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Significance of cutoff in meandering river dynamics
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[1] The occurrence of cutoff events, although sporadic, is a key component in the
complex dynamics of meandering rivers. In the present work, we show that cutoff has a
twofold role: (1) It removes older meanders, limiting the planform geometrical complexity
(geometrical role), and (2) it generates an intermittent noise that is able to influence
the spatiotemporal dynamics of the whole river (dynamical role). The geometrical role
limits the spatial evolution of the meanders, sporadically eliminating portions of the river
planimetry. In this way it stabilizes the mean river geometry around a statistically steady
state. The dynamical role is due to the propagation of a noise wave that is triggered
by cutoff events. Because of the spatial memory component which is present in the
meandering dynamics, such waves propagate all along the river, thus affecting its
meandering dynamics.

Citation: Camporeale, C., E. Perucca, and L. Ridolfi (2008), Significance of cutoff in meandering river dynamics, J. Geophys. Res.,

113, F01001, doi:10.1029/2006JF000694.

1. Introduction

[2] The intrinsic dynamics of meander evolution are
driven by several linear and nonlinear processes which,
along with external forcing (e.g., soil properties, streamflow
fluctuations, and riparian vegetation), lead to the formation
of typical planimetric patterns [e.g., Parker et al., 1983,
Howard, 1992, Perucca et al., 2005, Seminara, 2006]. The
planimetric evolution of meandering rivers is also a key
process in many engineering problems. For example, the
evaluation of river bank erosion and the consequent sediment
transport are fundamental data for fluvial management,
navigation, river restoration, and oil research [e.g., Sun et
al., 1996]. Moreover, from the environmental point of view,
the importance of mutual interactions between the riparian
ecosystem and the meandering river dynamics is well known
[e.g., Salo et al., 1986; Bradley and Smith, 1986; Hughes et
al., 2001].
[3] The evolution of a meandering planform is character-

ized by three basic processes: (1) the continuous elongation
of the river axis, with single or compound lobe formation,
(2) the downstream (sometimes upstream) migration of the
meander loops, and (3) the occurrence of cutoff events. In
the present work, we emphasize the role played by the latter
process and its interaction with the former two.
[4] Cutoff is the bypass of a meander loop in favor of a

shorter path with the subsequent formation of an abandoned
reach, called an oxbow lake. If a cutoff takes place to avoid
the self-intersection of two reaches that come into contact, it
is called a ‘‘neck’’ cutoff; otherwise the cutoff is known as a
‘‘chute’’ [Allen, 1965; Gagliano and Howard, 1984]. Since
cutoff events are sporadic and are recognized to induce

‘‘important processes of geomorphic change’’ [Mosley,
1975], it is convenient to use its occurrence to distinguish
two different timescales that characterize the meandering
dynamics: a short timescale, that refers to the evolution of
single meanders before the cutoff, and a long timescale, that
includes the intermittent occurrence of more cutoffs [see
also Camporeale et al., 2005].
[5] The study of the role of cutoff occurrence in long-

term river dynamics has been carried out according to two
different, but interconnected, approaches: the descriptive
and the numerical approach. The former one is typical in
classical geomorphological studies, where the cutoff is
implicitly taken into account when the planform character-
istics of real rivers are analyzed with the aim of deriving
some empirical laws that relate the hydraulics to some
geomorphological parameters [e.g., Leopold and Wolman,
1960; Carlston, 1965, Hansen, 1967]. Although these
valuable hydromorphological relationships are irreplaceable
predictive tools which are still widely adopted, these
approaches have seldom investigated how cutoff events
are able to influence river dynamics. In fact, only a few
observations really concerning cutoff events, oxbow lake
formation and channel adjustment following the cutoff have
been carried out [e.g., Johnson and Paynter, 1967; Hooke,
1995, Gay et al., 1998, Stølum, 1998].
[6] The numerical approach has been the only alternative

to the descriptive one. In fact, unlike the short-term dynam-
ics, the mathematical difficulties of cutoff modeling pre-
clude the analytical study of the long-term dynamics.
Models describing the short-term meandering dynamics
[e.g., Ikeda et al., 1981; Smith and McLean, 1984; Zolezzi
and Seminara, 2001] and the cutoff occurrence have there-
fore been used to simulate the long-term planimetric evo-
lution of a meandering river [e.g., Howard, 1984; Sun et al.,
1996; Stølum, 1996]. In this way, some important aspects
related to cutoffs have emerged: the interactions between
river migration and sedimentation processes [e.g., Howard,
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1984], some clues of self organized criticality [Stølum,
1996] and the self-confinement of the meander belt, evidence
of the attainment of a statistical steady state of some geomet-
rical characteristics of the river planimetry [e.g., Howard,
1984], and recognition of the important phenomenon of
‘‘secondary lobe’’ formation (double heading) [Brice, 1974;
Ferguson, 1984; Lancaster and Bras, 2002]. Finally, in a
recent work [Camporeale et al., 2005], we have shown that
such steady state results are mainly governed by two typical
spatial and temporal scales, and only some of the hydrody-
namic mechanisms regulating the short-term dynamics seem
to play a significant role in the long-term dynamics.
[7] Prompted by the intriguing results obtained in previous

studies, in this paper we attempt to elucidate the dynamical
mechanisms by which cutoff events are able to influence the
long-term river evolution. In particular, we recognize here
that the cutoff plays two fundamental actions: (1) it removes
older meanders, limiting the geometrical complexity driven
by the fluid dynamic processes, and (2) cutoff acts as a shot
noise able to influence the spatiotemporal dynamics of the
whole river planimetry through the spatial memory compo-
nent which is present in the meandering short-term dynamics.
Though these two roles are closely linked, for the sake of
clarity they will be described separately in the following.
Moreover, the effect of external forcing will not be taken
into account in order to isolate the role of cutoff.

2. Fundamental Mechanisms of River
Meandering Dynamics

2.1. Short-Term Dynamics: Modeling Aspects

[8] The planimetric evolution of a meander is driven by
the action of a helicoidal curvature-driven secondary flow,
which is responsible for both the outward erosion and the
along-stream migration of the river. In fact, secondary flow
activates an inward lateral sediment flux on the bed [Kalkwijk
and De Vriend, 1980], leading to the formation of a trans-
versal slope of the bed (point bars). The consequence is
(1) a second type of secondary flow, which is driven by
topographic asymmetry [Seminara and Solari, 1998] and
(2) topographic steering of the main flow toward the concave
bank [Dietrich and Smith, 1983; Dietrich and Whiting,
1989], which induces outward erosion of the river. The
interaction between the longitudinal convective transport of
momentum and the shear stresses causes a phase lag between
the curvature and the response in the bank erosion induced by
the flow field. As a consequence, the system feels a spatial
memory in the downstream (upstream) direction, and a
downstream (or upstream) migration of the meanders is
activated [Howard, 1984;Parker and Andrews, 1986; Zolezzi
and Seminara, 2001]. From the above picture, it emerges that
the planimetric evolution of meandering rivers is character-
ized by a continuous enlargement of the loops associated with
downstream or upstream migration, until a cutoff event takes
place.
[9] A usual framework for studying the meandering

dynamics focuses on the evolution of the river centerline
axis, supported by the geomorphological evidence that the
erosion of the concave bank dynamically balances the
deposits on the opposite point bar, allowing the width to
remain constant during its migration [e.g., Leopold and
Maddock, 1953; Ikeda et al., 1981]. In this way the

planimetric evolution can be interpreted as a plane curve
which evolves in time and space [e.g., Zolezzi and Seminara,
2001; Edwards and Smith, 2002], and the formalism of
differential geometry can be applied. The equation of
motion for a curve parameterized by the vector r(s, t), with
respect a cartesian reference, is

dr

dt
¼ nV � @r

@s

Z s

0

CVds0; ð1Þ

where t is time, s is the curvilinear coordinate, n is the
normal unit vector, and C is the curvature. Two different but
equivalent demonstrations of equation (1) were obtained by
Nakayama et al. [1992] and Seminara et al. [2001]. We
recall that the integrodifferential term on the right hand side
represents a geometry-induced memory effect which derives
from the time-dependent parameterization of the curvilinear
abscissa and it is related to the deformation process. The
local normal velocity V is usually modeled as a linear
relation between the normal rate of erosion and the water
velocity very near the bank line, ub, i.e.,

V ¼ E � ub; ð2Þ

where E is an erodibility coefficient that depends on the
geotechnical characteristics of the bank [Micheli and
Kirchner, 2002; Wallick et al., 2006]. This hypothesis was
confirmed by field investigations [Pizzuto and Meckelnburg,
1989] and has commonly been used in numerical simulations
[Howard, 1984; Sun et al., 2001a].
[10] To obtain the quantity ub(s), different linear mean-

dering models have been proposed in the past depending on
the different levels of approximation of the considered
morphodynamic processes [see, e.g., Ikeda et al., 1981;
Struiksma et al., 1985; Odgaard, 1986; Crosato, 1987;
Johannesson and Parker, 1989; Zolezzi and Seminara,
2001]. In this paper, we use a slightly modified version of
the first one (henceforth referred to as the IPS model),
which is also the most simplified physically based mean-
dering model, and the latter one (the ZS model), namely the
most complete linear theory for morphodynamics of mean-
dering rivers. Thus the role of cutoff is here investigated by
using both the earliest and the latest fluid dynamic linear
formulations proposed in literature.
[11] The ZS model takes into account the coupling be-

tween hydrodynamics and sediment dynamics and between
curvature-driven secondary currents and topography-driven
secondary flow. Moreover, it considers the spatial variation
in the friction factor and in the bed load transport as well as
the vertical variation of the eddy viscosity. Zolezzi and
Seminara [2001] provided a linear solution to the problem
in terms of the lateral Fourier decomposition of the longi-
tudinal flow field perturbation, ub(s, n) =

P1
m¼0 um(s)sinMn

(with M = 1
2
(2m + 1)p)), where the generic m mode of the

Fourier decomposition reads

um sð Þ ¼ Am

XN
j¼1

gj0

Z s

�1
elmj s�tð ÞC tð Þdt þ

XN
k¼1

gjk
@ k�1ð ÞC sð Þ
@s k�1ð Þ

" #
;

ð3Þ
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where N = 4, Am = 2(�1)m/M2, and the terms gjk and lmj
depend on (1) the aspect ratio, b, between the half width, b,
and the water depth, H, (2) the dimensionless roughness,
ds = dm/H (dm is the mean grain size), and (3) the Shields
stress, t*. One of the four eigenvalues lmj is always
positive, giving rise to the dependance of the flow field on
both the upstream and the downstream river geometry.
Upstream dependence is the most common feature in
natural meandering rivers, while downstream dependance
is dominant in the so-called superresonant conditions (i.e.,
if b is greater than a critical value [Seminara et al.,
2001]). We consider only subresonant rivers in this paper.
[12] Unlike the ZS model, the IPS model neglects the full

coupling between the sediment dynamics and the fluid
dynamics, which is only partially accounted for through
the use of a linear relationship between the bed elevation
and the curvature, according to h = �ACn (where A is the
transversal bed slope). Also, the Euler equation is taken for
the transversal momentum balance, and no spatial change in
friction factor and bed load transport are considered. Finally,
for the computation of the term A, the eddy viscosity is
implicitly assumed uniform. These assumptions simplify the
governing equations and lead the dynamics to be described
by a single first-order ODE with the solution

ub ¼ �bUC þ UbCf

H
F2 þ Aþ 1
� � Z s

�1
e�

2Cf
H

s�zð ÞC zð Þdz; ð4Þ

which is formally similar to equation (3) with N = 1, where
U, Cf and F are the cross averaged velocity, friction factor
and Froude number, respectively. The IPS model [Ikeda et
al., 1981], despite its simplicity, captures the main features
of meandering dynamics, and it has been used in several
works [e.g., Parker et al., 1983; Beck et al., 1984; Parker
and Andrews, 1986]. It should be noticed that the upstream
geometry of the river is also taken into account in this
model through the exponential term of the convolution
integral, which is responsible, for example, for the upstream
skewness of meanders and their downstream migration. On
the other hand, the IPS model is not able to reproduce
downstream skewness or upstream migration of the meander
loops.

2.2. Long-Term Dynamics: Occurrence of the Cutoff

[13] Long-term dynamics are characterized by the irregular
occurrence of cutoffs. Neck cutoff occurs when a meander
becomes very tortuous and the water crosses the thin neck
of the loop, giving rise to the formation of oxbow lakes.
Chute cutoff, instead, occurs during heavy floods, when the
overflow scours a new reach in the floodplain that bypasses
a large loop, sometimes occupying the swales of newly
deposited and unvegetated scroll bars.
[14] As mentioned in the Introduction, numerical simu-

lations have been fundamental to understand some aspects
of the long-term dynamics. For example, in work by
Howard [1992, 1996] sedimentation patterns in the flood-
plain were highlighted and the location of the zones of
depression in the floodplain were realistically reproduced.
The influence of the variation of oxbow lake erodibility on
river geometry was evaluated by Sun et al. [1996] while, in
a subsequent work, Sun et al. [2001b] extended the analysis
for the modeling of sediment sorting in bends. They were

able to reproduce both the deposition of coarse material in
the upstream arms of the point bar and the deposition of fine
material in the downstream part.
[15] Another valuable contribution was made by Stølum

[1996, 1997]. He suggested that the intermittent occurrence
of cutoff events leads to dynamic proof of self organized
criticality (SOC), i.e., a process which does not depend on
the initial conditions and where the fluctuations (e.g., in the
sinuosity) are driven by clustered events in space and time
(the cutoffs). This process can also give rise to a fractal
geometry of the river planform [Nikora et al., 1993].
[16] Most of these numerical simulations have been

carried out only modeling the neck cutoff, as it is an
important shortening mechanism in freely meandering riv-
ers with moderate (or small) range of flood variability
[Stølum, 1998]. In contrast, the simulation of the chute
cutoff would require a thorough description of sedimenta-
tion on point bars in unsteady conditions and the knowledge
of the dynamics of floodplain topography and riparian
vegetation. The mutual interactions between such processes
are not fully understood yet, so the prediction of a chute
cutoff still remains an open issue. To our knowledge, the
problem was only addressed through a probabilistic ap-
proach by Howard [1996], with the introduction of an ad
hoc probability of occurrence, and through a stochastic
approach by Liverpool and Edwards [1995] that proposed
a stochastic differential equation where oxbow lake forma-
tion was simulated by a dynamical noise term.
[17] Recently, we analyzed the temporal series of sinuosity,

tortuosity, mean wavelength, mean curvilinear wavelength,
and curvatures of simulated meandering rivers [Camporeale
et al., 2005]. Sinuosity is usually defined as the ratio
between the length of the river and the length of the broken
line joining the inflection points, while tortuosity is defined
as the ratio of the river length to the linear distance between
its endpoints. The wavelength is assumed equal to twice the
linear distance between the inflection points, while the
curvilinear wavelength refers to the distance along the river.
We showed that these geometrical features of the river
planform are mainly governed by spatial and temporal
scales which permit the system to achieve a universal
dimensionless behavior. The spatial scale D0 is defined as
the ratioH0/(2Cf), while the temporal scale is T0 =D0

2/(bEU0),
in which the subscript 0 refers to the values of the straigh-
tened river [e.g., Camporeale et al., 2005]. It is interesting
to observe that the universal behavior obtained with the
scale D0 is in accordance with some empirical geomorpho-
logical laws [Camporeale et al., 2005]. Finally, we demon-
strated that a statistically steady state, substantially
independent of the fluid dynamic detail of the model used
in the simulations, is reached. As no external forcing, such
as geology, pedological processes, riparian vegetation, were
considered, we argued that the reason for this long-term
collapse lies in the interplay with the cutoff dynamics.
[18] In this paper, the role of the cutoff is investigated by

means of numerical simulations, in which, for the sake of
simplicity, only the occurrence of neck cutoffs is modeled.
Chute cutoff can be considered as a bypass process with a
lower threshold condition than neck cutoff, which induces
the same geometrical and dynamical consequences on the
long-term qualitative behavior of the curve. It is, however,
possible that the stochastic nature of chute cutoffs may
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introduce a new component into the system dynamics,
especially when the statistics that govern the occurrence
of cutoffs are strongly correlated to the environment (e.g.,
riparian vegetation) where rivers meander (T. Sun, personal
communication, 2007).

3. Role of the Cutoff

[19] In this section, we propose a new interpretation of
the role of the cutoff on the long-term river dynamics. We
think that the cutoff plays a twofold role: it is (1) a
geometrical constraint, that entails a limitation of the
enlargement and the age of meanders, and (2) a dynamical
process, since it behaves as a noise generator that disturbs
the deterministic meandering spatiotemporal dynamics. Our
interpretation is here sustained by the outcomes of some
long-term simulations whose morphodynamic parameters
are shown in Table 1. The initial condition of each simu-
lation is a straight line with small random perturbations,
discretized as a sequence of points with constant spacingDs
and interpolated by a cubic spline. An iterative algorithm
simulates the meander evolution. The excess bank longitu-
dinal velocity ub is evaluated for the IPS model by means of
a fourth-order Runge-Kutta scheme, while for the ZS
model, we used the analytical solution reported by Zolezzi
and Seminara [2001] which requires four convolution
integrals to be numerically solved (see Camporeale et al.
[2005, Appendix B] for numerical details). Once the value
of ub is computed, the points are shifted normal to the
centerline axis curve (Hickin orthogonal mapping [Hickin,
1975, 1984]). Finally, we adopted an ad hoc algorithm,
which minimizes the computational time to find the occur-
rence of potential neck cutoff events. Further numerical
details can be found in work by Camporeale et al. [2005].

3.1. Geometric Role: Cutoff as a Limitation to the
Meander Evolution

[20] Cutoff limits and contains the spatial evolution of
meanders whenever a single or multilobed loop has grown
so much that a self-intersection is going to take place. A
well known picture of the temporal evolution of a meander
up to the cutoff event, is plotted in Figure 1: The small
random oscillations of the initial condition have been
smoothed through the elongation mechanism, and a charac-
teristic wavelength has been selected. Such a process con-
tinues until a cutoff event occurs; it removes a reach of river
and avoids a self-intersection. Therefore a first action by
cutoff is to eliminate portions of river planimetry from the

active channel sporadically. In this sense, we call this effect
produced by cutoffs a geometric role. Although this role
could appear quite trivial, a careful analysis shows the
important consequences it has on the long-term dynamics.
[21] The main overall effect of the geometric role can be

highlighted through the temporal analysis of some impor-
tant planimetric characteristics. The time series of the mean
curvature, C, and the mean curvilinear wavelength, ls, are
reported in Figure 2, comparing the normal river evolution
(i.e., with cutoff) with the artificial case where the cutoff
mechanism has been disabled. In the latter case, unreal
planforms with self-intersections appear and the tortuosity
continues to increase while the river slope decreases.
[22] The two most important consequences of the geo-

metric role emerge in Figure 2. The first one concerns the
attainment of a stationary state. Comparing the two types of
simulation (i.e., with and without cutoff), it can be seen that
only in the simulations in which cutoff is allowed to
interplay with the meandering dynamics do the mean
curvature C and the mean curvilinear wavelength ls attain
a statistical steady state. In contrast, where cutoff occurrence
is inhibited, C will continue to decrease, and ls to increase.
Similar behavior has also been obtained for the other
geometrical quantities analyzed. Consequently, cutoff is
the key mechanism by which long-term river dynamics
stabilize around a stable mean geometry.
[23] The second effect of the geometrical role emerges

again in Figure 2, which compares the results of the IPS and
ZS models. In the early part of the runs, before the
occurrence of the first cutoff, the two fluid dynamic models
produce significant differences in the planform, as is testi-
fied by the different evolutions of C and ls. This confirms
that the morphodynamic processes and their correct model-
ing are fundamental aspects in the short-term evolution of
meandering rivers, and the most complete models have to

Table 1. Morphodynamic Parameters Used in the Simulationsa

Runs S1 S2 S3 S4

ds 0.01 0.004 0.01 0.01
t* 0.1 0.25 0.2 0.2
b 15.1 13.2 15.8 13.3
D0, m 123 250 450 500
T0, years 400 1000 600 750

aHere ds = dm/H0 is the relative roughness, dm is the mean sediment
diameter, H0 is the water depth, t* is Shield stress, b = b/H0 is the aspect
ratio, b is the half width, D0 is the spatial scale, and T0 is the temporal scale.
The erodibility coefficient E has been assumed to be equal to 3 	 10�7 in
all the simulations.

Figure 1. Evolution of a river reach from the initial
condition (thin solid curve) to the cutoff event (thick curve)
for case S1. The initial condition is a straight line weakly
perturbed with Gaussian white noise.
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be adopted [Camporeale et al., 2007]. On the contrary, in
the long term (i.e., when several cutoffs are produced) the
differences between the IPS and ZS predictions decrease,
until both the mean curvature and the mean curvilinear
wavelength stabilize around the same values for the two
models. Again, the same behavior is also observable for the
other geometrical quantities investigated. We argue that this
feature can be attributed, at least partially, to the geometric
role of cutoff: the cutoff meanders are, in general, the oldest
river reaches, where the differences between the two mod-
elings of the fluid dynamic processes (IPS and ZS) have had
the time to have the most important effects and to be stored
in the form of different geometrical characteristics. Cutoff,
by removing the most developed bends, cancels out part of
such geometric records which are stored in the planform and
somehow puts a limit on the effect of the different fluid

dynamic mechanisms on the long-term characteristics of the
river. In other words, since cutoff tends to remove older
parts of the river, the lifetime of meanders in the active river
is limited, and therefore the differences that different dy-
namic models can create on the river geomorphology are
also limited. Only the main mechanisms regulating the
short-term dynamics, which are described by both models,
remain in ‘‘younger’’ part of the river planform after the
cutoff.
[24] The fact that cutoffs eliminate (on average) the most

mature reaches is quite intuitive if one observes that cutoff
happens close to a self-intersection condition and therefore
after the river reach has been given the time to develop in
order to assume the characteristic goose neck shape. How-
ever, quantitative evidence is demonstrated in Figures 3a
and 3b, which shows the probability density functions

Figure 2. Time series of (a) the mean curvature and (b) the curvilinear wavelength for simulation S4
using the IPS model (dashed curves) and ZS model (solid curves), both with and without cutoff.

Figure 3. Probability density function of the dimensionless curvilinear wavelength for the active
channel (thin curve) and the oxbow lakes (thick curve) for simulations S1–S4 using (a) the IPS model and
(b) the ZS model.
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(pdfs) of the mean curvilinear wavelength ls for the active
river (thin line) and for the cut meanders (bold line). The
two distributions have the same domain, but their shapes are
quite different. The pdfs for the active river show just one
peak (in ls/D0 
 18) that is also associated with the
formation of compound lobes, which originate before cutoff
occurrence and develop on older and larger meanders, and
give rise to a superimposed ‘‘multilobed’’ pattern. On the
right of the peak, the pdfs shows a monotone behavior that
indicates that the longer (and older) the meanders, the rarer
they are. On the contrary, the pdfs of the cut bends show a
bimodal structure, regardless of the model used in the
simulation (i.e., IPS or ZS model). The second peak (in
ls/D0 
 40–80) corresponds to long meanders whose age is
greater than the predominant age in the river. This bimod-
ality implies that these long and old meanders are more
frequent in the cut reaches than in the active river. It follows
that cutoffs privilege older reaches. In this sense, cutoff
performs a sort of filtering of the information stored in the
river planform.
[25] The geometrical role of the cutoff on the long-term

evolution (i.e., the elimination of river reaches) shows only
that the differences between different modeling do not
diverge: it does not justify that the steady state is exactly
the same for the different fluid dynamic models. In fact, the
dynamics are driven by different models. Therefore an
additional role of cutoff must be elucidated in order to
provide an explanation for the attainment of the same steady
state, as is shown in the next section.

3.2. Dynamical Role: Cutoff as a Noise Generator

[26] The removal of old patterns is not the only effect
imposed by cutoff on the spatiotemporal dynamics of a
meandering river. The peculiarity of the cutoff to bring
points of the active river which were far from each other
closer introduces another subtle mechanism, which we call

the dynamical role. The starting point is observing that the
dependance of the flow field on the upstream (or the
downstream) river geometry makes the planimetric evolu-
tion of any point of the river dependent on both local and
nonlocal geometrical properties. In the IPS and ZS models,
the nonlocal component is contained in the integral terms in
equations (4) and (3), respectively. This component of
spatial memory in the meandering dynamics is the key
point of the dynamical role of cutoff. As the cutoff event
eliminates a portion of river, its occurrence entails a sudden
change in the nonlocal component for the downstream
(upstream) points if the river is subresonant (superresonant).
From a mathematical point of view, cutoff implies a sudden
change of the domain of the integrals in Equation (3), with a
consequent jump in the evolution of the longitudinal flow
field perturbation, ub (see Figure 4).
[27] According to the previous picture, cutoff behaves as

a generator of noise that intermittently affects the short-term
dynamics (in space and time). In this sense the effect of
cutoff resembles a shot noise, namely a casual sequence of
spike-like disturbances, where both the interarrival times
and spike magnitude are random [Cox and Miller, 1965].
Three aspects are worth underlining. First, the temporal
scale of the cutoff event is much shorter than the morpho-
dynamic scale. For this reason, the effect of cutoff can be
interpreted as a sudden jump in the long-term evolution of
ub. Second, jumps in ub do not entail jumps in the
planimetric evolution, which obviously remains continuous.
Third, the structure and magnitude of the jump depend on
the geometry of the river planform before and after the
cutoff occurrence; in any case, the jump magnitude
decreases with the distance from the cut point because of
the exponential weight contained in the nonlocal terms.
Figure 5 shows how the magnitude of the jumps (normal-
ized with the maximum value of each event) depends on the
dimensionless downstream coordinate (to avoid clutter only

Figure 4. Temporal series of the excess bank velocity ub for two points A and B downstream of a cutoff
meander (simulation S1, ZS model). The planform corresponds to t = 0, while the jump marks the cutoff
occurrence.
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a few events are displayed). The monotone decreasing
behavior descends on a curvilinear distance of the order
of D0. It is worth noticing that such a behavior is common
to both models, which further confirms that the latter scale
has a general validity as it captures the underlying dynamics.
[28] The rarity of cutoff events and the short length of the

river reach where jumps of ub are observed could lead one
to conclude that the dynamical role is quantitatively negli-
gible. However, this is not true. In fact, the effect of the
random jumps due to cutoffs does not disappear from the
meandering dynamics, but persists and involves all points
downstream (or upstream, depending on the morphody-
namic conditions). Because of the action of the spatial
memory in the deterministic short-term dynamics, the noise
introduced by the cutoff assumes the characteristics of a
wave that propagates downstream (or upstream). In this
way, single sporadic cutoff events are able to disturb the
morphodynamics of all points of the river, contributing to
making some modeling differences negligible. This is the
main reason why the planimetric quantities attain the same
steady state, irrespective of the model used (see Figure 2).
[29] In order to investigate how the spatial memory

affects such waves generated by cutoff effects, some nu-
merical simulations have been carried out by tuning the
nonlocal behavior of the bank erosion dynamics. This has
been done through a simple device: the exponent of the
convolution integral in the ub computation has been multi-
plied by a weighting parameter, a � 1. For example, the
solution of excess bank velocity provided by the IPS model
(e.g., equation (4)) has been modified according to

ub ¼ �bUC þ UbCf

H
F2 þ Aþ 1
� � Z s

�1
e�a

2Cf
H

s�zð ÞC zð Þdz: ð5Þ

In this way, since the spatial scale D = H/(2Cf), which
appears in the exponent of the integral, controls the
upstream memory of the curvature series on the local
movement of the river [Howard, 1984], only the nonlocal

behavior of the river bank erosion is modified, while the
local dependence remains unchanged. In the case a = 1, the
standard IPS model is obtained [Ikeda et al., 1981].
Similarly, for the ZS model, all four convolution integrals
in equation (3) have been multiplied by the weight a.
[30] A decrease in a implies an increase in the spatial

memory, and therefore induces a different planimetric
evolution. Figures 6 show an evolution example of a
meandering reach for different values of the weight param-
eter, with and without the cutoff occurrence. The initial
condition is a planform where the cutoff is incipient (the
thin line). We use the case in which cutoff is disabled as a
reference term of an evolution (although artificial) where
the dynamical role is absent. Figure 6a shows the planforms
obtained by setting a = 1, i.e., the physically correct value.
The planforms obtained taking the cutoff into account or not
coincide upstream of C, while downstream, the letter A
marks the limit of the zone of influence of the propagation
of the noise due to cutoff. The same simulations are reported
in Figures 6b and 6c but with a equal to 0.25 and 0.1,
respectively. With respect to the previous case (i.e., a = 1),
the kernel in the convolution term increases. Consequently,
the scale of the spatial memory grows, the range of
influence of the cutoff becomes larger and point A moves
downstream. It follows that the upstream influence in the
meandering river migration is increased and the noise effect
induced by cutoff is extended.
[31] The occurrence of a wave generated by a cutoff is

also evident if the spatiotemporal evolution of the curva-
tures along the river is analyzed. Figure 7 shows the
formation and propagation downstream of the disturbance
wave. Its propagation velocity is about 0.6 m/year, which is
coherent with the values observed in some real meandering
rivers [e.g., Hickin, 1975].
[32] The above results confirm that the sudden change in

the river geometry, induced by the cutoff, generates noise in
the dynamics of evolution of the curve. Because of the
spatial memory that is present in the morphodynamic

Figure 5. Magnitude of the change in the excess bank velocity ub following the cutoff occurrence
versus the downstream distance for simulation S1 using the IPS model (dashed curves) and the ZS model
(solid curves).
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equations, such a noise propagates along the river disturbing
the short-term deterministic dynamics.
[33] A similar analysis, carried out by Sun et al. [2001b],

focused on the localized effect of cutoff on the bar defor-
mation. The authors observed that cutoff can lock the
downstream channel segment in a local state of resonance.
However, their results cannot be compared with the present
analysis since the simulations here developed are far from
the resonance conditions.

4. Effects on the Geometric Nonlinearities

[34] The geometric and dynamic role of the cutoff can
also be detected by investigating the reduction of the
geometric nonlinearities existing in the long-term river
planimetry. On one hand, the dynamics of elongation and
migration of a meandering river are described by the
nonlinear evolution equation (1), which introduces a deter-
ministic spatial cubic nonlinearity in the evolution of the
curvature series along the river due to the product between
the derivative of r and the integration of curvature times the
normal velocity [e.g., Seminara et al., 1994, 2001]. On the
other hand, cutoff occurrence tends to limit the effect of
such deterministic nonlinearity, so that the spatial series of
the curvatures along the river gradually loses the nonlinear
spatial links and tends to resemble a series generated by a
quasi-linear process. In order to show this, a test of
nonlinearity [Kantz and Schreiber, 1997] is here applied
to the spatial series of the curvatures. In particular, we use
the reversibility test formulated by Diks et al. [1995, 1996]
which is based on the fact that the spatial reversibility of a
series is a property that characterizes linear dynamics
[Weiss, 1975; Diks et al., 1995; Daw et al., 2000].
[35] Provided Ci = C(si) (i = 1, .., N) the curvature series

with a sampling interval Ds, a new series of m-dimensional
delay vectors can be defined as Cn = {Cn, Cn�D, ..,
Cn�(m�1)D} where n = 1 + (m � 1)D, .., N and D is the
space lag. The curvature series Ci is reversible if the joint
probability of the distribution of the delay vectors p(C) is
invariant when the series is inverted for all m and D, i.e.,
p(P � C) = p(C), where Pi,j

m	m = di,1+m�j and d is the
Kronecker delta.
[36] According toDiks et al. [1995], an unbiased estimator

Q̂ =
P

k>jwkj/N of the distance between the distribution on
the original series and the inverted series can be formulated,
where N is the number of pairs,

wkj ¼ e�jCk�Cjj2=d20 � e�jCk�PCj j2=d20 ; ð6Þ

where d0 is a fixed distance, and j � j is the Euclidean norm.
A test statistic S is then computed as the ratio of Q̂ and its
standard deviation. The reversibility is rejected when the
test statistics take on a large fixed value. In this way, S can
be considered a surrogate of the level of nonlinearity
(further details on Diks’ test can be found in work by
Perucca et al. [2005]).
[37] Figure 8 reports the computation of S for two

simulations (S1 and S4 developed by the ZS model) both
with and without cutoff occurrence. Again, the behavior of
the two classes of simulation coincides in the first part of the
run, before the cutoffs, where a rapid growth of the non-
linearities is forced by the nonlinear evolution equation (1).

Figure 6. Simulation S1 developed with the IPS model.
The thin solid curves correspond to the planimetry chosen
as the initial condition (t = 0 years; the letter C marks the
point of incipient cutoff), while the thick solid curves and
the dashed curves provide the subsequent scenario with and
without cutoff occurrence, respectively, after 3000 years
(the letter A marks the limit of the zone of influence of the
propagation of the noise due to cutoff). Shown are (a) a = 1,
(b) a = 0.25, and (c) a = 0.1.
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Afterward, when cutoffs start to appear, the quantity S
undergoes a dramatic reduction and stabilizes at low levels,
while S continues to increase in the simulation where cutoff
is disabled. It follows that the mechanism of cutoff, by
removing long reaches from the river and generating a noise
component in the dynamics, limits the growth of a nonlinear
structure in the curvature series, and eventually in the
planform. Thus cutoff acts as a filter in the spatial dynamics
which are then simplified with respect to the nonlinear
dynamics of a pure elongation mechanism. These results
are in agreement with the analysis by Perucca et al. [2005]
where some different nonlinearity tests were applied to four
real river curvature series. However, in that work, the
interactions with other stochastic external forcings contrib-
uted to further reduce the nonlinearity in comparison with
the values obtained in the present case.

5. Conclusions

[38] In this paper, we have attempted to elucidate the
different ways by which cutoff is able to influence long-
term river dynamics. The analysis of some model-generated
planimetric simulations have permitted two roles of cutoff,

Figure 7. Series of the curvatures for simulation S1 with the cutoff occurrence (thick red curves) and
without cutoff (thin curves) at (a) t = 0 years, (b) t = 2000 years, (c) t = 4000 years, and (d) t = 6000 years.
The reach A1B1 is the portion of river eliminated by cutoff but which remains in the case without cutoff;
therefore the thick curve A1A2 has to be compared with the thin curve B1B2. The solid subvertical lines
isolate the evolution of the wave generated by cutoff-induced perturbation (i.e., the dynamical role). The
dashed lines mark the evolution of the reach delimited by points B1 and B2 at t = 0.

Figure 8. Application of the nonlinearity test by Diks et
al. [1995] to the time series of the curvature provided by the
ZS model in cases S1 and S4.
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geometrical and dynamical, to be isolated and identified.
The former entails the systematic elimination of older
reaches from the active river, while the latter can be
interpreted as a shot noise that randomly disturbs (in space
and time) the deterministic dynamics and propagates along
the river. Although we have analyzed each role individually,
they are mutually dependent and related. Through the
application of a reversibility test, we have detected quanti-
tative evidence of the overall effect, namely a reduction in
the degree of the nonlinearity in the curvature spatial series.
[39] The key point is that both roles have the effect of

reducing the influence of several fluid dynamic processes
on long-term dynamics. This effect allows one to explain
why two (or more) models with different levels of fluid
dynamic detail (i.e., IPS and ZS model) give rise to the
same statistically steady state of the river planform. This is
also consistent with the results of Camporeale et al. [2005],
where a single spatial scale permitted some long-term
planimetric statistics, obtained from different simulations,
to collapse, regardless of the model used.
[40] We conclude by pointing out that further analyses are

needed for a full understanding of the intriguing dynamics
of cutoff processes and their interaction with the long-term
behavior of meandering rivers. For example, future devel-
opments will require coupling between the numerical mod-
eling of the morphodynamics and some real-world
mechanisms, such as overflow processes, the influence of
riparian vegetation and river flow variability. The mecha-
nism of chute cutoff and its interaction with the riparian
vegetation patterns in the intrameander region also deserves
more attention in the future.
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