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Free Space Optical System Performance
for a Gaussian Beam Propagating Through
Non-Kolmogorov Weak Turbulence

Italo Toselli, Larry C. Andrews, Ronald L. Phillips, and Valter Ferrero

Abstract—Atmospheric turbulence has been described for many
years by Kolmogorov’s power spectral density model because of its
simplicity. Unfortunately several experiments have been reported
recently that show Kolmogorov theory is sometimes incomplete to
describe atmospheric statistics properly, in particular in portions
of the troposphere and stratosphere. It is known that free space
laser system performance is limited by atmospheric turbulence. In
this paper we use a non-Kolmogorov power spectrum which uses a
generalized exponent instead of constant standard exponent value
11/3 and a generalized amplitude factor instead of constant value
0.033. Using this spectrum in weak turbulence, we carry out, for
a Gaussian beam propagating along a horizontal path, analysis of
long term beam spread, scintillation, probability of fade, mean signal to
noise ratio and mean bit error rate as variation of the spectrum expo-
nent. Qur theoretical results show that for alpha values lower than
a = 11/3, but not for alpha close to « = 3, there is a remark-
able increase of scintillation and consequently a major penalty on
the system performance. However when alpha assumes values close
to o = 3 or for alpha values higher than o = 11/3 scintillation
decreases leading to an improvement on the system performance.

Index Terms—Atmospheric turbulence, beam spreading, bit
error rate (BER), fade, non Kolmogorov spectrum, scintillation,
signal to noise ratio (SNR), structure function.

1. INTRODUCTION

OR A long time, the structure function has been modeled
F according to Kolmogorov’s power spectrum of refractive
index fluctuations which is widely accepted and has been ap-
plied extensively in studies of optical and radio wave propaga-
tion in the atmosphere. However, recent experimental data from
space-based stellar scintillation, balloon-borne in-situ tempera-
ture, and ground-based radar measurements indicate that turbu-
lence in the upper troposphere and stratosphere deviates from
predictions of the Kolmogorov model [5], [9], [10]. Further de-
velopment of the turbulent theory of passive scalar transfer has
shown that although the Kolmogorov spectrum is generally cor-
rect, it constitutes only one part of the more general behavior of

passive scalar transfer in a turbulent flow [6]. In fact, Euler equa-
tion has two integrals of motion, and not simply energy. The
second integral of motion proved to be the magnitude called he-
licity or mean helicity. It plays an important role in the non-Kol-
mogorov turbulent fluctuations; depending on the relationship
between the parameters of the velocity field and of the passive
scalar field various types of spectra with different alpha value
can arise. Some anomaly behavior [3] seems to occur when the
atmosphere is extremely stable because under such condition
the turbulence is no longer homogeneous in three dimensions
since the vertical component is suppressed. It has been shown
[4] that for such two dimensional turbulence, the rate of the en-
ergy cascade from larger to smaller scales is reduced and Kol-
mogorov turbulence is not fully developed.

In addition anisotropy in stratospheric turbulent inhomo-
geneities has been experimentally investigated [5], [8], [11],
[12] and turbulence spectrum was investigated by Lidar mea-
surements [15]. The experimental results show the various
strata and layers in the vertical turbulence profiles. It is shown
that the power law exponent of the structure function is different
from the cases of purely Kolmogorov. Finally, A. Tunick paper
[18] showed recently experimental results on non-Kolmogorov
turbulence even at low altitude (rooftop elevation) for lasercom
systems that traverse complex inhomogeneous propagation
paths.

We must accept de facto that turbulence is still an unsolved
problem in classical physics, and the scientific community must
persist in doing more simulations, measurements and experi-
ments [7].

It is very important, therefore, to find new models more gen-
eral than Kolmogorov spectrum in order to describe experi-
mental data also in non-Kolmogorov turbulence. In this work,
we present a theoretical spectrum model which reduces to one
type of Kolmogorov only for a particular case of its exponent:
the standard value 11/3. The exponent can assume all the values
between the range 3 to 4. Using this new spectrum, following
the same procedure already used from Andrews, Phillips, et al.
[1], [2], we have analyzed the impact of the exponent’s varia-
tion on long term beam spread, scintillation index, probability
of fade, mean signal to noise ratio and mean bit error rate for
horizontal path, that is for constant value of the refractive index
structure parameter. We have done this analysis for a Gaussian
beam propagating in weak turbulence. The same analysis both
for plane wave and spherical wave has been reported in [13] and
in [16]. Angle of arrival for plane wave and spherical wave in
non Kolmogorov turbulence has been analyzed in [14].

We used in our approach the Rytov method because we sup-
posed to be in weak turbulence, in fact the Rytov method, as re-
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ported in [1], can not be used in strong turbulence conditions. In
strong turbulence conditions we need to use parabolic equation
method which leads to correct results for all turbulence condi-
tions (weak, moderate and strong). However, parabolic equation
method, in weak turbulence, leads to equivalent results with the
Rytov method only for first-order and second-order field mo-
ments but only asymptotic results have been obtained at present
for the fourth-order field moments. The paper [19]-[21] show a
method based on parabolic equation and modal decomposition
to carry out up to second-order moment of the field (two-fre-
quency mutual coherence function), but they do not analyze the
fourth-order field moment and the scintillation index.

II. NON KOLMOGOROV SPECTRUM

The basic power-law spectrum of Kolmogorov is defined by
®, (k) = 0.033-C2 . x~11/3 (1)

where C? is the refractive-index structure parameter. The va-
lidity of the Kolmogorov spectrum is restricted to the inertial
range although in some analyses it is extended to all spatial
wave numbers. Here we examine a more general power spec-
trum model that describes non-Kolmogorov atmospheric turbu-
lence in which the power law exponent 11/3 is allowed to deviate
somewhat from this value.

We assume that in an atmosphere exhibiting non-Kolmogorov
turbulence the structure function for the index of refraction is
given by

Dy (r)=p8-C2-1r7 )

where - is the power law which reduces to 2/3 in the case of con-
ventional Kolmogorov turbulence. Here, 3 is a constant equal
to unity when v = 2/3, but otherwise has units m~=7+2/3,
Following same procedure reported in [1], the corresponding
power-law spectrum associated with structure function takes the
form

o, (’9705) = A(Ol) : ér% : ’i_(yv

k>0, 3<a<4 (3)

where o« = v+ 3 is the spectral index or power law, C’Z =pB-C?
is a generalized structure parameter with units m~7, and A («)
is defined by

A(o[):4—711_211(01—1)cos(0é77r)7 I<a<4d 4

and the symbol I () in the last expression is the gamma func-
tion. When o = 11/3, we find that A (11/3) = 0.033, and the
generalized power spectrum reduces to the conventional Kol-
mogorov spectrum in (1). Also, when the power law approaches
the limiting value o = 3, the function A («) approaches zero.
Consequently, the refractive-index power spectral density van-
ishes in this limiting case.

III. LONG TERM BEAM SPREAD

The first important quantity that shows total average beam
spot size radius on the receiver lens is the long term beam
spread. It can be written as the sum of three terms: diffraction
limited beam spreading, beam spreading due to small turbu-
lence scales and beam wander which can be described by the

variance of the instantaneous center of the beam in the receiver
plane.

The analytical form of long term beams spread for a Gaussian
beam wave is [1]

W2 = Wiz (a)) =W?-[1+(T (a))] ©)

where W is the diffraction limited spot size radius and (7" («))
is the term which includes small scale beam spreading and beam
wander atmospheric effects.

To carry out long term beams spread analysis we need to cal-
culate the (T («)) term.

For horizontal path the parameter C? that appears inside the
relation C2 = 3 - C2 is constant. Following same formula re-
ported in [1] but using the non Kolmogorov spectrum in (3), we
carry out

1 oo
T (o) = 47*K*L - ( k- ¢, (o, k)drd
/]

1 oo
_ / / K- o, (a,Kk)exp (—AL22£2> dﬁdf)
00

:—QWQ-A(a)-ﬁ-F(l—%)

_Aa/271 . éz . k37a/2 . La/2

e D) w4

=0.25-

where { = 1 — z/L (z is the propagation distance), A =
2L/kW? and we have defined a non Kolmogorov Rytov vari-
ance by the plane wave scintillation index in non Kolmogorov
weak turbulence [17]

5§(a):_8w2-A(a)-$-r(1_%)

si (a : %) LG22l (7
It is interesting to observe that for « = 11/3 we obtain the
particular case of the Kolmogorov spectrum already reported in
[1].
At this point, we plot in Fig. 1 the long term beam spread as
a function of « for a particular horizontal case, we take

L=1km; C?=7.10"1ym o3
A =155 um; Wy =0.0lm

where Wy is the spot radius at the transmitter and we take a
collimated beam at the transmitter.

We deduce from Fig. 1 that if alpha decreases from o = 11/3
(excluding alpha values close to 3), then long term beam spread
W, increases up to a maximum value. At this point the curve
changes its slope because of the term A («) that assumes very
low values. In addition it is shown that if alpha increases from
a = 11/3, then the long term beam spread W, decreases down
to a minimum value. At this point the curve changes its slope,
because the term T" (1 — «/2) assumes high values close to its
asymptote as « — 4. The obvious physical interpretation of
alpha approaching 3 is that turbulence tends to vanish. On the
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Long Term Beam Spread as a function of
alpha for Cn?=7e-14,L=1km,W0=0.01m
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Fig. 1. Long term beam spread as a function of alpha for horizontal path.

Collecting lens Detector
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R <

Laser

Fig. 2. Propagation geometry for a Gaussian beam originating at distance L to
the left of a thin Gaussian lens.

other extreme, the physical interpretation of alpha approaching
4 is that phase effects dominate in the form of random tilts,
which generate beam wander.

IV. SCINTILLATION

Another important parameter that is necessary to calculate the
system performance is the scintillation index. In our analysis,
we include aperture averaging effects of the receiver aperture,
so we carry out the flux variance in the plane of the detector at a
short distance L behind the collecting lens. We illustrate such
a system below in Fig. 2.

To describe the beam characteristics at the input plane and
at the front plane of the Gaussian lens, we use two sets of
non-dimensional beam parameters. We assume the transmitted
Gaussian beam at the input plane has finite radius Wy and
phase front radius of curvature given by Fy. Thus, we have

L
at the transmitter (z =0): Qg =1 — o
0
2L
A I
O T kW2
at the Gaussian lens (z = L) : 01 = %
> Gaussian lens (z = L) : ©1 Iy
Ao
A —
T e Az

Following the same procedure as discussed in [1] for the
standard Kolmogorov spectrum, but this time using a non Kol-
mogorov spectrum and introducing the collecting lens diameter

Dg¢, our analysis for a Gaussian beam leads to (neglecting beam
wander effects)

J% (Oé, DG)
k_3—a/2 L

R///@@ Ky ) exp{ k([\[;fﬂg)

: [(1 - @15) + A1QG52} }

1 /_LI<L2 QG —Al
{ — exp [—JT <—A1 n QG)

e (1 - @15)]}dnd£

=472 - k*-L-A(a)-C2-T

5 a0 T

4

(1-3)

r/2—1 g

[(1 -0 5)2 + A1QGE?

1
Re/
0

45 (6 — A1) € (1 -0y -¢) ]“/“df} ®)

S— .

(1-01-6)° + AQge?

where ¢ = 1 — z/L (z is the propagation distance),
Qg = 2L/kWE is anon-dimensional parameter characterizing
the spot radius of the Gaussian collecting lens, W2 = DZ/8
and (:)1 =1- @1.

At this point we plot a2(1, Dg) as a function of alpha for a
particular horizontal case. We take

L=1000m; C? =7.10"¥m=at?

A=1.55pum; Dg=0.1m
Wo =0.01 m, @0 =1.

The results are shown in Fig. 3.

We deduce from Fig. 3 that for alpha values lower than
Kolmogorov value @ = 11/3, excluding alpha values close to
3, there is a increase of scintillation. Consequently, scintillation
in this case leads to a larger penalty on system performance.
We deduce also that there is a maximum value of scintillation
where the curve changes its slopes because the term A («)
begins to decrease to zero. In addition for alpha values higher
than « = 11/3, scintillation slightly decreases and conse-
quently it will lead to a slight gain in system performance.
The physical interpretation of alpha approaching 4 is that the
power spectrum contains fewer eddies of high wave numbers;
therefore scintillation effect are reduced.

V. PROBABILITY OF FADE

Given a PDF model for irradiance fluctuations py (I), the
probability of fade describes the percentage of time the irradi-
ance of the received signal is below some prescribed threshold
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Scintillation index as a function of alpha for

Cn?=7e-14,L=1km,W0=0.01m,Dg=0.1m)
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Fig. 3. Scintillation index as a function of alpha for horizontal path.
value Ir. Hence, the probability of fade as a function of
threshold level is defined by the cumulative probability [1]
Ir
pI(I<IT>:/pI(I)dI' 9
0
The PDF most often used under weak irradiance fluctuations

is the lognormal model and the resulting probability of fade
leads to

02 (v, Dg) — 0.23~FT} } (10)

1,
pr(f<Ir)= %{H_Wf [2 V207 (@, Dg)

where er f(x) is the error function. In arriving at this expression
we have introduced the fade threshold parameter

{7)

The fade parameter F’r, given in decibels [d B], represents the
dB level below the on-axis mean irradiance that the threshold
I is set.

Using scintillation index (8) into (10), we calculate the prob-
ability of fade as a function of alpha for a fixed fade threshold
parameter for a particular horizontal case.

We take

L=1km; C? =7.10"m,—o+3
A=1.55pum; Dg =0.1m, Fr =3dB
Wy =0.01m, ©9 = 1.

The plot is shown in Fig. 4.

VI. MEAN SIGNAL TO NOISE RATIO

In this paragraph is shown the mean signal to noise ratio
in presence of atmospheric turbulence using non Kolmogorov
power spectrum. The received irradiance over long measure-
ment intervals must be treated like random variable because of

Probability of Fade as a function of alpha
for Ft=3dB, Cn?=7e-14,L=1km,Dg=0.1m)
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Fig. 4. Probability of fade as a function of alpha using the log-normal PDF.

the turbulence. Based on [1], [2], the mean signal to noise ratio
(SNR) at the output of the detector in the case of a shot-noise
limited system assumes the form

(SNR) = SN Tt (12)

V1+0%(a,Dg)- SNR2
where 0% (v, D¢ ) has been defined before, SN Ry is the signal
to noise ratio in absence of turbulence.

We plot in dB units mean signal to noise ratio (SNR) as a
function of signal to noise ratio without turbulence SN R for
several alpha values, using Gaussian beam model for scintilla-
tion. We take the following parameters:

L=1km; C?=7.10"14mo+3
A=1.55pum; Dg=0.1m
Wy =0.01m, ©g = 1.

The plot, shown in Fig. 5, illustrates the impact of the alpha
variation on the (SNR) performance. For alpha values lower
than & = 11/3 , excluding alpha values close to 3, there is a
penalty on the system performance with respect to the case of
Kolmogorov o = 11/3. For alpha values higher than o = 11/3
there is a gain on the system performance with respect to the
case of Kolmogorov o = 11/3. Finally also there is a gain
on system performance with respect to Kolmogorov a@ = 11/3
when alpha assumes values very close to « = 3 because the am-
plitude factor A («) assumes very low values and consequently
the scintillation reported before in Fig. 2 approaches zero.

VII. MEAN BIT ERROR RATE

In the presence of optical turbulence, the probability of error
is considered a conditional probability that must be averaged
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Gaussian beam: <SNR> for Cn2=7e-14,L=1km,Dg=0.1m,Wo=0.01m
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Fig. 5. Mean signal to noise ratio as a function of signal to noise ratio without
turbulence for several alpha values, using Gaussian beam model for scintillation.

over the PDF of the random signal to determine the uncondi-
tional mean BER. In terms of a normalized signal with unit
mean, this leads to the expression [1], [2]

Pr(E) =

—

BER)
'/pI (u) -erfc (W) du  (13)
0

N | =

2.2

where py(u) is taken to be the log normal distribution with unit
mean

1
pr (u) = w-or (Dg,a) V27w

() + 50} (Dg,0))’
2-0%(Dg, )

Lu>0. (14)

We plot the mean bit error rate (BER) as a function of
mean signal to noise ratio (SNR) (dB) for several alpha values
using Gaussian beam model for scintillation. We take the same
parameters

L=1km; C? =710ty o+3
A=1.55pum; Dg =0.1m
Wy =0.01m, Qg =1.

The plot is shown in Fig. 6.

It shows the impact of the alpha variation on (BER) perfor-
mance. Also in this analysis, when alpha is lower than o« =
11/3, excluding alpha alpha values close to 3, there is a penalty,
but for alpha higher than o = 11/3, there is a improvement on
the system performance. However, when alpha assumes values
close to @ = 3, there is a gain on the (BER) performance with
respect to (BER) value corresponding to « = 11/3, because
the scintillation approaches zero.

<BER> as a function of <SNR> for
Cn?=7e-14,L=1km,Dg=0.1m,W0=0.01m

T
alpha=11/3
alpha=3.01
alpha=3.4
alpha=3.9

no turbulence

10°

<BER>

10

107

<SNR>dB

Fig. 6. Mean bit error rate as a function of mean signal to noise ratio for several
alpha values.

VIII. CONCLUSION

In this paper we introduced a non Kolmogorov power spec-
trum which uses both a generalized exponent and a general-
ized amplitude factor instead of a constant standard exponent
value @ = 11/3 and a constant amplitude factor 0.033 asso-
ciated with the conventional Kolmogorov spectrum. This non-
Kolmogorov spectrum has been developed from a generalized
structure function. It has been shown, for a Gaussian beam wave
propagating along horizontal link, the long term beam spread,
scintillation, probability of fade, mean SNR and mean BER as
variations depending on the alpha exponent lead to results some-
what different than those obtained with the standard value of
Kolmogorov «« = 11/3.

It is shown that for alpha values lower than o« = 11/3, but not
for alpha close to o = 3, there is a remarkable increase of scin-
tillation and consequently a major penalty on the system perfor-
mance. However, when alpha assumes a value close to a = 3,
the amplitude factor A («) assumes a very low value and con-
sequently the long term beam spread and scintillation decrease,
leading to an improvement on the system performance. Finally,
also for higher alpha values than « = 11/3 the scintillation de-
creases and consequently it improves system performance.
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