Relationships between tensile and fracture mechanics properties and fatigue properties of large plastic mold steel

Original

Availability:
This version is available at: 11583/1667886 since:

Publisher:

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Relationships between Tensile and Fracture Mechanics Properties and Fatigue Properties of Large Plastic Mold Steel

D. Firrao¹, P. Matteis¹, G. Scavino¹, G. Ubertalli¹, M. G. Ienco², M. R. Pinasco², E. Stagno², R. Gerosa³, B. Rivolta³, A. Silvestri³, G. Silva³, A. Ghidini⁴

¹Politecnico di Torino ²Università di Genova ³Politecnico di Milano ⁴Lucchini Sidermeccanica
Overall views of a bumper mould.
Summary

• Production cycle and critical issues of large plastic moulds
• Sampling pattern and re-heat-treatments
• As-received microstructures
• Mechanical properties and fatigue behaviour of as-received and re-heat-treated steel
• Fracture surfaces
• Conclusions
Plastic molds machined from 1x1x2 m forged and pre-hardened steel blooms

Applications

- automotive components (bumpers, dashboards, ...)

Stresses

- applied stresses:
 - injection pressure
 - thermal gradients
 - notch effects
 - wear by reinforced resins flow
 - fatigue (millions of pieces)

- stresses raised by:
 - cracks (improper weld bed depositions),
 - abnormal operations (incomplete extraction).

- Experience-based design, no usual defect-allowance calculation procedure
- Reported macroscopically brittle in-service failures

- different microstructures expected at increasing depths after quench
- any microstructure could be found at mold face
Steel composition

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Cr</th>
<th>Mn</th>
<th>Ni</th>
<th>Mo</th>
<th>Si</th>
<th>S</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2738</td>
<td>0.35</td>
<td>1.8</td>
<td>1.3</td>
<td>0.9</td>
<td>0.15</td>
<td>0.2</td>
<td><0.03</td>
<td><0.03</td>
</tr>
<tr>
<td>40CrMnNiMo8-6-4</td>
<td>0.45</td>
<td>2.1</td>
<td>1.6</td>
<td>1.2</td>
<td>0.25</td>
<td>0.4</td>
<td><0.03</td>
<td><0.03</td>
</tr>
<tr>
<td>Examined bloom</td>
<td>0.42</td>
<td>2.0</td>
<td>1.5</td>
<td>1.1</td>
<td>0.21</td>
<td>0.37</td>
<td>0.002</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Steel mill operations

- ingot casting (ESR refining is not possible)
- forging to 1x1 m sections
- dehydrogenization
- oil quenching
- tempering (one or more stages)
Usual Production cycle (II)

- **Commercial warehouse operations**
 - removal of rough and decarburized surfaces (up to 10-20 mm)
 - sawing to requested dimensions

- **Mold machining shop operations**
 - chip-removal and/or electrical-discharge machining to the mold shape
 - grinding with or without polishing in selected areas
 - local surface treatments
 - eventual corrections using weld bed depositions
Forging

- comparable ingot and bloom section
- some repeated forging steps

- total reduction ratio much lower than in rolling (and not comparable)

Heat treating in air

<table>
<thead>
<tr>
<th>Step</th>
<th>Temperature</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>hydrogen removal</td>
<td></td>
<td>a few days</td>
</tr>
<tr>
<td>austenitizing</td>
<td>840-880°C</td>
<td>1-2 days</td>
</tr>
<tr>
<td>oil quench</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>tempering to 330-300 HB</td>
<td>550-600°C</td>
<td>1-2 days (each stage)</td>
</tr>
</tbody>
</table>
Experimental (I): sampling of the original bloom

Forged & heat-treated surfaces

Mould blank

Slab

Residual

12x18 mm section blanks

38 mm thick K_{IC} specimens (LT)

As-received

Individually re-heat-treated

[mm]
Experimental (II): sampling pattern & re-heat-treatments

- 38 mm re-heat-treated K_{IC} specs.
- 38 mm as-received K_{IC} specs.
- Round tensile specs. (L)
- Metallographic samples
- Re-heat-treated Charpy-V specs. (LT)
- Charpy-V specs. (LT)
- Rotating bending fatigue specimens (L)

Re-heat-treatments: $860°C \frac{3}{4}h / N_2$ or air / $590°C 3h / 550°C 3h$
As-received microstructures vs. depth (Nital etch)

55 mm depth

105 mm

450 mm

650 mm - core
Hardness, tensile and fracture toughness tests

Hardness [HV100]

<table>
<thead>
<tr>
<th>Depth [mm]</th>
<th>0</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>440 mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145 mm (I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145 mm (II)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tensile properties [MPa]

<table>
<thead>
<tr>
<th>Depth [mm]</th>
<th>0</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>YS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YS, RHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTS, RHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardening exponent

<table>
<thead>
<tr>
<th>Depth [mm]</th>
<th>0</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>YS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YS, RHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTS, RHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

KIC [MPa√m]

<table>
<thead>
<tr>
<th>Depth [mm]</th>
<th>0</th>
<th>200</th>
<th>400</th>
<th>600</th>
<th>800</th>
<th>1000</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-received</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Charpy-V tests & transition curves

Transition curves

175 °C tests

As received steel
Survival Probability

<table>
<thead>
<tr>
<th>Stress [MPa]</th>
<th>As-received</th>
<th>Re-heat-treated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Core (~560 mm)</td>
<td>Surface (~140 mm)</td>
</tr>
<tr>
<td>10%</td>
<td>518</td>
<td>581</td>
</tr>
<tr>
<td>90%</td>
<td>469</td>
<td>537</td>
</tr>
<tr>
<td>50%</td>
<td>493 19</td>
<td>559 17</td>
</tr>
</tbody>
</table>

Rotating bending fatigue tests – 4.2 Mcycles endurance limit

Staircase method (example below: core as-received specimens)

test n.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	X	0
---------	---	---	---	---	---	---	---	---	---	----	----	----	----	----	----		
[MPa]																	
500	X	X				X											
490	O	X	X			O	X										
480	X	O	X	O	X	X	O										
470	O	O	O	O	O	O	O	X	X								
460	O	O	O	O	O	O	X	O	X								
450	O	O	O	O	O	O	O	O	O								

25% increase
Fractography (I): Charpy-V test - brittle areas (as received specs.)

40 mm depth
intergranular

123 mm depth
intergranular & cleavage

667 mm depth
quasi-cleavage & ductile areas
Fractography (II): K_{lc} tests – as received specs.

- 60 mm depth – intergranular & cleavage
- 395 mm depth – cleavage & ductile areas
Fractography (III): K_{lc} tests – re-heat-treated specs.

Fatigue precrack

Brittle propagation
Fractography (IV): fatigue tests – fatigue areas

As-received

Surface (~140 mm)

Core (~560 mm)

Re-heat-treated

50 µm

50 µm
Fractography (V): fatigue tests – overload areas

Surface (~140 mm) intergranular

Core (~560 mm) cleavage & ductile

Re-heat-treated (originally ~560 mm) intergranular (partially ductile)
Fractography (VI): remarks

Macroscopically brittle (overload) fracture mechanisms

• Charpy-V, K_{lc} and fatigue test specimens with similar microstructures show similar microscopic fracture mechanisms.

• Core and intermediate depth as-received microstructures show cleavage or quasi-cleavage fracture with some ductile areas.

• Both as-received (low depth) and re-heat-treated tempered martensite microstructures show mainly intergranular fracture.

Toughness of tempered martensite microstructures

• Only the re-heat-treated samples show ductile regions at the crack tip of the K_{lc} specs. (and thus higher toughness).

• Differences in the tempered martensite carbide distribution, not observable by the O.M., must be supposed.
Conclusions (I)

- Mixed microstructures occur throughout the examined bloom.
- The bloom fracture toughness is exceptionally low (about 40 MPa√m) for a Q&T steel, considering the achieved UTS.
- The plain-strain fracture prevalently occurs by decohesion, coherently with the fact that, at room temperature, this steel is in its brittle temperature range.
- The low toughness must be attributed to the microstructures caused by the heat treatment, and in turn to the large dimensions of the blooms and of the moulds.
- The much higher toughness of the re-heat-treated samples must be attributed to microstructural differences on a sub-micron scale.
Conclusions (II)

- The rotating bending fatigue endurance limits scale with the tensile strength, rather than with the fracture toughness.
- The endurance limits of the re-heat-treated samples is 25% higher, keeping the differences due to the original location.
- The low fracture toughness is a critical property; the lower fatigue endurance limit allows for a critical crack to develop more rapidly than in a fully Q&T condition.
Relationships between Tensile and Fracture Mechanics Properties and Fatigue Properties of Large Plastic Mold Steel

D. Firrao1, P. Matteis1, G. Scavino1, G. Ubertalli1, M. G. Ienco2, M. R. Pinasco2, E. Stagno2, R. Gerosa3, B. Rivolta3, A. Silvestri3, G. Silva3, A. Ghidini4

1Politecnico di Torino \hspace{1cm} 2Università di Genova \\
3Politecnico di Milano \hspace{1cm} 4Lucchini Sidermeccanica

Thank you for your attention!