Improved CFD modeling of fibrous media for air cleaning applications

Original

Availability:
This version is available at: 11583/1671977 since:

Publisher:
Filttech Exhibitions Germany

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
CONGRESS PROCEEDINGS

VOLUME III – G-Sessions

CONTENT VOLUME III
Scientific Committee III-2 – 3
Session Survey III-4 – 5
Congress Programme III-6 – 18
Invited Lecture 3 III-19 – 28
Invited Lecture 6 III-29 – 36
Papers G-Sessions III-37– 503
Keyword List (Page Indicator) III-504

hosted by

supported by

Venue:
Congress Center Leipzig · Messeallee 1 · 04356 Leipzig · Germany

Congress Secretariat:
Filtech Exhibitions Germany
PO Box 1225 · 40637 Meerbusch – Germany
phone: +49 (0) 2132 93 57 60
fax: +49 (0) 2132 93 57 62
e-mail: info@wfc10.com
web: www.wfc10.com
SCIENTIFIC COMMITTEE CHAIRMEN

- Prof. Eberhard Schmidt University of Wuppertal
- Prof. Siegfried Ripperger University of Kaiserslautern

SCIENTIFIC COMMITTEE

- Dr. Harald Anlauf Germany
- Prof. Roger Ben Aim France
- Prof. Rolf Berndt Germany
- Dr. Reinhard Bott Germany
- Dr. Richard C. Brown Great Britain
- Dr. Roger de Bruyne Belgium
- Prof. George Chase USA
- Prof. Wu Chen USA
- Prof. José Coury Brazil
- Prof. Fuxin Ding China
- Prof. Enrico Drioli Italy
- Dipl.-Ing. Ulrich Esser Germany
- Prof. Rolf Gimbel Germany
- Prof. Urban Grén Sweden
- Prof. Wilhelm Höflinger Austria
- Prof. Kuo-Jen Hwang Taiwan
- Prof. Eiji Iritani Japan
- Prof. Chikao Kanaoka Japan
- Prof. Gerhard Kasper Germany
- Prof. Esko Kauppinen Finland
- Dr. Karsten Keller USA
- Dr. Hermanes Kleizen Netherlands
- Prof. Michael Kopf Germany
- Prof. Gernot Krammer Norway
- Dr. Thomas Langeloh Germany
- Prof. Dominique Leclerc France
- Prof. Dun-Jong Lee Taiwan
- Dr. Markus Lehner Germany
- Prof. Dietmar Lerche Germany
- Prof. Wallace Leung Hong Kong
- Prof. Richard Lydon Great Britain
- Prof. Agustin Macias-Machin Spain
Dr. Ernest Mayer USA
Dipl.-Ing. Christoph Maurer Switzerland
Prof. Karoly Molnar Hungary
Prof. Hermann Nirschl Germany
Prof. Lars Nyström Finland
Prof. Marianne Nyström Finland
Dr. Thomas Peters Germany
Dr. Christophe Peuchot France
Prof. Urs Peuker Germany
Dr. Jaroslav Pridal Czech Republic
Prof. Ulrich Riebel Germany
Prof. Peter Scales Australia
Prof. Hans-Joachim Schmid Germany
Prof. José Angel Sorrentino Venezuela
Prof. Gernot Staudinger Austria
Prof. Peter Stelter Germany
Dr. Steve Tarleton Great Britain
Prof. Hans Theliander Sweden
Prof. Kuo-Lun Tung Taiwan
Dr. ir. Kris Van Hege Belgium
Dipl.-Ing. Jean-Francois Vicard France
Prof. Eugène Vorobiev France
Dr. Matthias Waldenmaier Germany
Prof. Richard Wakeman Great Britain
Prof. Stanislav Wronski Poland
Prof. Nanping Xu China
Prof. Yang Zhao China

PLANT TOURS
Dr. Ronald Oertel DOW Leuna Olefinverbund

ORGANIZING COMMITTEE
Dr. Harald Anlauf University of Karlsruhe
Prof. Eberhard Schmidt University of Wuppertal
Rüdiger Wolfertz VDI-GVC
Dr. Uwe Delfs VDI-GVC
Mike Taylor Filtech Exhibitions
Suzanne Abetz Filtech Exhibitions
SESSION SURVEY

Monday, 14.04.2008

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00</td>
<td>Registration for Short Courses</td>
</tr>
<tr>
<td>09:00 – 18:00</td>
<td>Short Courses</td>
</tr>
<tr>
<td>16:00</td>
<td>Registration + Poster Installation</td>
</tr>
</tbody>
</table>

Tuesday, 15.04.2008

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00 – 10:00</td>
<td>Registration</td>
</tr>
<tr>
<td>10:00 – 11:00</td>
<td>Opening Ceremony</td>
</tr>
<tr>
<td>11:00 – 12:00</td>
<td>Plenary Lecture</td>
</tr>
<tr>
<td>12:00 – 13:15</td>
<td>Lunch</td>
</tr>
<tr>
<td>13:15 – 14:30</td>
<td>Invited Lecture 1</td>
</tr>
<tr>
<td>14:30 – 15:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>15:00 – 16:15</td>
<td>L 1, L 2, L 3, Invited Lecture 2</td>
</tr>
<tr>
<td>16:15 – 16:45</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>16:45 – 18:00</td>
<td>L 4, L 5, L 6, M 4, M 5, G 5, G 6</td>
</tr>
<tr>
<td>18:00</td>
<td>Welcome Reception in the Exhibition Hall</td>
</tr>
</tbody>
</table>

Wednesday, 16.04.2008

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 – 09:45</td>
<td>L 7, L 8, L 9, M 6, M 7, G 7, G 8</td>
</tr>
<tr>
<td>09:45 – 10:15</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>10:15 – 11:30</td>
<td>PL 1, PL 2, L 10, PM 1, PM 2, PG 1, PG 2</td>
</tr>
<tr>
<td>11:30 – 12:15</td>
<td>Poster Session</td>
</tr>
<tr>
<td>12:15 – 13:15</td>
<td>Lunch</td>
</tr>
<tr>
<td>13:15 – 14:30</td>
<td>L 11, L 12, L 13, M 8, M 9, Invited Lecture 3</td>
</tr>
<tr>
<td>14:30 – 15:00</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>15:00 – 16:15</td>
<td>Invited Lecture 4</td>
</tr>
<tr>
<td>16:15 – 16:45</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>16:45 – 18:00</td>
<td>L 14, L 15, L 16, M 13, M 14, G 11, G 12</td>
</tr>
</tbody>
</table>
SESSION SURVEY

Thursday, 17.04.2008

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Room</th>
<th>Room</th>
<th>Room</th>
<th>Room</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 – 09:45</td>
<td>L 17</td>
<td>L 18</td>
<td>L 19</td>
<td>M 15</td>
<td>M 16</td>
<td>G 13</td>
</tr>
<tr>
<td>09:45 – 10:15</td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15 – 11:30</td>
<td>L 20</td>
<td>L 21</td>
<td>L 22</td>
<td>PM 3</td>
<td>PM 4</td>
<td>PG 3</td>
</tr>
<tr>
<td>11:30 – 12:15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:15 – 13:15</td>
<td>Lunch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:30 – 15:00</td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00 – 16:15</td>
<td>L 26</td>
<td>L 27</td>
<td>L 28</td>
<td>M 17</td>
<td>M 18</td>
<td>Invited Lecture 6</td>
</tr>
<tr>
<td>16:15 – 16:45</td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:45 – 18:00</td>
<td>L 29</td>
<td>L 30</td>
<td>L 31</td>
<td>M 19</td>
<td>M 20</td>
<td>G 17</td>
</tr>
</tbody>
</table>

Friday, 18.04.2008

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Room</th>
<th>Room</th>
<th>Room</th>
<th>Room</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 – 09:45</td>
<td>L 32</td>
<td>L 133</td>
<td>M 21</td>
<td>M 22</td>
<td>M 23</td>
<td>G 19</td>
</tr>
<tr>
<td>09:45 – 10:15</td>
<td>Coffee Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:15 – 11:30</td>
<td>L 34</td>
<td>L 35</td>
<td>M 24</td>
<td>M 25</td>
<td>M 26</td>
<td>G 21</td>
</tr>
<tr>
<td>11:45 – 12:15</td>
<td>Closing Session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30 – 13:15</td>
<td>Lunch</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30 – 18:00</td>
<td>Post Congress Plant Tours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tuesday – April 15, 2008

<table>
<thead>
<tr>
<th>Opening Ceremony</th>
<th>10:00-11:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plenary Lecture</td>
<td>11:00-12:00</td>
</tr>
<tr>
<td>Filtration in the Framework of Globalisation and Technical Innovation, Prof. Richard J. Wakeman, Loughborough University, Great Britain (I-19)</td>
<td></td>
</tr>
<tr>
<td>Invited Lecture 1</td>
<td>13:15-14:30</td>
</tr>
<tr>
<td>Solid-Liquid-Seperation by Cake Filtration - State of the Art and Future Expectations, Dr. Harald Anlauf, Karlsruhe University, Germany (I-21)</td>
<td></td>
</tr>
<tr>
<td>M1 Gas Separation and Pervaporation</td>
<td>13:15-14:30</td>
</tr>
<tr>
<td>Gas separation with supported ionic liquid membranes, A. Seeberger*, C. Kern, A. Jess, University of Bayreuth, Germany (II-40)</td>
<td></td>
</tr>
<tr>
<td>Alternative permeate recovery systems for pervaporation, D. Shanahan*, C. O’Suillieabain, I. O’Sullivan, Cork Institute of Technology, Ireland (II-45)</td>
<td></td>
</tr>
<tr>
<td>Concentration and dewatering of ethanol by organophilic and hydrophilic zeolite membranes, M. Weyd*, H. Richter, G. Fischer, P. Puhlfürß, I. Voigt, HITK Hermsdorfer Institute for Technical Ceramics; J. Kühnert, inorganic GmbH, Germany (II-50)</td>
<td></td>
</tr>
<tr>
<td>M2 Potable Water</td>
<td>13:15-14:30</td>
</tr>
<tr>
<td>Safe drinking water for everybody? Membrane technology from small scale to large scale and vice versa, H. Futselaar*, J. Geluk, L. Broens, Norit Process Technology B.V.; J. Jacobs, Norit Membrane Technology B.V., Netherlands (II-55)</td>
<td></td>
</tr>
<tr>
<td>Two years experience with Germanys largest two-stage ultrafiltration plant for drinking water production (7,000 m³/h), S. Panglisch*, R. Gimbel, IWW Water Center; W. Dautzenberg, WAG Nordeifel mbH, Germany (II-59)</td>
<td></td>
</tr>
<tr>
<td>Potable water production by membrane processes: Effect of bacterial deformation on microorganisms' removal, N. Lebleu*, C. Caussereand, C. Roques, P. Aimar, University of Toulouse, France (II-64)</td>
<td></td>
</tr>
<tr>
<td>Functionalized and doped nanofiber filtration media with ionex and antimicrobial properties, J. Marek*, J. Svobodova, M. Juklickova, Elmarco Ltd.; L. Jelinek, Institute of Chemical Engineering, Czech Republic (II-69)</td>
<td></td>
</tr>
<tr>
<td>The development of an enhanced surface filtration medium based on short metal fibres for applications in food & beverage, chemical & pharmaceutical industry, I. Schildermanns*; D. Santens, NV Bekaert SA, Belgium (II-74)</td>
<td></td>
</tr>
<tr>
<td>Commercial applications for Disruptor™ alumina nanofiber filter media, R. Komlenic*, Ahlstrom Filtration Inc.; F. Tepper, Argonide Corp., USA (II-79)</td>
<td></td>
</tr>
<tr>
<td>G1 Surface Filtration I</td>
<td>13:15-14:30</td>
</tr>
<tr>
<td>Assessment of the cleanable dust filtration behaviour of surface treated needle felts by characterisation parameter determined by image analysis, W. Höflinger*, G. Maurachitz, H. Rud, J. Schuberth, Vienna University, Austria (III-37)</td>
<td></td>
</tr>
<tr>
<td>Characteristics of bag filter pressure drop profiles, M. Koch*, G. Kramer, NTNU University, Norway (III-42)</td>
<td></td>
</tr>
<tr>
<td>Comparing gas and liquid filtration of nonwovens transitional capacity and energy consumption, H. Kleizern*, IDEGO, Delft University, Parker Filtration B.V., Netherlands (III-47)</td>
<td></td>
</tr>
<tr>
<td>G2 Electrostatic Precipitation</td>
<td>13:15-14:30</td>
</tr>
<tr>
<td>Charge emission characteristics of a drained DBD electrode apparatus for nano-particle charging and precipitation, M. Wild, J. Meyer*, G. Kasper, Karlsruhe University, Germany (III-52)</td>
<td></td>
</tr>
<tr>
<td>Separation of oil mists from air flow by a space-charge electrostatic precipitator, A. Bologa*, H. Paur, H. Seifert, K. Wøloetz, Forschungszentrum Karlsruhe, Germany (III-57)</td>
<td></td>
</tr>
<tr>
<td>L2 Sedimentation Fundamentals - Analytical Centrifugation I</td>
<td>15:00-16:15</td>
</tr>
<tr>
<td>Acquisition of compression-permeability data of soft and hard colloids based on centrifugation experiments, E. Iritani*, N. Katagiri, K. Aoki, M. Shimamoto, Nagoya University, Japan (I-51)</td>
<td></td>
</tr>
<tr>
<td>Application of analytical centrifugation for studying solid-liquid separation in papermaking, H. Liimatainen*, J. Niinimäki, University of Oulu, Finland (I-61)</td>
<td></td>
</tr>
<tr>
<td>L3 Optimization of Solid-Liquid Separation Processes I</td>
<td>15:00-16:15</td>
</tr>
<tr>
<td>A multi-scale approach to solid-liquid separation task: a paradigm shift, T. Sheikhzeinoddin*, P. Sharratt, University of Manchester, Greater Britain (I-66)</td>
<td></td>
</tr>
<tr>
<td>A product-centred approach to a multi-stage task in pharmaceuticals: isolation, T. Sheikhzeinoddin*, P. Sharratt, University of Manchester, Greater Britain (I-71)</td>
<td></td>
</tr>
<tr>
<td>Continuous treatment and scrubbing of bottom ash from thermal waste treatment to produce improved granulate quality, R. Koralewska*, Martin GmbH; R. Grönnert, R. Hausdorf, Hans Huber AG, Germany; G. Zellinger, Kärntner GmbH; H. Gschaider, Binder+Co AG, Austria (I-76)</td>
<td></td>
</tr>
</tbody>
</table>
Advances relating to Filter Media Developments
Prof. Richard P. Lydon, Clear Edge Group, Great Britain (II-19)

Effects of PPS fibre intermixture on the surface structure and the filtration behaviour of PI needle felts for cleanable dust filters, G. Mauschitz*, J. Schuberth, W. Höflinger, Vienna University, Austria (III-67)

Experimental study of cake detachment in cake filtration and electrostatic enhanced cake filtration, H. Xu*, G. Xiong, Q. Yao, Tsinghua University, P.R. China (III-77)

Filtration of liquid aerosols with a horizontal fibrous filter, A. Charvet*, Y. Gonthier, A. Bernis, E. Gonze, University of Savoie, France (III-87)

Numerical and experimental investigations on the development of oil droplet separators in crankcase ventilation systems, S. Schütz*, G. Gorbach, A. Zink, K. Kissling, M. Piesche, Stuttgart University, Germany (III-92)

Utilization of statistical design of experiments for improving the efficiency of test filtration tasks, A. Häkkinen*, M. Huhtanen, J. Kallas, Lappeenranta University, Finland (I-81)

Study on the scalability of pressure filtration in pilot and bench scale test equipment, J. Palmer*, Larox Corp., Finland (I-86)

Layout of rotary filters on the basis of laboratory results, E. Ehrfeld*, R. Bott, T. Langeloh, Bokela GmbH, Germany (I-91)

Theoretical and experimental approach to the settling behaviour of particle-fiber-mixtures, M. Feist*, H. Nirschl, Karlsruhe University; J. Wagner, G. Hirsch, Darmstadt University, Germany (I-96)

Equation for fitting dispersed systems gravity & centrifuge settling data, A. Yelshin*, M. Mota, University of Minho, Portugal; I. Yelshyna, Polotsk University, Belarus (I-101)

Measurement of settling velocity enhancement by magnetic flocculation using manometric sedimentation centrifugation, M. Stolarski*, C. Eichholz, H. Nirschl, Karlsruhe University, Germany; B. Fuchs, DuPont, USA (I-106)

Seawater intake and pre-filtration with Neodren®, T. Peters*, Consulting for Membrane Technology, Germany; D. Pinto, E. Pinto, Catalana de perforacions S.A., Spain (II-83)

Comparison of options for seawater pre-treatment for SWRO plants, T. Peters*, Consulting for Membrane Technology; O. Schuster, B. von Harten, M. Ulbricht, Membrana GmbH; E. Schmidt, Wuppertal University, Germany; D. Pinto, E. Pinto, Catalana de perforacions S.A., Spain (II-88)

Application of automatic backflushfilter to improve raw water pre-treatment of reverse osmosis desalination plants, B. Schlichter*, P. Mehmel, R. Wnuk, HYDAC Process Technology GmbH, Germany; M. Parker, HYDAC Technology Corp., USA (II-93)

Composite membranes fabricated by plasma polymerization using organic compounds, D.-T. Tran*, L.V. Kim Ba, Hanoi University, Vietnam; S. Mori, M. Suzuki, Tokyo Institute of Technology, Japan (II-98)

Functional polymer materials to remove ions in conjunction with ultrafiltration membranes, B. Rivas*, A. Pooley, A. Maureira, E. Peireira, M. del Carmen Aguirre, University of Conception, Chile (II-103)

Modelling of the clogging of pleated filter for gas filtration, M. Rebai*, M. Prat, IMFT; M. Meireles, University of Toulouse; P. Schmitz, INSA; R. Baclet, S. Demeulemeester, Mecaplast Group, France (III-97)

Study of pressure drop and aerosol penetration during clogging of mini-pleated air filters, A. Joubert*, S. Artous, L. Bouilloux, IRSN; S. Calle-Chazelet, D. Thomas, J. Remy, Nancy University, France (III-102)

Experimental study on flow through concentric porous filter candle, A. Ijaz*, M. Saleem, University of the Punjab, Pakistan (III-107)

Fine dust precipitation in a Bayer-Reither venturi scrubber, M. Theis*, Bayer Technology Services GmbH; K. Reither, Reither Venturiwäscherei GmbH, Germany (III-112)
Wednesday – April 16, 2008

L7 Vacuum and Pressure Cake 08:30-09:45
Filtration Fundamentals III
Influence of synthetic suspension components on its physical behaviour, P. Ginisty*, N. Ahoyo, IFTS; J. Baudez, Cemagref, France; L. Spinosa, CNR, Italy (I-126)

Filtration properties in solvent-water mixtures, S. Neubauer*, U.A. Peuker, Clausthal University, Germany (I-131)
The influence of morphology and size on constant pressure filtration for two crystallizing systems, R. Beck*, D. Matthe-Sorensen, J.-P. Andreassen, NTNU University, Norway; A. Häkkinen, M. Louhi-Kultanen, Lappeenranta University, Finland (I-136)

L8 Technical Centrifugal Filtration- 08:30-09:45
Selection and Optimization
Systematic of filter centrifuges, P. Stelter*, HEINKEL Process Technology GmbH, Germany (I-141)
Selection of screen- and filter-centrifuges based on material and filtration properties, U. Esser*, D. Mrotzek, Bayer Technology Services GmbH, Germany (I-146)

Computer aided optimization of batch filtering centrifuges, I. Nicolau*, FOS Ltd., Cyprus (I-150)

L9 Filter Media Cleaning 08:30-09:45
Process strategies avoiding impurities adhering to woven filter media used in inverting filter centrifuges, S. Stahl*, H. Nirschl, Karlsruhe University, Germany (I-160)

Comparison of regeneration methods for ceramic filter media, J. Puranen*, A. Häkkinen, J. Kallas, Lappeenranta University; B. Ekberg, Larox Corp., Finland (I-165)

M6 Process/Waste Water Treatment 08:30-09:45
Membrane technology for recycling and recovery of resources in industrial water and waste water applications – from lab testings to production experiences, C. Bohner*, EnviroChemie GmbH, Germany (II-111)

Field experiences with membrane filtration for re-use of biological wastewater effluents, T. Baum*, S. Theiss, H. Eipper, Pall GmbH, Germany (II-115)

Impacts of the influent toxicity on the efficiency of tertiary filtration of wastewater from petroleum industry, S. Heng*, N. Lesage, Q. Su, Total Petrochemicals, France (II-120)

M7 Reverse Osmosis 08:30-09:45
Investigations of silica scaling on reverse osmosis membranes, G. Braun*, T. Harrer, T.-Götz, Cologne University, W. Hater, C. zum Kolk, C. Dupoiron, BKG Water Solutions - BK Giulini GmbH, Germany (II-125)
Reverse osmosis pilot plant studies regarding a novel electrochemical method to control CaCO₃ scaling, M. Meinardus*, Grünbeck Wasseraufbereitung GmbH, Germany (II-130)

Characterisation of reverse osmosis (RO) membrane fouling by autopsy – A case study, I. M. El-Aziz*, R. G. Edyvean, Sheffield University, Great Britain (II-135)

G7 Depth Filtration & Particle Deposition 08:30-09:45
Simulation studies of deposition mechanisms for aerosol particles in fibrous filters including slip flow, A. Wiegmann*, K. Schmidt, S. Rief, L. Cheng, A. Latz, Fraunhofer Institute for Industrial Mathematics ITWM, Germany (III-127)

Particle capture by air filter media having truncated log-normal fiber diameter distributions and random spacing of fibers, P. Tronville*, Torino University, Italy; R. Rivers, EQS Inc., USA; Z. Bin, Tongji University, P.R. China (III-132)

Comparison of calculated and MRI determined 1-dimensional profiles of deposited particle material in depth filter media with ongoing loading, J. Hoferer*, S. Schollmeier, J. Meyer, G. Kasper, Karlsruhe University, Germany (III-137)

G8 Measurement Techniques 08:30-09:45
Evaluation of filter test rigs for fractional efficiency measurements according to filter test standards, S. Schütz*, M. Schmidt, L. Mölter, Palas GmbH, Germany (III-142)
Real time tunnel ventilation and filter control systems, F. Schneider*, Grimm Aerosol Technik GmbH, Germany (III-147)

Dust measuring technology for the monitoring of particulate emissions, H. Fodisch*, P. Schengber, Dr. Fodisch Umweltmesstechnik AG, Germany (III-151)

PL1 – Poster Session 10:15-12:15
Deep Bed Filtration for Water and Wastewater Water depuruation by means of fibrous filter medium, A. Budyka*, A. Shepelev, V. Rykunov, K. Lukinina, Karpov Institute of Physical Chemistry, Russia (I-553)

Rice hull ash and its filtration and separation applications, W. Li, C. Berthold*, C. Kiser, Q. Richard, Agrilectric Research Company, USA (I-557)

Filter Aids - Press Filtration
Influences on the wort flow in the lautering process during beer production, J. Tippmann*, J. Voigt, K. Sommer, Munich University, Germany (I-562)

Sedimentation Fundamentals-Analytical Centrifugation
Stability prediction of concentrated suspensions: Comparison of NMR and analytical centrifuge measurements, S. M. Pancera*, N. Nestle, V. Boyko, Y. Liu, BASG AG, Germany (I-567)
Centrifugal Sedimentation and Filtration
CFD multiphase flow simulation of a solid bowl centrifuge with radial compartments, X. Romani Fernández*, H. Nirschl, Karlsruhe University, Germany (I-572)

Modelling of centrifugal drainage: effect of filter medium resistance, B. Leger, M. Valat, W. Jomaa, J-R. Puigali, University Bordeaux 1; S. Couturier, P. Ginisty*, IFSTT, France (I-577)

Hydrocyclones
Multiphase flow simulation of a hydrocyclone, R.-M. Wu*, C.-Y. Hsu, Tamkang University, Taiwan (I-582)

Particle Measurement - Contamination Control
Granulometry and morphology by microscopy and image analysis, O. Huin*, Microvision Instruments SAS, France (I-586)

Microbes verification on oxygen consumption rate measurement of biofilm in drinking water, L.-F. Chen*, W.-L. Lai, Shu-Te University, Taiwan (I-591)

Separation Enhancement by Magnetic Forces
Using Magnetic Filtration for Removal of Heavy Metals from Water by Nanomagnetic Extractants, S. M. Alfadul*, King Abdulaziz City for Science Technology, Saudi Arabia; A. W. Apblett, Oklahoma State University, USA (I-596)

Separation of pharmaceutical products with reverse micelles, S.H. Mohd-Setapar, R.I. Wakeman, E.S. Tarleton, Loughborough University, Great Britain (I-601)

PL2 – Poster Session 10:15-12:15
Separation Enhancement by Electric Forces
Electrofiltration of PHB, G. Gözke*, I. Perner-Nochta, C. Posten, Karslruhe University, Germany (I-606)

Separation Enhancement by Chemical Additives
Charge effects determine the filtration resistance in cake filtration and crossflow filtration experiments, H. Saveyn*, D. Curvers, P. Van der Meer, Ghent University, Belgium (I-611)

Laboratory Vacuum and Pressure Cake Filtration
Miniaturisation of filtration processes - A necessity for the pharmaceutical industry, A. Schreiner*, R. Schneeberger, Novartis Pharma; S. Jerman, ETH Zurich, Switzerland (I-615)

Are standards in designing industrial filters for solid liquid filtration wisely and necessary?, J. Tichy*, H.-P. Schmid, BHS-Sonthofen GmbH; S. Ripperger, Kaiserslautern University, Germany (I-616)

Filtration Properties in Organic Solvents, S. Neubauer*, U.A. Peuker, Clausthal University, Germany (I-620)

Technical Vacuum and Pressure Cake Filtration
Study on parameters affecting belt filtration of a metal precipitate suspension, S. Hirvisaari*, A. Hákkinen, J. Kallas, Lappeenranta University; B. Ekberg, Larox Corp.; A. Rautanen, Tamfelt Corp.; S. Storbacka, OMG, Finland (I-625)

Development of an automated online quotation tool, O. Sieking, E. Enoovaara, S. Henttu, Larox Corp., Finland; H. Brezina*, Larox GmbH, Germany (I-630)

Technical Vacuum and Pressure Cake Filtration – Media and Components
Easy installation and improved performance with a new filter press cloth design for applications in e.g. waste water, B. Maurer*, R. Gaiser, H. Dür, Sefar AG, Switzerland (I-633)

Press Filtration Fundamentals
Mass transfer from porous particles during the pressing of biological materials, M. Petryk, Ternopil University, Ukraine; E. Vorobiev*, University of Compiègne, France (I-636)

Slurry Pretreatment by Precipitation and Crystallization
Enhancing phosphogypsum filtration with sorbitan sesquioleate additive: Theory and practice, E.A. Abdel-Aal*, M.M. Rashad, CMRDI, Egypt; H. El-Shall, University of Florida, USA (I-641)

Boron recovery from the clay wastes of boron industry by solid-liquid extraction, I. Kipcak*, M. Özdemir, Eskisehir Osmangazi University, Turkey (I-646)

Boron recovery from borax sludge using solid-liquid extraction followed by precipitation, I. Kipcak*, M. Özdemir, Eskisehir Osmangazi University, Turkey (I-651)

L10 Filter Media Blockage – 10:15-11:30
Pore fouling behaviors in constant pressure and constant flux filtration of very dilute suspension, E. Iritani*, N. Katagiri, Y. Sugiyama, Nagoya University; K. Yagishita, Sanshin Mfg. Co., Ltd., Japan (I-170)

Zeta potential of filter media and its influence on the initial stages of cake filtration, C. Schnitzer*, S. Ripperger, Kaiserslautern University, Germany (I-175)

Fouling of filter media: Solubility of oxalate solutions, R. Salmimies*, M. Louhi-Kultanen, A. Hákkinen, J. Kallas, M. Huhtanen, Lappeenranta University; Bjarne Ekberg, Larox Corp., Finland (I-180)

PM1 Membrane Fouling 10:15-12:15

Analysis of particle fouling in different kinds of membranes during microfiltration, K.-J. Hwang*, C.-Y. Liao, Tamkang University, Taiwan (II-421)

Application of electric field to reduce the fouling in crossflow microfiltration, C.-J. Chuang*, C.-C. Hsiung, Z.-H. Cheng, Chung Yuan University, Taiwan (II-426)

Flow Manipulation for Performance Enhancement in Crossflow Filtration, B. Olayiwola*, P. Walzel, Technical University of Dortmund, Germany (II-431)

Effect of membrane material-cum-morphology on the dead-end micro-filtration of protein solution during filtration cycles, K.-L. Tung*, S. Wang, D. Nanda, C.-C. Hu, C.-L. Li, Y.-L. Li, Chung Yuan University; J. Huang, Yeu Ming Tai Chemical Industrial Co. Ltd., Taiwan (II-436)
Modified UF/NF membranes by LBL polyelectrolytes films for easy handling biofouling, M. Pontié*, E. Joudren, Angers University, France (II-441)

Relative effect of osmotic pressure and fouling on flux decline in nanofiltration of whey and skimmed milk, B. Chaufer, H. El Khabbaze, B. Balannec, M. Rabiller-Baudry*, University Rennes 1, France; K. Elkacemi, University Mohamed V-Agdal, Morocco (II-442)

Performances of an out-of-basin MBR for treating TFT-LCD wastewater, C.-H. Hsieh*, C.-M. Feng, C. Chou, S. Tan, Topco Scientific Co., Ltd.; C.-Y. Chung, J. C. Liu, Taiwan University, Taiwan (II-447)

PM2 Mechanism, Modelling 10:15-12:15
Simulation, Design

Modelling of the mass transfer in a hollow fiber dialyzer coupled with ultrafiltration operations, C.-D. Ho*, J.-W. Tu, Tamkang University, Taiwan (II-452)

Investigation of mass transport in membrane-based separation of aqueous protein mixture, O. Trifunovic*, P. M. Bongers, Unilever, Netherlands (II-xxx)

Lattice Boltzmann simulation on flow in porous medium of ceramic filter, Z. Ji*, M. Sun, H. Chen, University of Petroleum Beijing, P.R. China (II-457)

CFD simulation of a flat membrane module as a tool to explain fouling distribution, M. Rabiller-Baudry*, B. Balannec, D. Deaunay, University Rennes 1, France; J.M. Gozálvez-Zafrilla, University of Valencia, Spain (II-462)

Investigation of dynamic filters using CFD, L. Steinke*, Y. Taamneh, S. Ripperger, Kaiserslautern University, Germany (II-467)

Mathematical modeling of the simultaneous absorption of CO2 and H2S in a hollow fiber membrane contactor, J. Fathikalajahi*, P. Keshavarz, S. Ayatollahi, Shiraz University, Iran (II-477)

Using fractional factorial design to determine the effect of the operational parameters on water flux in ultrafiltration, W.-L. Lai*, S.-W. Liao, J.-J. Chen, Tajen University; Li-Fu Chen, Shu-Te University, Taiwan (II-482)

PG1 Surface Filtration 10:15-12:15

Filtration performance characteristics of high temperature pleated filters which operated in conventional bag filter and Cybag filter, Y.-O. Park*, N. Hasolli, KIER; H.-J. Roh, Chung-Nam University, Korea (III-362)

Efficient and economic particulate collection from the flue gas by the advanced hybrid particulate collectors, Y.-O. Park*, N. Hasolli, H.-K. Choi, KIER; Korea (III-367)

Particle layer detachment under consideration of transient kinetic effects, Q. Zhang*, E. Schmidt, University of Wuppertal, Germany (III-372)

Aspects of nozzle effect on the pulse-jet cleaning of a ceramic filter, J.-H. Choi*, K.-M. Sakong, Gyeongsgang University, Korea; H. Chi, Z. Ji, University of Petroleum, P.R. China (III-378)

Permeability of ceramic filters for high temperature gas filtration, G.M.C. Silva, E.A. Moreira, M.D.M. Innocentini, J.R. Coury*, University of Sao Carlos; C.R. Rambo, D. Hotza, University of Santa Catarina, Brazil (III-383)

Performance evaluation of cellular ceramic membranes for hot aerosol filtration, M.D.M. Innocentini, V.P. Rodrigues, University of Ribeirao Preto; G.M.C. Silva, R.C.O. Romano, J.R. Coury*, University of Sao Carlos; R.G. Pileggi, University of Sao Paulo, Brazil (III-388)

Gas filtration: Influence of operational variables on cake formation and detachment in different filter types, M.L. Aguia*, P.A. Paschoal, University of Sao Carlos, Brazil (III-393)

Study on gas-solid filtration using cellulose fiber filtering media, D.F. Torre, M.L. Aguia*, E.H. Tanabe, University of Sao Carlos, Brazil (III-398)

Study of the profundity of particles penetration in different fabric filters, M.L. Aguiar*, E.H. Tanabe, E.J. Ricco, K.B. Rodriguez, University of Sao Carlos, Brazil (III-403)

Effects of corona electrified solid particles on the efficiency and pressure drop of a fabric filter, M.V. Rodríguez*, M.A.S. Barrozo, University of Uberlandia; J.R. Coury, University of Sao Carlos, Brazil (III-408)

PG2 Solid Gas Separation 10:15-12:15

Investigations into the collection of fine dust by plants, D. Bracke*, G. Reznek, H. Mölleken, E. Schmidt, University of Wuppertal, Germany (III-413)

Development of a model equation for dust suppression by using a water-spraying system, W. Höfinger*, P. Grundnig, G. Mauschitz, J. Gao, Vienna University, Austria (III-418)

Use of water sprays for reduction of airborne dust pollution, U. Klenk*, E. Schmidt, University of Wuppertal, Germany (III-423)

Experimental study on the multi-orifice injection of liquid in a venturi scrubber, J.A.S. Goncalves*, V.G. Guerra, J.R. Coury, University of Sao Carlos, Brazil (III-428)

Trace heavy metals emission control through enhanced submicrometer range filtration: Experimental determination of performance, C. Gutierrez-Canas*, J.A. Legarreta, University of the Basque Country; Sapin; D.Y.H. Pui, S.-C. Kim, University of Minnesota, USA (III-433)

Experimental study of gas-solid two-phase flow in the guide vane cyclone tube, J.-J. Wang*, Y. Guo, Y.-H. Jin, University of Petroleum Dongying, P.R. China (III-438)

Personal impactor to measurements aerosol inhalation dose, D.A. Priapchkin*, A.K. Budyka, Karpov Institute of Physical Chemistry; A.G. Tsoyov, Institute of Biological Physics, Russia (III-443)

L11 Technical Vacuum and Pressure Cake Filtration 13:15-14:30

Optimizing industrial filters at Pyhäsalmi mine in Finland, P. Rantala*, S. Lähteenmäki, Helsinki University, Finland (I-185)
Advanced filtration of PTA (Pure Terephthalic Acid): Separation, washing and demoisturing in a single process unit with the hi-bar filtration R. Bott*, T. Langeloh, M. Schiessl, Bokela GmbH, Germany (I-190)

The multi-purpose rotary drum filter, T. Langeloh*, R. Bott, Bokela GmbH, Germany (I-195)

L12 Technical Centrifugal Sedimentation for Ultrafine Particles

Centrifugal separation in biopharmaceutical processing, W.-F. Leung*, The Hong Kong Polytechnic University, Hong Kong (I-200)

A case study - from lab-scale testing to industrial scale processing using a disk stack centrifuge, B. Fuchs*, A. Trasatti, S. Reddell, T. Pryor, DuPont Engineering, USA (I-205)

Fine solids separation within biodiesel process, M. Kopf*, G. Bergjohann, Peralisi Deutschland GmbH, Germany (I-210)

L13 Filter Media Characterization – Porometry – Integrity Testing I

Homogeneity of commercial filter cartridges, K. Gupta*, A. Jena, Pourous Materials, Inc., USA (I-215)

Bubble point and pore size distribution measurements of filter papers, wovens and nonwovens using a pore size meter PSM 165, S. GroBe*, A. Rudolph, Topas GmbH, Germany (I-220)

Filter media pore size comparison between porometry and glass bead challenge testing, G. Rideal*, Whitehouse Scientific Ltd., Great Britain; E. Mayer, DuPont Engineering, USA (I-225)

M8 Produced Water Treatment 13:15-14:30

Feasibility of using ceramic ultra- and nanofiltration membranes for efficient treatment of produced water, P. Czermak*, M. Ebrahimi, K. Shams Ashaghi, University of Giessen-Friedberg; P. Mund, Atech Innovations GmbH, Germany (II-140)

Crossflow microfiltration of oil from synthetic produced water, Y.H.D. Alanezi*, R.J. Wakeman, R.G. Holdich, Loughborough University, Great Britain (II-145)

Preparation of nano-sized particles modified PVD/Al₂O₃/TiO₂ ultrafiltration membrane and study on its performances for oilfield wastewater treatment, S.-L. Yu*, Q. Zhao, H. Lu, J. Yang, D. Wang, Harbin Institute of Technology, P.R. China (II-150)

M9 Nanofiltration 13:15-14:30

Nanofiltration: A method for solute removal from non-aqueous solvents, E.S. Tarleton*, Loughborough University, Great Britain (II-155)

Organophilic nanofiltration by polymeric membranes, T. Beeskow*, GMT Membrantechnik GmbH; J. Stegger, Borsig Membrane Technology GmbH, Germany (II-160)

Pre-oxidation effect on TOC removal in surface water treatment by nanofiltration, G.H.R. Nabi Bidhendi*, A. Torabian, H. Etemadi, A.A. Ghadimkhani, Tehran University, Iran (II-165)

Invited Lecture 3 13:15-14:30

Gas Cleaning Technology, Prof. Gernot Krammer NTNU - University of Science and Technology, Norway (III-19)

Invited Lecture 4 13:15-14:30

Solid-Liquid-Separation by Deep Bed Filtration, Prof. Rolf Gimmel University of Duisburg Essen, Germany (I-29)

M10 Characterisation by SAXS 15:00-16:15

Modifying a small-angle X-ray scattering-camera for a time-reduced characterisation of nanoparticles, V. Goertz*, H. Nirschl, Karlsruhe University, R. Wengeler, BASF AG, Germany (II-170)

Spatial and temporal in-situ evolution of concentration profile probed by SAXS during ultrafiltration of casein micelles, C. David, F. Pignon*, A. Magnin, University of Grenoble; M. Sztcuki, European Synchrotron Radiation Facility; G. Gézan-Guiziou, INRA Agrocampus Rennes, France (II-175)

In-situ characterization of anisotropic colloids deposition by SAXS during crossflow ultrafiltration, F. Pignon*, C. David, A. Magnin, University of Grenoble; M. Sztcuki, European Synchrotron Radiation Facility, France (II-180)

M11 Dynamic Filtration 15:00-16:15

Rotation filtration with ceramic membrane discs: presentation of industrial and municipal applications, C. Münch*, F. Koppe, Kerafol GmbH, Germany (II-185)

Dynamic cross-flow filtration of biological suspensions, e.g. bakers yeast, S. Neubauer*, U.A. Peuker, Clausthal University, Germany (II-190)

Classification using dynamic filtration, Y. Taamneh*, S. Ripperger, Kaiserslautern University, Germany (II-195)

M12 Dairy Products I 15:00-16:15

Impact of physico-chemical feed properties on deposit layer formation and filtration in the microfiltration of milk proteins, W. Kühl*, A. Piry, A. Tolkauch, U. Kuzoik, Munich University; T. Grein, S. Ripperger, Kaiserslautern University, Germany (II-200)

Effect of physico-chemical changes on critical hydrodynamic conditions and protein transmission during microfiltration (0.1 μm) of skimmed milk, G. Gésan-Guiziou*, F. Garnier, F. Rousseau, INRA Agrocampus Rennes; A. Jimenez, SOREDAB SAS, France (II-204)

Role of physico-chemical environment on limiting and critical fluxes in ultrafiltration, nanofiltration and reverse osmosis of modified skim milks, M. Rabiller-Baudry*, H. Bouzid, L. Paugam, University Rennes 1, France (II-209)

G9 Depth Filtration & Nanofibre Layers 15:00-16:15

Experimental investigation on air filtration of sub-micron particulates by nanofiber filter, W.-F. Leung**, C.-H. Hung, The Hong Kong Polytechnic University, Hong Kong (III-156)

Investigation of filters with a single nanofiber layer on a substrate, J. Wang*, D.Y.H. Pui, S.C. Kim, University of Minnesota, USA (III-161)
Filtration properties of cellulose filter media with polymer nanofiber layer, M. Maly*, S. Petrik, J. Duchoslav, L. Plistil, Elmarco Ltd.; J. Hruza, University of Liberec, Czech Republic

G10 Hot Gas Cleaning 15:00-16:15

Predicting the long term filtration behaviour on the basis of cycle times measured over a limited number of filtration cycles: Problems and approaches in high temperature gas filtration, N. Döring*, J. Meyer, G. Kasper, Karlsruhe University, Germany

Blow back system for hot gas filter installations using sintered metal fibre filter elements, I. Schildermans*, V. Kuijken, S. Vandendijk, A. Aust, NV Bekaert SA, Belgium

High temperature granular bed filtration of biomass gasification gas, D. Stanghellie*, A. Norheim, O.K. Sonju, J. Hustad, NTNU University, Norway

L14 Large Scale Treatment of Water and Wastewater 16:45-18:00

L15 Centrifugal Filtration Fundamentals 16:45-18:00

G10 Dynamic Filtration II 16:45-18:00

Dynamic cross flow microfiltration of viscous suspensions, S. Mirza*, Somicon AG, Switzerland; R. Bott, E. Ehrfeld, Bokela GmbH, Germany

Dynamic cross-flow filtration with ceramic filter membranes, B. Hegnauer*, KMPT AG, Germany

M14 Dairy Products II 16:45-18:00

Microfiltration for the reduction of microorganisms in complex food systems: Effect of operating conditions and ingredient interactions, V. Kaufmann*, V. Schmidt, S. Scherer, U. Kulozik, Munich University, Germany

Effect of membrane length, membrane resistances and process conditions on the fractionation of milk proteins by microfiltration, A. Piry*, W. Kühnl, A. Tolkach, U. Kulozik, Munich University, T. Grein, S. Ripperger, Kaiserslautern University, Germany; A. Hein, University of Helsinki, Finland

Membrane adsorption chromatography – A novel hybrid technology for the separation of high value bioactive molecules such as glycosylated peptides, M. Kreuß*, U. Kulozik, Munich University, Germany

G11 Depth Filtration & Modelling 16:45-18:00

Simulation of dust filtration in consideration of the incident flow using a coupling of analytical filtration models with CFD code, P. Kopf*, M. Piesche, Stuttgart University, Germany

Initial collection efficiency of neutral aerosol particles in bipolarly charged fibrous filters, A. Podgorski*. Warsaw University, Poland; A. Balazy, Cummins Filtration, Inc., USA

Nonsteady-state performance of mechanical fibrous filters, A. Balazy*, Cummins Filtration, Inc., USA; A. Podgorski, Warsaw University, Poland

G12 Industrial (Hot) Gas Cleaning 16:45-18:00

Star-BagsTM – Application of an advanced filter media construction for greater filtration efficiency and production capacity, M.J. Neate*, Albany International Pty Ltd, P.R. China; B. Currwell, Albany International Pty Ltd, Australia

Backpulse cleaned filtration system for the retention of alumina particles in NOx-gas streams, I. Schildermans*, H. Verbauwhede, S. Vandendijk, NV Bekaert SA, Belgium

Recent advances in particulate filtration technologies for coal gasification based power generation plants, S.D. Sharma*, D. Chase, M. Dolan, A. Ilyushchevkin, K. McLennan, T. Nguyen, CSIRO Energy Technology, Australia
Thursday – April 17, 2008

L17 Deep Bed Filtration – Modelling, Test and Simulation I
08:30 - 09:45

Basic model for suspension transport in porous media (for petroleum and environmental engineering), A. Shapiro*, University of Denmark DTU, Denmark; P. Bedrikovetsky, University of Rio de Janeiro/Petrosbras, Brazil
(I-275)

Optimization of non-woven metallic filter media based on probability model, S. Ishikawa*, Kansai Wire Netting Co., Ltd.; A. Shimosaka, Y. Shirakawa, J. Hidaka, Doshisha University, Japan
(I-280)

On coupled micro- and macro simulation for filtration processes, Z. Lakdawala*, O. Iliiev, A. Wiegmans, Fraunhofer Institute for Industrial Mathematics ITWM, Germany
(I-285)

L18 Technical Vacuum and Pressure Cake Filtration – Media & Components
08:30 - 09:45

Sefar hybrid technology (SHT) - A new approach to extend durability of filter fabrics, K.-U. Hömmann*, C. Maurer, Sefar AG, Switzerland
(I-290)

Latest developments in woven filter media for gypsum dewatering in modern FGD, A. Aust*, O. Steffen, C. Gurtner, C. Maurer, Sefar AG, Switzerland
(I-291)

Pigments getting finer and finer - A new answer to this challenge, C. Maurer*, Sefar AG, Switzerland
(II-296)

L19 Separation Enhancement by Electric Forces
08:30 - 09:45

Comparative analysis of electro-osmotic dewatering and electroforced sedimentation, M.S. Jami*, Islamic University Malaysia; Malaysia; M. Iwata, Suzuka National College, Japan
(I-301)

Electrohydrodynamic transport in nanoporous filter cakes, B. Schäfer*, H. Nirschl, Karlsruhe University, Germany
(I-306)

Solid-liquid expression enhancement from plant tissues by pulsed electric fields, E. Vorobiev*, N. Grimia, N. Lebovka, University of Compiègne; J. Vaxelaire, ENSGTI, France
(I-311)

L20 Deep Bed Filtration – Modelling, Test and Simulation II
10:15 - 11:30

On new challenges for CFD simulation in filtration, O. Iliiev*, Z. Lakdawala, Fraunhofer Institute for Industrial Mathematics ITWM; M. Dedering, W. Stausberg, IBS Filtran, Germany; R. Ciegis, V. Starikovicius, Vilnius University, Lithuania
(I-316)

Importance of the CFD simulations for the design of efficient filters, W. Stausberg*, M. Dedering, IBS Filtran; O. Iliiev, Z. Lakdawala, P. Popov, Fraunhofer Institute for Industrial Mathematics ITWM, Germany
(I-321)

L21 Press Filtration Fundamentals I
10:15 - 11:30

Describing the shear and compressive behavior of fine particulate filter cakes using characteristic solids volume fractions, A. Erk*, BASF AG, W. Stahl, H. Anlauf, Karlsruhe University, Germany
(I-331)

Dewatering and flow behaviour of fine limestone particle packings, T. Mladenchev*, J. Tomas, University of Magdeburg, Germany
(I-336)
Dewatering and fluidity behaviour of kaolin suspensions in the presence of a dispersant, O. Larue*, E. Vorobiev, University of Compiègne; M. Logino, Nikolai Lebovka, Institute of Biocolloidal Chemistry, Ukraine (I-341)

L22 Separation Enhancement by Magnetic Forces

Existing and potential applications of magnetic fields in particle technology, C. Eichholz, M. Stolarski, H. Nirschl, Karlsruhe University, Germany; K. Keller*, Solae/Dupont, USA (I-346)

Magnetic filtration processes in selective bio separation, H. Nirschl*, M. Stolarski, C. Eichholz, Karlsruhe University, Germany (I-351)

Continuous selective high gradient magnetic bio separation using novel rotating matrix centrifugation, M. Stolarski*, C. Eichholz, H. Nirschl, Karlsruhe University, Germany; K. Keller, Solae; B. Fuchs, DuPont, USA (I-356)

PM3 Inorganic/Ceramic Membranes

Feasibility of ceramic ultra- and nanofiltration membranes for removal of endotoxins, P. Czermak*, M. Ebrahimi, University of Giessen-Friedberg; G. Catapano, University of Calabria, Italy (II-487)

Two stage integrated ceramic membrane reactor system for the continuous enzymatic synthesis of oligosaccharides, M. Ebrahimi*, L. Placido, L. Engel, K. Shams Ashagi, University of Giessen-Friedberg, Germany; P. Czermak, Kansas State University, USA (II-492)

MEMBRALOX® IC A new range of high compactness ceramic Crossflow filtration membranes, J. Guibaud*, P. Chanaud, J.M. Cayrey V. Lasserre, Pall Exekia, France (II-497)

Goat milk fractionation and protein concentration by ceramic and polymeric membranes, B. Cancino*, C. Astudillo, Pontificia Universidad Catolica de Valparaiso, Chile (II-500)

Filtration of BSA and β-cyclodextrin solutions by using inorganic membrane, T.-W. Cheng*, K.-W. Lin, Y.-L. Chiu, Tamkang University, Taiwan (II-505)

Preparation of nano-sized alumina modified ultrafiltration membrane and its antifouling research, S.-L. Yu*, D. G. Wang, Y. Lu, W. X. Shi, H. Lv, Harbin Institute of Technology, P.R. China (II-510)

Adhesion of particles on ceramic membranes, T. Quadt*, E. Schmidt, University of Wuppertal, Germany (II-515)

PM4 Special Membranes and Complex Systems

Enhanced membrane separation process for biogas upgrading – Operating experiences of feeding biomethane into the Austrian gas grid, M. Harasek*, A. Makaruk, M. Miltener, R. Schlager, Vienna University, Austria (II-520)

Investigation of He/CO₂ selectivity in palladium composite membranes, M. Dogan*, O. Altinisik, G. Dogu, Gazi University, Turkey (II-525)

Ionic liquid recovery from aqueous solutions by cross-flow nanofiltration, J.F. Fernández*, E. Chilyumova, D. Waterkamp, J. Thömig, University of Bremen, Germany (II-528)

Linseed oil extraction by high voltage electrical discharges followed by separation oil-in-water emulsions by dynamic microfiltration, J.-L. Lanoisellé, L. Li, L. Ding, X. Liao, E. Vorobiev*, University of Compiègne, France (II-533)

Chromatography membrane reactor system (CMCRS) for the continuous synthesis of galactosyl-oligosaccharides, L. Engel*, M. Ebrahimi, K. Schams, P. Czermak, University of Giessen-Friedberg, Germany (II-538)

Homogeneous catalysts recycling by nanofiltration: one step further to the sustainable production, T. Renouard*, A. Keraani, M. Rabiller-Baudry, C. Fischmeister, University Rennes 1, France (II-543)

Nanofiltration membrane performances in concentrated and diluted phosphoric acid media, H. Diatto*, B. Chaufer, M. Rabiller-Baudry, University Rennes 1, France (II-548)

The effect of feed solution pH on membrane microstructure and performance: An inside understanding by PALS analysis and molecular dynamic simulation, K.-S. Chang*, K.-L. Tung, D. Nanda, J.Y.-C. Jean, Chung Yuan University, Taiwan (II-553)

Removing natural organic matters from raw water using PACI coagulation & membrane filtration, D.-J. Lee, B.N. Tsai, J.Y. Lai, National Taiwan University, Taiwan (II-558)

A MEMS-based wet-wet differential pressure sensor for aggressive media with integrated temperature sensor, G. Drews*, Grundfos GmbH, Germany (II-560)

PG3 Depth Filtration

Improved CFD modeling of fibrous media for air cleaning applications, P. Tronville*, Torino University, Italy; R. Rivers, EQS, Inc, USA; Z. Bin, Tongji University, P.R. China (III-448)

Influence of unevenness of porous structure of filtration papers on distributing of stream in pores, A.G. Denysenko*, Kharkiv University, Ukraine (III-453)

Dispersion of aerosol particles in inhomogeneous fibrous filter media, A. Podgorski*, A. Jackiewicz, Warsaw University, Poland; A. Balazy, Cummins Filtration, Inc., USA (III-456)

Deposition of charged submicron aerosol particles in fibrous filters, V.A. Kirsch*, Frumkin Institute of Physical Chemistry; A.K. Budyka, Karpov Institute of Physical Chemistry, Russia (III-461)

Orthogonal test and regression analysis on granular bed filter, H.-M. Fu*, X. Su, Z. Lo, Z. Zhou, Donghua University, P.R. China (III-466)

Hot Cleaning of Fuel Gas from Biomass Gasification, S. Thomas*, A. Herrmann, E. Schotte, Fraunhofer Institute for Factory Operation and Automation, Germany (III-471)
L23 Deep Bed Filtration – Modelling, Test and Simulation

Initial efficiency colector models for up flow direct filtration: proposals and analysis, A. Botari*, L. di Tramontano, Karlsruhe University, Germany (III-489)

Matheamtical modeling and experimental study of benzene adsorption kinetics in a zeolite bed, M. Petryk*, Ternopil University, Ukraine; J. Fraissard, University P. et M. Curie; S. Leclerc, D. Canet, University Nancy 1, France (III-494)

Numerical analysis on achieving the even sorbent dispersion in the lab-scale facility of DSI process for improving the SO2 removal efficiency, J.D. Chung*, J.W. Kim, Y.M. Park, Y.P. Bae, Hoseo University, Korea (III-499)

L24 Press Filtration Fundamentals II

Average cake filtration properties: Are they all different to the local ones?, R.G. de Kretser*, P.J. Scales, S.P. Usher, H. Saha, University of Melbourne, Australia (I-376)

Pore pressure measurement during cake filtration, E. Chantoiseau*, P. Arlabosse, Mining University d’Albi-Carmaux, France (I-381)

Thermodynamic solution of filtration and expression, S. Kurt*, Kuri Chemical Engineers Inc., H. Ohya, Yokohama University, Japan (I-386)

L25 Separation Enhancement by Chemical Additives I

Physico-chemical aspects on the separation of fine, nanoscale particles from fluids, H. Nirschl*, Karlsruhe University, Germany (I-391)

Variation of filtration behavior by manipulation of the filter cake structure, M. Hieke*, H. Nirschl, Karlsruhe University, Germany (I-396)

Effect of lecithin addition on crude linseed oil filtration, R. Savoie*, E. Vorobiev, J.-L. Lanoisellé, University of Compiègne, France (I-400)

L26 Deep Bed Filtration for Water and Wastewater

A novel fibrous filter for particle removal and coalescence applications, D.G. Griffiths*, C. Flinn, Fibra Ltd., Great Britain (I-405)

Effect of particle size on particle capture performance of polypropylene non-woven fibrous filter, T. Oshita*, Yamashin-Filter Corp.; K. Nakamura, K. Matsumoto, Yokohama University, Japan (I-410)

Modification of diatomaceous earth-based depth filters with nanosized basic or amphoteric metal oxides to promote virus removal from water, B. Michen*, M. Wegmann, T. Graule, Swiss Federal Laboratories for Materials Testing and Research, Switzerland; C.G. Aneziris, Freiberg University, Germany (I-415)

L27 Technical Mechanical-Thermal Press Filtration

Thermally assisted press-filtration processes - An overview, S. Couturier*, IFTS, France; U.A. Peuker, Clausthal University, Germany (I-420)

Hot filter presses - Industrial and international experiences with Rollfit®, A. Reisser*, Reisser Eilers & Partner AG, Switzerland (I-425)

L28 Separation Enhancement by Chemical Additives II

Cationic polymer desorption kinetics from sludge, H. Savelyn*, P. Van der Meeren, Ghent University, Netherlands; S.K. Dentel, University of Delaware, USA (I-434)

Membrane Separation

Prof. Enrico Drioli, University of Calabria, Italy (II-30)

New methods for conformity-of-production and inspection & maintenance testing of filters, M. Kasper*, T. Mosimann, Matter Engineering AG, Switzerland (III-245)

Practice-relevant lifetime of cleanable filter media, M. Schmidt*, L. Mölter, Palas GmbH, Germany (III-250)

Investigation of the filtration behaviour of an artificial filtration test rig in comparison to an industrial filter unit – Differences and possibilities of scale up, G. Gasparin*, Evonik Fibres GmbH, Austria (III-255)
Sludge flocculation: From laboratory to wastewater treatment plant, P. Ginisty*, C. Peuchot, IFTS, France (I-439)

Interaction of polyelectrolyte with sewage sludge and lignite in conditioning of flocculated sludge, K.B. Thapa*, E. Qi, A.F.A. Hoadley, A. Stevens, Monash University, Australia (I-444)

M17 Novel Separation of Complex Systems 15:00 -16:15

Cluj-Napoca; C. Roman, Research Institute for Analytical Ghirisan*, S. Dragan, C. Cimpoiu, V. Miclaus, University Mosbach, Germany

Influence of extractant molar volume on the alkali metal membrane extraction in closed system, Z. Albaraka*, D. Trebouet, M. Burgard, Strasbourg University, France; J.M. Loureiro, University of Porto, Portugal (II-281)

M18 High sensitivity binary gas integrity test for parvo-virus retentive filters provides enhanced virus retention assurance, S. Giglia*, M. Krishnan, Millipore Corp., USA (II-286)

Characterization of the 3D pore morphology and connectivity of polymeric membranes by nano-transmission X-ray microscope, T.-T. Wu*, K.-L. Tung, C.-C. Chien, C.-Y. Lin, Chung Yuan University, Y.-F. Song, G.-C. Yin, Y.-M. Chen, National Synchrotron Radiation Research Center, Taiwan (II-291)

Development and characterization of new inorganic supports based on natural moroccan phosphate for microfiltration and ultrafiltration membranes, I. Barrouk; S. Alami Younssi; A. Elbizane; FSMH Mohammedia, A. Kabbabi*, J. Maghnoui, CERPHOS, Morocco; M. Persin; A. Larbot, University of Montpellier, France (II-295)

L30 Particle Measurement – Contamination Control 16:45 -18:00

A review of methods and techniques available for particle sizing and/or counting in liquid contamination control, C. Peuchot*, S. Couturier, IFTS, France (I-464)

Advances in laboratory performance evaluation of hydraulic filter elements - Application to the study of aircraft hydraulic filter elements, P. Madhavan, L. Bensch, Pall Corporation; X. Tao*, Southwest Research Institute, USA (I-469)

Measurement of water separation efficiency of diesel fuel filters, C. Peuchot*, N. Petillon, IFTS, France (I-474)

L31 Industrial wastewater treatment utilizing zeta potential measurements, S. Emesh*, Al-Balqa' Applied University, Jordan (I-479)

Artificial neural networks for on-line control of coagulation in drinking water treatment, H.-J. Malz*, A. Nahrstedt, S. Pangisch, IWW Water Center; S. Strugholtz, University of Duisburg-Essen; J. Gebhardt, aquature – Dr. Gebhardt & Co. GmbH; W. Zach, Stadtwerke Düren, Germany (I-484)

Classification of manganese-doped zinc sulfide nanoparticles by size, Y. Mori*, Y. Arora, H. Ishizuka, Doshisha University, Japan (I-489)

M19 Computational fluid flow of porous SiC ceramic filtering modules and optimization of the channel edge form geometry, S. Alexopoulos*, G. Breitbach, B. Hoffschmidt, Aachen University, Germany; P. Stobbe, Stobbe Tech Ceramics A/S, Denmark (II-300)

CFD studies for flow and concentration profiles in feed channels of spiral-wound membrane modules, M. Shakaib*, S.M.F. Hasani, M. Mahmood, NED University Karachi, Pakistan (II-305)

Modelling the two phase flow in a pilot submerged Membrane bioreactor, E. Nguyen Cong Duc*, B. Lesjean, Berlin Center of Competence for Water; Germany; C. Levrecq, Anjou Recherche, France (II-310)

M20 Membrane Modules Modelling (CFD) 16:45 -18:00

The effect of the kind of the sludge solids containing in the excess activated sludge on the filtration characteristics of hollow fiber microfiltration, K. Kawasaki*, A. Matsuda, H. Tanimoto, R. Nagasaki, Ehime University; D. Omori, Daiki Axis Co., Japan (II-315)

Membrane separation processes assisted by in situ streaming potentials measurement in low pressure MF/UF immersed membranes, M. Pontie*, Angers University, France (II-320)

Use of wood fiber filter for advanced treatment of municipal wastewater, M.-Y. Oh*, M.-Y. Kim, Y.-K. Kim, Kangwon University, Korea (I-459)

Treatment of wastewater using microfiltration submerged membranes, S. Bou-Hamad*, A. Al-Safar, A. Al-Saraiafi, Kuwait Institute for Scientific Research, Kuwait (I-325)
Friday – April 18, 2008

L32 Precoat Filtration-Body 08:30-09:45
New filter system for kieselguhr-free filtration of beer - Concept and practical results, A. Zeller*, A. Schwarz, C. Forte, H. Evers, KHS AG, Germany (I-494)

Framework for selecting thin-cake candle filter technology for removing solid contaminant fines from recirculating acid gas scrubbing fluid streams, B.A. Perlmutter*, G.E. Schlager, BHS-Filtration Inc., USA (I-499)

Rice hull ash for water treatment, W. Li, C. Berthold*, C. Kiser, Q. Richard, Agrilectric Research Company, USA (I-504)

M21 New Separation Concepts 08:30-09:45

Al2O3 microporous membranes prepared on wet substrate by plasma spray coating technology, C.-C. Hsiung*, K.-L. Tung, C.-J. Chuang, T.-C. Ling; Chung Yuan University, Taiwan (II-335)

Development of a novel high performance continuous cake-less filtration system, T. Mori*, T. Katsuoka, B. Ochirkhuyag, J. Tsubaki, Nagoya University; T. Sugimoto, Chuo Kakohki Co. Ltd., Japan (II-340)

M22 Micro Sieves 08:30-09:45
Stainless steel micro sieves produced by "on-the-fly" laser perforation for fermentation sludge treatment, M. Baumeister*, K. Dickmann, Laser Center Münster LFM; D. Richter, pro-net, Germany (II-345)

Microsieves – Low filter area, high performance, A. Damm*, Bayer Technology Services GmbH, Germany; B. Brocades, Fluxion B.V., Belgium (II-350)

Micro filtration with silicon nitride micro sieves and high frequency back pulsing, C.N. Koh*, T. Wintgens, T. Melin, Aachen University, Germany; F. Pronk, B. Brocades, Fluxion B.V., Belgium (II-354)

M23 Membrane Bio Reactor I 08:30-09:45

Ceramic membrane bio reactor for industrial waste water treatment a case study, J. Guibaud*, S. Paranthoen, A. Balaire, Pall Corp, France (II-364)

G17 Filter Media Fabrication 16:45-18:00
New hot melt technology to bond and separate filter media, M. Puffe*, Nordson Deutschland GmbH, Germany (III-273)

Nanofibers by centrifuge spinning to improve filter media, A. Ginestet*, D. Pugnet, CETIAT, France (III-293)

The removal of ozone and nitrogen oxides by HVAC filters, A. Zeller*, D. Pugnet, CETIAT, France (III-298)

Friday – April 18, 2008

G18 Combined Processes 16:45-18:00
Adsorptive removal of nitrogen oxides in cabin air filters, U. Sager*, A. Görgülü, F. Schmidt, University Duisburg-Essen, Germany (III-288)

Nanofibrous material FP for radioactive aerosol monitoring, M. Stillwell*, Loughborough University, Great Britain (III-283)

Development of a novel high performance continuous cake-less filtration system, T. Mori*, T. Katsuoka, B. Ochirkhuyag, J. Tsubaki, Nagoya University; T. Sugimoto, Chuo Kakohki Co. Ltd., Japan (II-340)

M22 Micro Sieves 08:30-09:45
Stainless steel micro sieves produced by "on-the-fly" laser perforation for fermentation sludge treatment, M. Baumeister*, K. Dickmann, Laser Center Münster LFM; D. Richter, pro-net, Germany (II-345)

Microsieves – Low filter area, high performance, A. Damm*, Bayer Technology Services GmbH, Germany; B. Brocades, Fluxion B.V., Belgium (II-350)

Micro filtration with silicon nitride micro sieves and high frequency back pulsing, C.N. Koh*, T. Wintgens, T. Melin, Aachen University, Germany; F. Pronk, B. Brocades, Fluxion B.V., Belgium (II-354)

M23 Membrane Bio Reactor I 08:30-09:45

Ceramic membrane bio reactor for industrial waste water treatment a case study, J. Guibaud*, S. Paranthoen, A. Balaire, Pall Corp, France (II-364)

G19 Filter Classification and Standardisation 08:30-09:45
Developments in the standardization of methods of measuring the performance of air filters, P. Tronville*, Torino University, Italy; J. Dyment, Great Britain (III-303)

Which filter class is requested in a typical HVAC system?, T. Carlsson*, Scandfilter AB, Sweden (III-308)

Energy-efficiency-classification of air filters, M. Mayer*, T. Caesar, J. Klaus, Freudenberg Vliesstoffe KG, Germany (III-313)

G20 Simulation of Diesel Particulate Filters 08:30-09:45
Simulation of ceramic DPF media, soot deposition and pressure drop evolution, S. Rief*, D. Kehrwald, K. Schmidt, A. Wiegmann*, Fraunhofer Institute for Industrial Mathematics ITWM, Germany (III-318)

Numerical investigations of diesel particulate filter systems with 2D and 3D simulation models, T. Deuschle*, M. Piesche, Stuttgart University, Germany (III-323)

Computational fluid dynamics simulation of soot filtration in wall-flow diesel particulate traps for automotive applications, S. Bensaid*, D. Marchisio, D. Fino, G. Saracco, V. Specchia, Torino University, Italy (III-328)

L34 Water Separation from Biodiesel 10:15 -11:30 by Filtration and Coalescence
The Effects of biodiesel fuels of water separation performance in diesel fuel, S. Hutzler*, G.B. Bessee, Southwest Research Institute, USA (I-524)

The Effects of diesel fuel additives on water separation performance, S. Hutzler*, G.B. Bessee, Southwest Research Institute, USA (I-529)

Factors of influence in water separation from biodiesel-ultra low sulfur diesel blends, C. M. Stanfel*, Ahlstrom Engine Filtration LLC, USA (I-534)
Fine particles separation in recovered paper suspensions, G. Hirsch*, J. Wagner, S. Schabel, Darmstadt University, Germany (I-539)

Removal of arsenic from wastewaters by batch airlift electrocoagulation, H.K. Hansen*, P. Nunez, C. Jil, Technical University Federico Sta. Maria, Chile (I-548)

Nanofiltration operation as a sustainable water defluoridation operation dedicated to large scale pilot plants for the future, M. Pontié*, H. Dach, Angers University, J. Leparc, Veolia Water, France; A. Lhassani, University of Fes, Morocco (II-372)

Properties of downward and upward ultrafiltration of nanoparticle suspensions, Y. Mukai*, S. Shida, E. Iritani, Nagoya University, Japan (II-382)

Experimental study on the desalination of polymer-flooding oil-extraction wastewater with UF-EDR combined system, S.-L. Yu*, J. Xu, X. Zuo, D. Wang, J. Liu, H. Lu, Harbin Institute of Technology, PR. China (II-382)

Influence of membrane polymer on adsorptive fouling in microfiltration of wine, O. Schuster*, W. Ansorge, B. von Harten, Membrana GmbH; M. Ulbricht, University Duisburg-Essen, Germany (II-387)

Application of binary packing for polysaccharides separation by hydrodynamic chromatography, A. Yelshin*, M. Mota, J.A. Teixeira, A. Yelshin, University of Minho; R. Diash, University of Bragança, Portugal (II-392)

Improved virus retention assurance using novel high productivity parvovirus retentive filters, G. Tkacik*, M. Krishnan, Millipore Corp., USA; G. Kern, Millipore SAS, France (II-397)

Mechanism of enhanced biological nitrogen and phosphorus removal in ICAS-MBR System, Y. Wang, S.-L. Yu*, F. Zhao, D. Wang, Harbin Institute of Technology, PR. China (II-406)

Effect of cyclophosphamide and its main metabolites on the performance of a membrane bioreactor, C. Albasi*, L.F. Delgado, V. Faucet-Marquis, A. Leszkowicz, University of Toulouse; M. Audran, Lapeyronie Hospital, M. Castegnaro, CDS, France (II-411)

Low pressure plasma coatings allows to produce in an economical, environmental friendly way, M. Pauwels*, Europlasma N.V., Belgium (III-338)

High efficient cleanable depth filter media for process gas filtration and an inno-vative all-purpose compact filter apparatus, E. Schmalz*, STFI e.V., Germany (III-343)

Flow phenomena in mechanical separation technology, C. Seyfert*, N. Sautter, S. Schütz, M. Piesche, Stuttgart University, Germany (III-348)

CFD numerical flow simulation of particulate-laden and bulk solid flows - A state of the art, M. Lotfey*, ANSYS Fluent Deutschland GmbH, Germany (III-353)

The design of electrostatic precipitators by use of physical models, P. Tronville*, Torino University; G. Bacchigia, R. Sala, IRS s.r.l.; I. Gallimberti, Padova University; F. Zatti, Area Impianti s.p.a., Italy (III-357)

Announcement of the Host of the next WFC.
IMPROVED CFD MODELING OF FIBROUS MEDIA FOR AIR CLEANING APPLICATIONS

Paolo Tronville*, Politecnico di Torino, C.so Duca degli Abruzzi 24 – 10129 Turin, Italy
Richard D. Rivers, EQS Inc., 1262 Bassett Avenue, Louisville, KY 40204, USA
Zhou Bin, Tongji University, 1239 Siping Road, 200092 Shanghai, P.R. China

ABSTRACT

Accurate simulation of particle capture and accumulation in fibrous air filter media requires a microscale flow model which simulates as closely as possible flow in real filter media. Our previous work developed procedures for 2-dimensional simulations of flows through media formed from fibers with truncated log-normal diameter distributions. Fiber cross-sections were represented by circles located at random positions in the simulating CFD domain. Such procedures force some additional circles to be discarded, resulting in less than desirable goodness-of-fit between the measured fiber diameter distributions and the distribution of circle diameters in the final CFD domain. An improved procedure is presented here, together with a study about how many fibers need to be generated to make the properties of the model independent of the dimensions of the computational domain. These results are presented for three different wet laid glass media.

KEYWORDS

Fiber Array, Fiber Diameter Distribution, Fibrous Filter, Modelling, Filter Media

1. Introduction

The geometry of a fibrous filter is a most important property determining its resistance and particle capture. Theoretical analyses of classical modeling are based on simplified models because of easy analytical solutions (1). A more realistic description of real structures of filters is necessary for building physical and mathematical models supporting optimum design of new media or selection from available existing media. Since inter-fiber distances are a few micrometers, to neglect the effect of neighboring fibers is not an acceptable approximation (1), especially for the sake of modeling the clogging process. In the past, several models have been developed to consider this effect. The Kuwabara flow field (2) is a very popular one for the viscous flow at low Reynolds numbers (3). However, that flow field was obtained by assuming that all the fibers are cylinders, parallel to each other and having the same diameter, and that the flow around them is confined to coaxial cylindrical spaces with uniform radius. Happel takes the same approach, with different boundary conditions at the outer cylindrical boundary. In both analyses, a non-slip condition is applied to the fiber boundary. The above-mentioned models (called “cell models” or “single-fiber models”) solve the flow field for very limited region, assumed to represent the whole filter (3). Cell models do take into account the solid fraction of the medium, but cannot describe
the complex flow through real media. Other more sophisticated models (e.g. fibers with centers in regular patterns, in-line or staggered) are available, but again they do not accurately describe the flow in the interstitial regions of actual media. This is a severe limitation, because the trajectories of particles may be perturbed by fibers that do not capture them. Moreover these theories are applicable only to clean media because in the clogging process, the captured particles alter the flow field. The availability of more and more sophisticated CFD codes allows a much more accurate description of fibrous filter media fluid dynamic behavior. We have previously proposed a model with a “random fiber” approach using a 2-dimensional simulation. Fibers are represented by circles with truncated log-normal diameter distributions, located at random positions (6). However, the procedure described in that paper for locating fibers randomly results in some circles being discarded, which makes the distribution of generated circle diameters differ from the results obtained by measuring size distributions of the fiber diameters using scanning-electron microscope (SEM). The aim of this paper is to describe the improvements made in the circle selection and location technique to provide a better goodness-of-fit between the measured fiber diameters and the circle diameters in the CFD domain. We also discuss the influence of the width of the computational domain (i.e. the number of fibers used to describe a piece of medium) on the parameters which define the modeled medium.

2. Method
We assume that the flow within the filter medium is perpendicular to the fibers and that the fibers are all parallel. Fiber cross sections are therefore all circles. This roughly approximates real media, because real-media fibers are laid predominately in parallel planes during the manufacturing process. The fiber diameter distribution is approximated by a lognormal distribution truncated at assumed minimum and maximum diameters. Software was written to generate the circles representing the fibers and locate them randomly in the 2-D computational domain. The length of the computational domain is equal to the thickness of the medium, plus the length of added empty zones upstream and downstream of the faces of the filter medium. The width of the domain is arbitrary; much of this study is concerned with determining appropriate values for the domain width. Further data is needed to generate the geometry of the piece of medium, i.e.: the smallest and largest diameter; the geometric mean diameter and standard deviation of the fiber diameter distribution; and the solid fraction of the medium. It is necessary to provide the minimum clearance between any circle and the domain boundaries, here expressed as a percentage of each fiber diameter. The random numbers are generated using a shuffling algorithm due to Bays and Durham (4). The software produces uniform random numbers between 0 and 1 which are transformed into random numbers between -1 and +1. These numbers are used to produce a log-normal distribution using the geometric mean and standard deviation measured experimentally. The numbers creating a diameter larger than the maximum allowed or smaller than the minimum allowed are discarded. Uniformly-distributed numbers are generated for defining random coordinate pairs
and matched to each circle. The random numbers producing a circle that overlaps a boundary of the computational domain or that overlaps an already positioned fiber are discarded. The process is repeated until the generated solid fraction first exceeds the measured one. An example of the results produced by the procedure is shown below.

3. Influence of domain Width Results and discussion

The influence of the size of the set of random diameters used for positioning circles in the computational domain was studied. The results for an F6 filter medium (geometric mean diameter 4.25μm, geometric standard deviation 1.89; width of computational domain 75 μm) are shown in Figure 2.

Since the fibers in the actual filter medium have both a maximum and a minimum diameter, the double-truncated log-normal distribution was chosen as a close approximation to the actual fiber distribution. The resulting generated standard deviation was quite stable, and only slightly lower than the measured one. The geometric mean was fairly stable, ranging from 3.6 to 4.2 μm, but did not reach a constant value even when the number of random diameters was increased substantially. The number of fibers selected varied even more than their means, a hint that a wider computational domain allowing more circles would be desirable. A sensitivity study was therefore performed to see the effect of increasing the input geometric standard deviation on generated geometric standard deviations. Generated values were made closer to experimental data by increasing the input value of this parameter. Therefore the geometric standard deviation is artificially increased by the software itself for the remaining sensitivity studies shown here.
A second sensitivity study was performed to find the minimum width of the computational domain that provides a model of the medium that is independent of the choice of the width. For each kind of filter medium 6 runs were performed and then averaged. The results are shown in Figures 3-5.

![Graph](image)

Figure 3 – Variation of generated parameters with domain width (Medium F6)

μ_{gg} = generated geometric mean; μ_{gm} = measured geometric mean; σ_{gg} = generated geometric standard deviation; σ_{gm} = measured geometric standard deviation; α_g = generated α; α_m = measured α;

The number of generated fibers is proportional to the simulated medium width, as one would expect. The solids fraction is very stable because it is the parameter controlling the criterion to stop generating fibers. In the case of F6 medium even the narrowest computational domain (75 \(\mu\)m) gives a reasonable representation of the medium properties and it could be used for the CFD simulations. However, use of a wide domain and hence larger numbers of fibers increases the confidence that stable values of the properties of the generated simulation have been reached. One should use the widest domain that available computational power allows.

![Graph](image)

Figure 4 – Variation of generated parameters with domain width (Medium F8)

In the case of F8 medium the width of 70 \(\mu\)m looks large enough to represent the
medium properly. Nonetheless it is still necessary make some modification of input values to improve the geometric standard deviation of generated fibers. For H13 medium the width of 40 \(\mu m \) provides an acceptable result.

![Graph showing variation of generated parameters with domain width (Medium H13)](image)

Figure 5 – Variation of generated parameters with domain width (Medium H13)

4. **Conclusions**
 A procedure for random-fiber filter media simulation has been evaluated and the effect of some input parameters has been studied. To improve the agreement between measured and modeled media characteristics the geometric standard deviation is increased and applied with good results in one of the cases studied. The minimum width of the domain modeling a given medium needed to avoid width dependence is small enough to allow manageable sizes for CFD simulations. More sophisticated representations of the fiber diameter distributions, including the least-squares normal spline and beta distributions, are being studied to improve the procedure presented.

5. **Acknowledgement**
 This paper is supported by China Scholarship Council (No. 2007U20027). Sincere thanks are due to Prof. M. Gasparini and Dr. J. Steffens for their valuable suggestions.

REFERENCES