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Overall views of a bumper mould.
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Summary

• Production cycle and critical issues of large plastic moulds

• Sampling pattern and  re-heat-treatments

• As-received microstructures

• Mechanical properties and fatigue behaviour of as-received 

and re-heat-treated steel

• Fracture surfaces

• Conclusions
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Stresses
applied stresses: 

injection pressure 

thermal gradients 

notch effects

wear by reinforced resins flow 

fatigue (millions of pieces)

stresses raised by: 

cracks (improper weld bed depositions), 

abnormal operations (incomplete extraction).

different microstructures expected at increasing depths after quench

any microstructure could be found at mold face

Experience-based design, no usual defect-allowance calculation procedure 

Reported macroscopically brittle in-service failures

Plastic molds machined from 1x1x2 m forged and pre-hardened steel blooms 

Applications
automotive components (bumpers, dashboards, …)
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Steel composition

Steel mill operations

ingot casting (ESR refining is not possible)

forging to 1x1 m sections

dehydrogenization

oil quenching

tempering (one or more stages)

C Cr Mn Ni Mo Si S P

1.2738
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Usual Production cycle (I)
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Mold machining shop operations

chip-removal and/or electrical-discharge machining 

to the mold shape grinding with or without polishing 

in selected areas

local surface treatments 

eventual corrections using weld bed depositions

Commercial warehouse operations

removal of rough and decarburized surfaces (up to 

10-20 mm) 

sawing to requested dimensions

Usual Production cycle (II)
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Forging

comparable ingot and bloom section

some repeated forging steps 

total reduction ratio much lower than in rolling (and not comparable)

Usual Production cycle (cont.)

Heat treating in air
Step Temperature Duration

hydrogen removal a few days

austenitizing 840-880°C 1-2 days

oil quench - -

tempering to 330-300 HB

(one or more stages)

550-600°C 1-2 days 

(each stage)
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Experimental (I): sampling of the original bloom

12x18 mm section blanks

38 mm thick KIC specimens (LT)

Mould blank

Residual

Forged & heat-treated surfaces

Depth

[mm]

As-received

Individually re-heat-treated

Slab
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38 mm as-received KIC specs.

Blanks

Round tensile specs. (L)

Metallographic samples

Re-heat-treated 

Charpy-V  specs. (LT)

38 mm re-heat-treated KIC specs.

Experimental (II): sampling pattern & re-heat-treatments 

Rotating bending fatigue specimens (L)

Charpy-V  

specs. (LT)

Re-heat-treatments: 860°C ¾h / N2 or air / 590°C 3h / 550°C 3h

as-received or re-heat-treated

Round tensile specs. (L)
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55 mm depth 105 mm

450 mm 650 mm - core

As-received microstructures vs. depth (Nital etch)
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Hardness, tensile and fracture toughness tests
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Charpy-V tests & transition curves

As received steel

Transition curves 175 °C tests
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Survival

Probability

Stress [MPa] 

As-received Re-heat-treated

Core
(~560 mm)

Surface 
(~140 mm)

Core
(~560 mm)

Surface 
(~140 mm)

10% 518 581 638 706

90% 469 537 577 694

50% 493 19 559 17 608 24 700 5

test n. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 X 0

[MPa]

500 X X 2 0

490 O X O X 2 2

480 O O X 1 2

470 X O O 1 2

460 O O 0 2

450 O 0 1

Rotating bending fatigue tests – 4.2 Mcycles endurance limit 

Staircase method (example below: core as-received specimens) 

25% increase
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40 mm depth
intergranular

123 mm depth

intergranular & cleavage

667 mm depth
quasi-cleavage & ductile areas

Fractography (I): Charpy-V test - brittle areas (as received specs.)
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Fractography (II): KIc tests – as received specs.

60 mm depth – intergranular & cleavage

395 mm depth
cleavage & ductile areas
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Fatigue

precrack

Brittle 

propagation

Fractography (III): KIc tests – re-heat-treated specs.
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Fractography (IV): fatigue tests – fatigue areas

As-received

S
u

rf
a

ce
 (

~
1
4
0
 m

m
)

C
o
re

 (
~

5
6
0
 m

m
)

Re-heat-treated



2006 Annual Meeting; March 12-16, 2006 — San Antonio, TX, USA

Surface (~140 mm)

intergranular

Core (~560 mm)

cleavage & ductile

Re-heat-treated (originally ~560 mm)

intergranular (partially ductile)

Fractography (V): fatigue tests – overload areas
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Fractography (VI): remarks

Macroscopically brittle (overload) fracture mechanisms 

• Charpy-V, KIc and fatigue test specimens with similar microstructures 

show similar microscopic fracture mechanisms.

• Core and intermediate depth as-received microstructures show 

cleavage or quasi-cleavage fracture with some ductile areas.

• Both as-received (low depth) and re-heat-treated tempered martensite 

microstructures show mainly intergranular fracture.

Toughness of tempered martensite microstructures

• Only the re-heat-treated samples show ductile regions at the crack tip of 

the KIc specs. (and thus higher toughness).

• Differences in the tempered martensite carbide distribution, not 

observable by the O.M., must be supposed.
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Conclusions (I)

 Mixed microstructures occur throughout the examined bloom.

 The bloom fracture toughness is exceptionally low (about 40

MPa√m) for a Q&T steel, considering the achieved UTS.

 The plain-strain fracture prevalently occurs by decohesion,

coherently with the fact that, at room temperature, this steel is in its

brittle temperature range.

 The low toughness must be attributed to the microstructures caused

by the heat treatment, and in turn to the large dimensions of the

blooms and of the moulds.

 The much higher toughness of the re-heat-treated samples must be

attributed to microstructural differences on a sub-micron scale.
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Conclusions (II)

 The rotating bending fatigue endurance limits scale with the tensile

strength, rather than with the fracture toughness.

 The endurance limits of the re-heat-treated samples is 25% higher,

keeping the differences due to the original location.

 The low fracture toughness is a critical property; the lower fatigue

endurance limit allows for a critical crack to develop more rapidly

than in a fully Q&T condition.
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Thank you for your attention!


