
(13)

(29)
(26)

v—1

[Ai1 (1) =Aica (1) + [PAiga (1) + A ()]

(28)
Furthermore, still by using the Al-potentials, the vanishing
normal component of the current density at the edge of the
wedge is modelled by

—)é—, = [Aiga(r) = V()] - hi = [Aiya(r) £° Aisa (7)) - by

(29)
for singularity quadrilaterals, whereas for edge-singularity tri-
angles one has

(30)
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Equations (29) and (30) prove that the modelling capability
of the Al-bases is similar to that of (8) and (9), although one
has to notice that, unfortunately, the normal component of the
solenoidal functions of the edge-singularity triangle takes the
rational expression

. X© o x"-1 X
+YA, ~h; = - —s
:I:l(r) gi + gl (X — 1)
which clearly contains a dirty term equal to »/¢; in the limit for
x = 1 and that, for {0 < x < 1}, reads

(31)

X' -1 x  (1—x) "
Go(x—-1) 4 X (32)

This term complicates the numerical evaluation of the integrals
required by MoM applications even though (32) vanishes at
x = 0. To overcome this problem one can not simply resort
to different potential functions. In fact, for example, by using
B-type potentials one moves the undesired behavior involving
higher order x terms from the solenoidal functions of the edge-
singularity triangle to the edgeless functions as well as to the
solenoidal functions of the edge-singularity quadrilateral. Thus,
the fact that the Meixner subset of Table | contains only two
edge-singular triangular functions which satisfy (8) can now be
further appreciated. To further clarify the superior modelling
properties of our Table | bases, we point out that all the three
A-type singular vector functions of the edge-singularity triangle
do contain a rational term; in spite of the fact that the B-type
functions and their divergence do not exhibit any rational term,
the B-type vector functions do contain other higher order dirty
terms in y.

Finally, the singular charge density in the neighborhood of the
wedge, that is for x ~ 0, can be modelled by the divergence of
the edgeless functions (25). In fact, for the Al-type quadrilateral
basis functions, one has the following linear combinations:

n=1

v—1

vz =V [Ag(r) = V(r)]
where Ag(r), for 5 = i, 4 £ 1, or ¢ + 2, is one of the regular
quadrilateral functions. Similarly, (34) and (35) are the combi-
nations that hold for the Al-type vertex-singularity and edge-
singularity triangular functions, respectively, where Ag(r) now
indicates one of the regular triangular functions obtained by
choosing 8 = 4,1+ 1

(33)

v—1 v
,,Xj T [As(r) + V()] (34)
v—1 v _
VXj n %XX - 1X - %V. [Ag(r) — 2V (r)] (35)

Once again, (35) contains an undesired term equal to (v —1)/J
at y = 1, and that vanishes at x = 0; for {0 < x < 1} thisterm
reads

1 vY — 1— v—1) to°
?Xx_lxz( ; ) Xn (36)

n=1
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As said, B-type potentials simply move the undesired behavior
involving higher order x terms from (35) to (33) and (34).
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