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Abstract — Dynamic infrared imaging has been proposed in literature as an adjunctive technique to 16 

mammography in breast cancer diagnosis. It is based on the acquisition of hundreds of consecutive 17 

thermal images with a frame rate ranging from 50 frames/s to 200 frames/s, followed by the harmonic 18 

analysis of temperature time series at each image pixel. However, the temperature fluctuation due to 19 

blood perfusion, which is the signal of interest, is small compared to the signal fluctuation due to subject 20 

movements. Hence, before extracting the time series describing temperature fluctuations, it is 21 

fundamental to realign the thermal images to attenuate motion artifacts. In this paper, we describe a 22 

method for the quantitative evaluation of any kind of feature-based registration algorithm on thermal 23 

image sequences, provided that an estimation of local velocities of reference points on the skin is 24 

available. As an example of evaluation of a registration algorithm, we report the evaluation of the signal 25 

to noise ratio improvement obtained by applying a non-rigid piecewise linear algorithm. 26 
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Index Terms—Dynamic infrared imaging, image registration, signal-to-noise ratio estimation, thermal 28 

image sequence, breast cancer detection. 29 

I. INTRODUCTION 30 

Currently, the screening gold standard in breast cancer diagnosis is mammography. Since the early 31 

seventies, thermography has been proposed as a possible adjunct to mammography in screening, but static 32 

thermography - i.e., the simple measurement of breast skin temperature - yielded no satisfactory results 33 

[1]. More recently, Dynamic Area Telethermometry (DAT) [2-3], also known as Dynamic InfraRed 34 

Imaging (DIRI) [4-5], has been proposed as a new imaging modality for breast cancer detection. It 35 

requires the acquisition of a sequence of hundreds of consecutive thermal images with a rate ranging from 36 

50 frames/s to 200 frames/s. The harmonic analysis of the time course of temperature fluctuations allows 37 

to obtain information on the local blood perfusion. In literature, it has been reported that temperature 38 

fluctuations have an important diagnostic value in oncology [2-3]. In fact, recent studies have 39 

demonstrated that cancer-associated extra vascular nitric oxide determines a perturbation in the normal 40 

modulation of the local blood flow, which can be detected through the analysis of the fluctuations of 41 

temperature at each sample region [2-5]. Hence, after subdividing the region of interest in square sub-42 

regions (approximately 4 mm2 each) consisting of one or more pixels, spectral analysis of the temperature 43 

time series corresponding to each sub-region is performed.  44 

In our experimental protocol, the acquisition of the image sequence lasts 10 seconds, during which 45 

the patient’s breast moves non-rigidly due to physiological (breathing, heart activity, …) and random 46 

movements. Consequently, the signal of interest, i.e., the small temperature fluctuations due to 47 

perturbations of the blood perfusion in a certain region, is superimposed to signal fluctuations arising 48 

from the subject motion. This is because temperature samples corresponding to different skin regions are 49 

recorded as belonging to the same region observed by the infrared sensor. Motion artifacts are then 50 

particularly relevant in areas in which a strong spatial gradient of temperature is present. 51 
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Therefore, before proceeding with the harmonic analysis of the temperature time series in each square 52 

sub-region, it is fundamental to properly realign the thermal images composing the sequence to attenuate 53 

motion artifacts. Although some Authors have reported the detrimental effect of motion artifacts [4], at 54 

this time there is no quantitative evaluation of the power due to the effects of motion artifacts with respect 55 

to that of the signal of interest. This also limits the possibility of objectively evaluating the performance 56 

of different algorithms for realigning infrared sequences [6]. 57 

The goal of this paper is to propose a method to quantitatively evaluate the performances of marker-58 

based registration algorithms in dynamic infrared imaging, in terms of improvement of the signal to noise 59 

ratio. This approach can be applied to any kind of registration algorithm based on control points, provided 60 

that an estimation of local image velocities is available. We then present the results obtained by applying 61 

the proposed approach to evaluate the improvement of the signal to noise ratio obtained through a 62 

piecewise linear registration algorithm applied to sequences relative to three subjects with different breast 63 

size.  64 

II. MATERIALS AND METHODS 65 

A. The model 66 

First, we introduce a model for the noise estimation in dynamic infrared imaging. Considering a small 67 

portion of skin and indicating by T(x,y,t) the temperature that the infrared sensor measures in the point 68 

(x,y) at a given time instant t, temperature variations in time captured by the infrared camera are a 69 

combination of the physiological variations of the skin temperature (the signal of interest) and of apparent 70 

temperature changes actually due to patient’s movements (noise).  71 

The total derivative of temperature with respect to time, dT/dt, is: 72 
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where 

v =(vx, vy )  is the 2-dimensional velocity of the skin portion and T∇ is the spatial temperature 75 

gradient. Equation 2 reports the expression of the noise ),,( tyxN introduced by motion artifacts. 76 

')',,()',,(),,(
0

dttyxTtyxvtyxN
t

∫ ∇⋅≈


   (2) 77 

A measure of the performance of a realignment algorithm applied to the infrared image sequence is the 78 

improvement of the signal-to-noise ratio obtained through the registration. The signal-to-noise ratio of the 79 

process - at each point (x,y) - is defined as 1),(/),(/ 22 −≡ yxyxNS NT σσ , where 2
Tσ (x,y) is the 80 

variance of the measured temperature time series T(x,y,t) (signal plus noise) and ),(2 yxNσ is the variance 81 

of the noise, as given by Eq. (2). Similarly, we define the signal-to-noise ratio after registration as 82 

1),(/),()/( 22 −≡ yxyxNS
RR NTR σσ , where ),(2 yx

RTσ is the variance of the measured temperature time 83 

series TR(x,y,t) obtained after sequence realignment and ),(2 yx
RNσ is the variance of the 84 

term ')',,()',,(
0

dttyxTtyxv
t

RR∫ ∇⋅


, being ),,( tyxvR


the residual velocity, not compensated by the 85 

registration algorithm.  86 

B. Acquisition system and patient positioning   87 

The infrared image sequences were acquired with an AIM256Q camera (Long Wave Quantum Well 88 

Infrared Photodetector, 256×256 pixels, produced by AEG Infrarot-Module GmbH, Germany). The 89 

acquisition time was equal to 10 seconds and the frame rate was 50 frames/s; hence, each sequence 90 

consisted of 500 thermal images of 256×256 pixels.  91 

The sensor noise declared by the constructor of the infrared camera is equal to 17.3 mK (given as 92 

NETD, with an integration time of 20 ms) and thus is negligible compared to noise due to patient’s 93 

movement, estimated by simulations, which is typically of the order of hundreds of mK. Hence, in our 94 

model, we considered the patient’s movement as the only noise source.  95 

The patient was asked to lie down onto an examination table with a backrest inclination of 40 degrees 96 
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with respect to the horizontal plane. She was also asked to raise up her arms with the hands resting over 97 

her head. We acquired a frontal view comprehending both breasts. 98 

Before the acquisition, two sets of wooden spherical markers (5 mm in diameter) were applied to the 99 

skin to obtain a) control points, i.e. contrasted features for registration, and b) test points, for evaluating 100 

the goodness of the registration itself. In particular, as control points we placed 6-8 equally spaced 101 

markers around each breast contour, one roughly at the center of the previous ones, and 2 on the sternum. 102 

Test points consisted of markers applied internally to each breast contour. All markers were fixed to the 103 

skin by means of biocompatible glue. Figure 1a shows a typical placement of control points (light-colored  104 

markers) and of test points (dark markers). 105 

III. IMAGE REGISTRATION AND REGISTRATION EVALUATION 106 

A. Image Registration  107 

The first step in any feature-based registration is the detection of the control points that are used to 108 

compute the transformation. To localize control and test points, we developed a specific algorithm for the 109 

automatic segmentation of the image and labeling of markers [6].  110 

Centroids of control points were used to obtain a piece-wise linear transformation based on a Delaunay 111 

triangulation [7] of the region to be registered. Figure 1b shows an example of triangulation. We chose 112 

this specific transformation because it is reported to give good results when small geometric differences 113 

between the images to be registered are expected [8], as in this case.  114 

Here we reported the specific registration algorithm we adopted only for the sake of completeness, but 115 

we emphasize that the signal-to-noise ratio estimation method we propose can be applied to any kind of 116 

registration algorithm based on control points, if an estimation of local image velocities is available. 117 

B. Registration Evaluation  118 

In order to evaluate the signal-to-noise ratio before and after the registration, we estimated the velocities 119 

v and Rv . We tested, on the three subjects that were included in this paper, different algorithms to 120 
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interpolate the velocities, both in the registered and in the non-registered sequences. We benchmarked the 121 

results using Nearest-Neighbors (NN), Linear Interpolation (LI), and Biharmonic Spline Interpolation 122 

(SI), for estimating the velocities within the region of interest. Results, in terms of SNR quantification, 123 

were different from subject to subject: for subject 1 (small breast size) LI was better than the others, for 124 

subject 3 (large breast size) NN was the best, and for subject 2 (medium breast size) all the techniques 125 

behaved similarly. Specifically, considering the three interpolation techniques applied to subject 2 126 

(medium breast size) in terms of SNR increment due to registration no statistical significance was found 127 

(Student’s t-test, P > 0.05). Presently, our results do not show any significant difference among the 128 

techniques we tested. We chose NN since we believe it gives acceptable results in most of the tested 129 

conditions and for the majority of the subjects (medium breast size). To this purpose, we calculated the 130 

Voronoi regions [9] associated to test marker centroids (see Fig. 1c) and assumed that the points 131 

belonging to the same Voronoi region had equal velocity. 132 

The instantaneous velocity v of a certain marker centroid ( tx , ty ) at time t was calculated using a two-133 

point forward approximation:  134 

tt ∆
=

∆
= ++ t1t

ty,
t1t

tx,
y -  y  v; x-  x  v , 135 

where t∆ = 20 ms is the sampling period.  136 

The image gradient is computed using the digital approximation of the first order derivative in its anti-137 

symmetrical and linear implementation, i.e. by convolving the image with the vector [-0.5 0 0.5]). 138 

IV. UNCERTAINTY IN SNR CALCULATION 139 

The SNR depends on velocities and temperature gradients as stated by Eq. 2. In this Section we show 140 

how the localization error affects the SNR estimation and we provide a worst-case estimate of the 141 

uncertainty.  142 

The uncertainty on the SNR may be expressed by the uncertainty on the noise computed according to 143 

Eq. 2, in which v  and T∇  are independent variables.  Let u(x) end u(y) be respectively the uncertainty 144 
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on the localization of marker centroids along x and y. The uncertainty on the noise value is expressed by 145 

Eq. 3. 146 
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By applying the partial derivative operator on the first term of Eq. 3 we obtain Eq. 4, in which, by 148 

assuming the tissue as locally inextensible ( 
x

tyxv
∂

∂ )',,(
= 0 ), we can neglect the first term. 149 
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The second term of Eq. 3 may be treated similarly. Assuming that the behavior along x and y is similar, 151 

the two terms of Eq. 3 may be considered as equal. It follows that  152 
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Posing 1.0=∆x px, 25.0=
∂

∂∇
x
T

K·px-2, 015.0)( =xu px (values obtained from our database of images 154 

using a 8-time oversampling [6]), we obtain a value of noise uncertainty of the order of 0.5 mK. After 155 

realignment with a piecewise linear algorithm we have a residual error approximately equal to 20 mK, 156 

and hence forty times larger than noise uncertainty. Hence, the uncertainty on the SNR value is 157 

approximately 0.25 dB. 158 

In order to test the dependence of the proposed SNR measure on the accuracy of the calculated 159 

velocities we performed a robustness analysis considering different registration transformations: 160 

PieceWise Linear (PWL), Polynomial of order 4 (P4), and Linear Conformal (LC), i.e., a transformation 161 

that can include a rigid roto-translation, and/or a scaling. The uncertainty on the localization of marker 162 

centroids ranges from 0.015 to 0.022 px for the three registration transformations. The corresponding 163 
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uncertainty on the measure of the SNR is less than 0.4 dB in the worst case. 164 

V. RESULTS 165 

The three subjects whose results are reported in this paper had respectively small breast size (cup A, 166 

subject 1), medium breast size (cup B, subject 2), and large breast size (cup DD, subject 3).  167 

Fig. 1a shows the two sets of markers applied to subject 3 (large breast size), whereas Fig. 1b depicts a 168 

thermographic shot of the same subject showing superimposed (black lines) the Delaunay triangulation 169 

used in the registration procedure.  170 

Figure 2 summarizes the results relative to these subjects. For each subject we report some parameters 171 

describing the signal-to-noise ratio relative to the Region Of Interest (ROI) before and after applying the 172 

registration algorithm. Specifically, we report the values of the median, 25th and 75th percentiles, 173 

minimum and maximum of the signal-to-noise ratios expressed in decibels. The ROI is defined as the area 174 

contained within the perimeter constituted by the outer triangulation lines. Notice that this ROI is slightly 175 

changing over time. However, given the small percentage of pixels entering/exiting the ROI with respect 176 

to the minimum-area ROI (less than 2 %), we decided to discard these pixels and to consider the same 177 

ROI for all the frames of the sequence.  178 

Considering the three subjects above described, before registration, the signal-to-noise ratio median 179 

ranged from 1 to 2 dB (thin line boxes), whereas, after registration, it increased up to 9 dB, thus 180 

demonstrating that registration causes a decrement of the noise power due to motion artifact as high as 5-181 

6 times, depending on the subject. 182 

VI. CONCLUSION 183 

In this paper, we present a methodology to estimate the noise due to patient motion that affects an 184 

infrared image sequence. In turns, the knowledge of noise power allows to estimate the signal-to-noise 185 

ratio that characterizes the sequence. 186 

Results herein presented demonstrate that, as long as the assumptions on which the noise model is 187 
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based hold, it is possible to compute the signal-to-noise ratio of a specific infrared sequence of images. 188 

This is an original and important result, since it allows to assess objectively the effectiveness of different 189 

registration algorithms, as well as to obtain a quantitative evaluation of the quality of an infrared sequence 190 

of images.  191 

The evaluation of the ROC curves of any detector used to differentiate sequences obtained from normal 192 

or pathological subjects is not possible without the knowledge of the signal-to-noise ratio of the sequence. 193 

Hence, we believe this noise estimation method will crucial to fill a gap that currently limits the 194 

possibility of further improving the results given by dynamic infrared imaging in early breast cancer 195 

detection and, consequently, also limits its spreading in clinics. 196 
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 226 

Figures captions 227 

Fig. 1a. Picture of subject 3. Control points are represented by light-colored markers, while test points by 228 

dark markers. Fig. 1b-c. Single frame extracted from the infrared sequence: Delaunay triangulation is 229 

shown superimposed (Fig. 1b); Voronoi regions are shown superimposed (Fig. 1c). 230 

 231 

 232 

Fig. 2.  Boxplot of the signal to noise ratio (SNR) before (thin line) and after (thick line) registration for 233 

three different subjects respectively with small (subject 1), medium (subject 2) and large (subject 3) breast 234 

size. Each box reports the median value, percentiles (25th and 75th), minimum and maximum representing 235 

the SNR(x,y) distribution relative to the region of interest. 236 

237 
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Figura 1 238 

239 
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Figura 2 240 
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