Relationships between Tensile and Fracture Mechanics Properties and Fatigue Properties of Large Plastic Mold Steel

D. Firrao¹, P. Matteis¹, G. Scavino¹, G. Ubertalli¹, M. G. Ienco², M. R. Pinasco², E. Stagno², R. Gerosa³, B. Rivolta³, A. Silvestri³, G. Silva³, A. Ghidini⁴

¹Politecnico di Torino ²Università di Genova ³Politecnico di Milano ⁴Lucchini Sidermeccanica

Overall views of a bumper mould.

Summary

- Production cycle and critical issues of large plastic moulds
- Sampling pattern and re-heat-treatments
- As-received microstructures
- Mechanical properties and fatigue behaviour of as-received and re-heat-treated steel
- Fracture surfaces
- Conclusions

Plastic molds machined from 1x1x2 m forged and pre-hardened steel blooms

Applications

>automotive components (bumpers, dashboards, ...)

Stresses

>applied stresses:

injection pressure thermal gradients notch effects wear by reinforced resins flow fatigue (millions of pieces)

> stresses raised by:

cracks (improper weld bed depositions), abnormal operations (incomplete extraction).

- > Experience-based design, no usual defect-allowance calculation procedure
- > Reported macroscopically brittle in-service failures
- different microstructures expected at increasing depths after quench
- > any microstructure could be found at mold face

Usual Production cycle (I)

> Steel composition		С	Cr	Mn	Ni	Mo	Si	S	Р
	1.2738	0.35	1.8	1.3	0.9	0.15	0.2		
_	40CrMnNiMo8-6-4	-	-	-	-	-	-	<0.03	<0.03
		0.45	2.1	1.6	1.2	0.25	0.4		
	Examined bloom	0.42	2.0	1.5	1.1	0.21	0,37	0.002	0.006

➤ Steel mill operations

ingot casting (ESR refining is not possible) forging to 1x1 m sections dehydrogenization oil quenching tempering (one or more stages)

Usual Production cycle (II)

Commercial warehouse operations removal of rough and decarburized surfaces (up to 10-20 mm) sawing to requested dimensions

> Mold machining shop operations

chip-removal and/or electrical-discharge machining to the mold shape grinding with or without polishing in selected areas local surface treatments eventual corrections using weld bed depositions

Usual Production cycle (cont.)

Forging

- ➤ comparable ingot and bloom section
- Some repeated forging steps

➤ total reduction ratio much lower than in rolling (and not comparable)

Heat treating in air

Step	Temperature	Duration
hydrogen removal		a few days
austenitizing	840-880°C	1-2 days
oil quench	-	-
tempering to 330-300 HB	550-600°C	1-2 days
(one or more stages)		(each stage)

Experimental (I): sampling of the original bloom

12x18 mm section blanks

38 mm thick K_{IC} specimens (LT)

As-received

Individually re-heat-treated

Experimental (II): sampling pattern & re-heat-treatments

Re-heat-treatments: 860°C 3/4h / N₂ or air / 590°C 3h / 550°C 3h

As-received microstructures vs. depth (Nital etch)

Hardness, tensile and fracture toughness tests

Transition curves

As received steel

Rotating bending fatigue tests – 4.2 Mcycles endurance limit

Staircase method (example below: core as-received specimens)

test n.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	X	0
[MPa]																	
500								X				X				2	0
490							0		X		0		X			2	2
480						0				0				X		1	2
470			X		0										0	1	2
460		0		0												0	2
450	0															0	1

	Survival	Stress [MPa]								
>		As-re	ceived	Re-heat-treated						
	Probability	Core (~560 mm)	Surface (~140 mm)	Core (~560 mm)	Surface (~140 mm)					
	10%	518	581	638	706					
	90%	469	537	577	694					
	50%	493_19	559_17	608_24	700_5					
		25% increase								

Fractography (I): Charpy-V test - brittle areas (as received specs.)

667 mm depth quasi-cleavage & ductile areas

Fractography (II): K_{lc} tests – as received specs.

Fractography (III): K_{lc} tests – re-heat-treated specs.

Fractography (V): fatigue tests – overload areas

Re-heat-treated (originally ~560 mm) intergranular (partially ductile)

Fractography (VI): remarks

Macroscopically brittle (overload) fracture mechanisms

- Charpy-V, K_{Ic} and fatigue test specimens with similar microstructures show similar microscopic fracture mechanisms.
- Core and intermediate depth as-received microstructures show cleavage or quasi-cleavage fracture with some ductile areas.
- Both as-received (low depth) and re-heat-treated tempered martensite microstructures show mainly intergranular fracture.

Toughness of tempered martensite microstructures

- Only the re-heat-treated samples show ductile regions at the crack tip of the K_{Ic} specs. (and thus higher toughness).
- Differences in the tempered martensite carbide distribution, not observable by the O.M., must be supposed.

Conclusions (I)

- Mixed microstructures occur throughout the examined bloom.
- ❖ The bloom fracture toughness is exceptionally low (about 40 MPa√m) for a Q&T steel, considering the achieved UTS.
- ❖ The plain-strain fracture prevalently occurs by decohesion, coherently with the fact that, at room temperature, this steel is in its brittle temperature range.
- ❖ The low toughness must be attributed to the microstructures caused by the heat treatment, and in turn to the large dimensions of the blooms and of the moulds.
- ❖ The much higher toughness of the re-heat-treated samples must be attributed to microstructural differences on a sub-micron scale.

Conclusions (II)

- ❖ The rotating bending fatigue endurance limits scale with the tensile strength, rather than with the fracture toughness.
- The endurance limits of the re-heat-treated samples is 25% higher, keeping the differences due to the original location.
- ❖ The low fracture toughness is a critical property; the lower fatigue endurance limit allows for a critical crack to develop more rapidly than in a fully Q&T condition.

Relationships between Tensile and Fracture **Mechanics Properties and Fatigue Properties of Large Plastic Mold Steel**

```
D. Firrao<sup>1</sup>, P. Matteis<sup>1</sup>, G. Scavino<sup>1</sup>, G. Ubertalli<sup>1</sup>,
M. G. Ienco<sup>2</sup>, M. R. Pinasco<sup>2</sup>, E. Stagno<sup>2</sup>, R. Gerosa<sup>3</sup>,
       B. Rivolta<sup>3</sup>, A. Silvestri<sup>3</sup>, G. Silva<sup>3</sup>, A. Ghidini<sup>4</sup>
```

¹Politecnico di Torino ²Università di Genova ³Politecnico di Milano

⁴Lucchini Sidermeccanica

Thank you for your attention!

