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Abstract. In this paper we carry on the study of the distribution
of prime numbers between two consecutive powers of integers.
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1. Introduction

A well known conjecture about the distribution of primes asserts
that all intervals of type [n2, (n+ 1)2] contain at least one prime. The
proof of this conjecture is quite out of reach at present, even under
the assumption of the Riemann Hypothesis. To get a conditional proof
of the conjecture we need to assume a stronger hypothesis about the
behaviour of Selberg’s integral in short intervals, see D. Bazzanella [3].
This paper concerns with the distribution of prime numbers between
two consecutive powers of integers, as a natural generalization of the
above problem. The well known result of M. N. Huxley [8] about
the distribution of prime in short intervals implies that all intervals
[nα, (n + 1)α] contain the expected number of primes for α > 12

5
and

n → ∞. This was slightly improved by D. R. Heath-Brown [7] to
α ≥ 12

5
.

Assuming some heuristic hypotheses we can obtain the expected dis-
tribution of primes for smaller values of α. In particular under the
assumption of the Lindelöf hypothesis, which states that the Riemann
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Zeta-function satisfies

ζ(σ + it)� tη (σ ≥ 1

2
, t ≥ 2),

for any η > 0, the classical result of A. E. Ingham [9] implies that
all intervals [nα, (n + 1)α] contain the expected number of primes for
α > 2.

In a previous paper, see [2], the author proved that all intervals
[nα, (n+ 1)α] ⊂ [N, 2N ], with at most O(B(N,α)) exceptions, contain
the expected number of primes, for suitable function B(N,α). More
precisely the author proved that we can choose

(1) B(N,α) =



(N1/α)
8
5
−α

2
+ε 6

5
< α ≤ 6

5
+ c

(N1/α)
5
2
−α+ε 27

16
< α ≤ 53

26

(N1/α)
72−9α−8α2

3(α+12)
+ε 53

26
≤ α <

12

5

for ε > 0 and c a suitable positive constant. The author proved also
that, under the assumption of the Lindelöf Hypothesis, we can choose

(2) B(N,α) = (N1/α)2−α+ε for 1 < α ≤ 2

and, under the assumption of the Riemann Hypothesis, we can choose

(3) B(N,α) = (N1/α)2−α log2N g(N) for 1 < α ≤ 2,

with g(N)→∞ arbitrarily slowly.
In this paper we establish the upper bounds for the exceptional set of

the distribution of primes between two consecutive powers of integers
under the assumption of some other heuristic hypotheses. The first
hypothesis regards the counting functions N(σ, T ) and N∗(σ, T ). The
former is defined as the number of zeros ρ = β + iγ of Riemann zeta
function which satisfy σ ≤ β ≤ 1 and |γ| ≤ T , while N∗(σ, T ) is defined
as the number of ordered sets of zeros ρj = βj + iγj (1 ≤ j ≤ 4), each
counted by N(σ, T ), for which |γ1 + γ2 − γ3 − γ4| ≤ 1. If we make the
heuristic assumption that there exists a constant T0 such that

(4) N∗(σ, T )� N(σ, T )4

T

(
1

2
≤ σ ≤ 1, T ≥ T0

)
,

as in D. Bazzanella and A. Perelli [4], then we can obtain the following
result.
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Theorem 1. Assume (4) and let ε > 0. Then all intervals [nα, (n +
1)α] ⊂ [N, 2N ], with at most O((N1/α)η(α)+ε) exceptions, contain the
expected number of primes , where

η(α) =


4α + 12− 8

√
3α

27

16
≤ α ≤ 48

25

12

5
− α 48

25
≤ α <

12

5

.

For α near 6/5 the assumption of (4) is not helpful to obtain a
stronger result than the unconditional result (1) proved in [2]. A corol-
lary of this theorem is Theorem 3 of D. Bazzanella [1], which states
that, under the assumption of (4), all intervals [n2, (n+ 1)2] ⊂ [N, 2N ],
with at most O(N1/5+ε) exceptions, contain the expected number of
primes. Recalling that for α ≥ 12/5 there are not exceptions, we ex-
pect to have

lim
α→12/5−

η(α) = 0.

We note that the above condition is implies by the Theorem 1, but not
by the unconditional result (1).

Moreover we assume the Density Hypothesis, which states that for
every η > 0 the counting function N(σ, T ) satisfies

N(σ, T )� T 2(1−σ)+η
(

1

2
≤ σ ≤ 1

)
,

obtaining our last result.

Theorem 2. Assume the Density Hypothesis and (4), let ε > 0 and
1 < α ≤ 2. Then all intervals [nα, (n + 1)α] ⊂ [N, 2N ], with at most
O((N1/α)η(α)+ε) exceptions, contain the expected number of primes,
where

η(α) = 2(2− α).

If we assume the Riemann Hypothesis, it is known that for α > 2
there are not exceptions and then we expect to have η(2) = 0. In-
deed, although the assumptions of the Theorem 2 are weaker than the
Riemann Hypothesis, we obtain η(2) = 0 again.

2. The basic lemma

Throughout the paper we always assume that n, x, X and N are
sufficiently large as prescribed by the various statements, and ε > 0 is
arbitrarily small and not necessary the same at each occurrence. The
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basic lemma is a result about the structure of the exceptional set for
the asymptotic formula

(5) ψ(x+ h(x))− ψ(x) ∼ h(x) as x→∞.

Let | | denote the modulus of a complex number or the Lebesgue
measure of an infinite set of real numbers or the cardinality of a finite
set. Let δ > 0 and let h(x) be an increasing function such that xε ≤
h(x) ≤ x for some ε > 0,

∆(x, h) = ψ(x+ h(x))− ψ(x)− h(x)

and

Eδ(X, h) = {X ≤ x ≤ 2X : |∆(x, h)| ≥ δh(x)}.

It is clear that (5) holds if and only if for every δ > 0 there exists
X0(δ) such that Eδ(X, h) = ∅ for X ≥ X0(δ). Hence for small δ > 0,
X tending to ∞ and h(x) suitably small with respect to x, the set
Eδ(X, h) contains the exceptions, if any, to the expected asymptotic
formula for the number of primes in short intervals. Moreover, we
observe that

Eδ(X, h) ⊂ Eδ′(X, h) if 0 < δ′ < δ.

We will consider increasing functions h(x) of the form h(x) = xθ+ε(x),
with some 0 < θ < 1 and a function ε(x) such that |ε(x)| is decreasing,

ε(x) = o(1) and ε(x+ y) = ε(x) +O

(
|y|

x log x

)
,

for every |y| < x. A function satisfying these requirements will be
called of type θ.

The basic lemma provides the structure of the exceptional set Eδ(X, h).

Lemma. Let 0 < θ < 1, h(x) be of type θ, X be sufficiently large de-
pending on the function h(x) and 0 < δ′ < δ with δ−δ′ ≥ exp(−

√
logX).

If x0 ∈ Eδ(X, h) then Eδ′(X, h) contains the interval [x0− ch(X), x0 +
ch(X)]∩ [X, 2X], where c = (δ− δ′)θ/5. In particular, if Eδ(X, h) 6= ∅
then

|Eδ′(X, h)| �θ (δ − δ′)h(X).

The above Lemma is part (i) of Theorem 1 of D. Bazzanella and A.
Perelli, see [4], and it essentially says that if we have a single exception
in Eδ(X, h), with a fixed δ, then we necessarily have an interval of
exceptions in Eδ′(X, h), with δ′ a little smaller than δ.
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3. Proof of the Theorems

We define H = (n+ 1)α − nα and

Aδ(N,α) = {N1/α ≤ n ≤ (2N)1/α : |ψ((n+ 1)α)− ψ(nα)−H| ≥ δH}.

This set contains the exceptions, if any, to the expected asymptotic
formula for the number of primes in intervals of the type [nα, (n+1)α] ⊂
[N, 2N ].

The main step of the proof is to connect the exceptional set Aδ(N,α)
with the exceptional set for the distribution of primes in short intervals
and to show that

(6) |Aδ(N,α)| �
|Eδ/2(N, h)|
N1−1/α + 1,

for every δ > 0, α > 1 and h(x) = (x1/α + 1)α − x.
In order to prove (6) we choose n ∈ Aδ(N,α) and let x = nα ∈

[N, 2N ]. From the definition of Aδ(N,α) we get

|ψ((n+ 1)α)− ψ(nα)−H| ≥ δH,

and then

|ψ(x+ h(x))− ψ(x)− h(x)| ≥ δh(x),

which implies that x ∈ Eδ(N, h). Using the Lemma, with δ′ = δ/2, we
obtain that there exists an effective constant c such that

[x, x+ ch(x)] ∩ [N, 2N ] ⊂ Eδ/2(N, h).

Let m ∈ Aδ(N,α), m > n. As before we can define y = mα ∈ [N, 2N ]
such that

[y, y + ch(y)] ∩ [N, 2N ] ⊂ Eδ/2(N, h).

Choosing c < 1 we find

y − x = mα − nα ≥ (n+ 1)α − nα > ch(x),

and then

[x, x+ ch(x)] ∩ [y, y + ch(y)] = ∅.
Hence (6) is proved, since for every n ∈ Aδ(N,α) and x = nα, with at
most one exception, we have

[x, x+ ch(x)] ⊂ [N, 2N ].

Now we can conclude the proof of the theorems providing a suitable
bounds for the measure of the exceptional set Eδ/2(N, h).

If we consider x ∈ Eδ/2(N, h) we get

|ψ(x+ h(x))− ψ(x)− h(x)| � N1−1/α
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and then

(7)

|Eδ/2(N, h)|N4−4/α

�
∫

|ψ(x+ h(x))− ψ(x)− h(x)|4 dx

Eδ/2(N,h)

�
∫ 2N

N

|ψ(x+ h(x))− ψ(x)− h(x) + Σ(x)|4 dx,

for every Σ(x) such that

Σ(x)� N1−1/α

logN
.

Now we use the classical explicit formula, see H. Davenport [5, Chapter
17], to write

(8) ψ(x+ h(x))− ψ(x)− h(x) = −
∑
|γ|≤T

xρcρ(x) +O

(
N log2N

T

)
,

uniformly for N ≤ x ≤ 2N , where 10 ≤ T ≤ N , ρ = β + iγ runs over
the non-trivial zeros of ζ(s) and

cρ(x) =
(1 + h(x)/x)ρ − 1

ρ
.

Let

(9) T = N1/α log3N,

and then

(10) cρ(x)� min

(
N−1/α,

1

|γ|

)
.

Follow the method of D. R. Heath-Brown, see [6], we find a constant
0 < u < 1 such that ∑

|γ|≤T, β>u

xρcρ(x)� N1−1/α

logN
,

obtaining

ψ(x+ h(x))− ψ(x)− h(x) = −
∑

|γ|≤T, β≤u

xρcρ(x) +O

(
N1−1/α

logN

)
,
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and then, from (7), we have

(11) |Eδ(N, h)|N4−4/α �
∫ 2N

N

∣∣∣∣∣∣
∑

|γ|≤T, β≤u

xρcρ(x)

∣∣∣∣∣∣
4

dx.

To estimate the fourth power integral we divide the interval [0, u] into
O(lnN) subintervals Ik of the form

Ik =

[
k

logN
,
k + 1

logN

]
,

and by Hölder inequality we obtain∣∣∣∣∣∣
∑

|γ|≤T, β≤u

xρcρ(x)

∣∣∣∣∣∣
4

� ln3N
∑
k

∣∣∣∣∣∣
∑

|γ|≤T, β∈Ik

xρcρ(x)

∣∣∣∣∣∣
4

and then

(12)

∫ 2N

N

∣∣∣∣∣∣
∑

|γ|≤T, β≤u

xρcρ(x)

∣∣∣∣∣∣
4

dx� N1−4/α+ε max
σ≤u

N4σM(σ, T ),

where

M(σ, T ) =
∑

β1,...,β4≥σ

|γ1|≤T,...,|γ4|≤T

1

1 + |γ1 + γ2 − γ3 − γ4|
.

It is not difficult to prove that

M(σ, T )� N∗(σ, T ) logN,

see [6], and then from (11) and (12) this yields

|Eδ/2(N, h)| � N−3+ε max
σ≤u

N4σN∗(σ, T ).

The assumption of (4) then implies

(13) |Eδ/2(N, h)| � N−3−1/α+ε
(

max
σ≤u

NσN(σ, T )

)4

.

Using the Ingham–Huxley density estimate, asserting that for every
ν > 0 we have

(14) N(σ, T )�


T 3(1−σ)/(2−σ)+ν 1

2
≤ σ ≤ 3

4

T 3(1−σ)/(3σ−1)+ν 3

4
≤ σ ≤ 1

,
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see [10, Theorem 11.1], we obtain an upper bound that for α ≥ 48/25
attains its maximum at σ = 3/4, and so we get

(15) |Eδ/2(N, h)| � N−3−1/α+εN
4
(
3/4+

3
5α

)
� N

7
5α

+ ε.

From (6) and (15) we can conclude

|Aδ(N,α)| �
|Eδ/2(N, h)|
N1−1/α + 1� N

7
5α

+ ε

N1−1/α

� N
12
5α
− 1 + ε � (N1/α)

(
12
5
− α

)
+ ε,

for every δ > 0 and α ≥ 48/25.
For 27/16 ≤ α ≤ 48/25 the above bound attains its maximum at

σ = 2−
√

3/α and then we have

(16) |Eδ/2(N, h)| � N−3−1/α+ε
(
NσN(σ, T )

)4 � N5+
11
α
−8
√

3/α+ε.

Thus, from (6) and (16), we deduce

|Aδ(N,α)| �
|Eδ/2(N, h)|
N1−1/α + 1� N5+

11
α
−8
√

3/α+ε

N1−1/α

� N4+
12
α
−8
√

3/α+ε � (N1/α)(4α+12−8
√
3α)+ε.

for every δ > 0 and 27/16 ≤ α ≤ 48/25, and then Theorem 1 follows.
In order to prove Theorem 2 we imitate the proof of Theorem 1 up

to equation (13) and then we write

|Eδ/2(N, h)| � N−3−1/α+ε
(

max
σ≤u

NσN(σ, T )

)4

.

Recalling that under the assumption of the Density Hypothesis we have

(17) N(σ, T )�


T 2(1−σ)+ν 1

2
≤ σ ≤ 11

14

T 9(1−σ)/(7σ−1)+ν 11

14
≤ σ ≤ 1

,

for every ν > 0, we thus obtain an upper bound for the exceptional set.
For every 1 < α ≤ 2 such a bound attains its maximum at σ = 1/2,
and so we obtain

|Eδ/2(N, h)| � N−3−1/α+ε
(
N2N(1/2, T )

)4 � N3/α−1+ε

The above bound and (6) imply that

|Aδ(N,α)| �
|Eδ/2(N, h)|
N1−1/α + 1� N3/α−1+ε

N1−1/α

� N4/α−2+ε � (N1/α)(4−2α)+ε.
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This concludes the proof of Theorem 2.
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