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Abstract

The paper addresses embedded software performance
estimation. Known approaches use either behavioral sim-
ulation with timing annotations, or a clock cycle-accurate
model of instruction execution (e.g., an instruction set sim-
ulator.)

We propose a hybrid approach, that features both the
high simulation speed and flexibility from the former ap-
proach and the awarness of compilation optimizations and
processor features of the later. The key idea is to trans-
late the assembler generated by a target compiler to an
“assembler-level,” functionally equivalent, C code. This
code, annotated with timing and other execution related in-
formations, is used as a very precise, yet fast, software sim-
ulation model. The approach is used in Cadence VCC, a
system-level design environment.

We report a comparison of several known approaches,
the description of the new methodology, and experimental
results, that show the effectiveness of the proposed method.
We also propose several improvements.
Keywords: real-time systems, timing analysis, compila-
tion, architecture modeling.

1. Introduction

Today, high performance IC technologies combine ever
increasing computing power with complex integrated pe-
ripherals and large amounts of memory at decreasing costs.
The software content of the embedded systems grows expo-
nentially, mostly from the migration of application-specific
logic to application-specific code, to cut down products
costs and time to market.

Short product life cycles and customization to niche mar-
kets force designers to reuse not only building blocks, but

entire architectures as well. A new architecture is analyzed
for appropriateness and efficiency to different applications
or behaviors to determine its market size. Every time new
features are added, the architecture should be re-analyzed
to ensure it provides the right timing and support. Using ef-
ficient system development tools can significantly alleviate
this problem.

Once mapped onto an architecture, the behavior can be
annotated with estimated execution delays. The delays de-
pend on the implementation type (hardware or software)
and on the performance and interaction of the architec-
tural elements (e.g., IC technology, access to shared re-
sources, etc. for hardware, clock rate, bus width, Real-Time
scheduling and CPU sharing, etc. for software.) These es-
timates should be accurate enough to allow making high
level decisions such as what behavior needs to be imple-
mented in hardware, how to architect the software in terms
of threads, and what RTOS to use. For real-time embed-
ded systems, that have strict timing constraints, the design
tools are expected to assist the designer with accurate tim-
ing simulations at early stages of system definition. High
level performance estimation coupled with a fast co-simu-
lation framework seems a suitable solution to forestall per-
formance problems in embedded system design.

Providing early good timing information for the hard-
ware/software co-simulator before designing detailed hard-
ware and software is a very difficult problem, especially
for the software side. Architectural enhancements can
rapidly obsolete established good software estimation tech-
niques. This goal was pursued through various methods
(e.g., [10, 8, 11]), but none of these is suitable for the func-
tion/architecture co-design methodology. They generally
target worst case execution time analysis for a single pro-
gram. These approaches are not suitable for embedded sys-
tems, composed of multiple tasks accessing common re-
sources, whose dynamic activation can significantly modify



each other’s execution path.
Our research effort aims at developing techniques and

tools to accurately evaluate the performance of a system at
different levels of abstraction. The evaluation must be done
dynamically, in a simulation environment, to capture run-
time task interactions. It also should be fast to allow the ex-
ploration of several architectural mappings in search for the
best implementation. Tunable models, where the designer
can trade accuracy for speed, would do the best.

In this paper, we target a system-level design approach
pioneered in the Felix initiative of Cadence Design Sys-
tems, Inc. [5]. Felix enforces a separation between system
behavior and architecture. In this way, the system designer
focuses first on system behavior, then looks for a suitable
architecture to implement it.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the performance estimation problem and
gives an overview of the related work. Section 3 describes
our compilation-based approach and discusses solutions to
some related problems. Section 4 presents the results ob-
tained for various examples. Section 5 concludes the paper.

2. Motivation and background

2.1. Overview

The main techniques for software performance estima-
tion fall into four main groups:

1. filtering the information that is passed between a cycle-
accurate ISS and a hardware simulator (e.g., by sup-
pressing instruction and data fetch-related activity in
the hardware simulator) [1, 2];

2. annotating the control flow graph (CFG) of the com-
piled software description with information needed to
derive a cycle-accurate performance model (e.g., con-
sidering pipeline and cache) [12, 14];

3. annotating the original C code with timing estimates
trying to guess compiler optimizations [13];

4. using a set of linear equations to implicitly describe the
feasible program paths [10].

The first approach is precise but slow and requires a de-
tailed model of the hardware and software. Performance
analysis can be done only after completing the design, when
architectural choices are difficult to change.

The second approach analyzes the code generated for
each basic block and tries to incorporate information about
the optimization performed by an actual compilation pro-
cess. It considers register allocation, instruction selection
and scheduling, etc.

The third approach uses an estimated execution time on
the chosen processor for each high-level language state-
ment, thus it does not require a complete design envi-
ronment for the chosen processor(s). However, it cannot
consider compiler and complex architectural features (e.g.,
pipeline stalls due to data dependencies.) The method can-
not be applied easily to arbitrary C, either [13, 12].

The fourth approach provides conservative worst-case
execution time information without requiring a simulation
of the program. However, it has been applied only to single
programs so far, and not in multi-tasking environments, so
common in embedded systems.

Mixed approaches can be used under some circum-
stances. For example, [8] tries to approach each step in the
analysis with the best currently known methods.

In [12], a compiler constructs the CFG, generates assem-
bly code and an executable for a task written in a subset of
C. An instruction-level timing analysis is performed on the
CFG and the assembly code. The CFG is annotated with the
pipeline state, and data and instruction cache performance
is predicted using data flow analysis.

In [14], a compiled hardware/software co-simulation is
presented. A C program is generated from the target binary
and compiled on the host for co-simulation. The translation
is simplified with respect to binary-to-binary approaches
and improves the portability. It is also possible to use a
standard source level debugger to debug both hardware and
software.

2.2. Proposed solution

Our previous work in this area [13] was based on source
code analysis with timing annotations. That approach had
several limitations, as discussed below. In this paper we dis-
cuss an assembler-level timing analysis methodology that
solves, as shown by our experimental results, most of those
limits, while keeping an extremely efficient execution time.

Estimation at the source code level has serious problems
taking into account compiler optimizations. Typical opti-
mizations performed by a compiler are constant propaga-
tion, dead-code elimination, common sub-expression fac-
toring, loop optimizations (e.g., global variables copied in
machine registers, extraction of loop independent expres-
sions), strength reduction (e.g., a multiplication by a con-
stant is replaced by shifts and additions.) A performance
estimation that is not aware of these may be very loose in
several cases. For example, in figure 1, all but the last two
lines inside the loop depend on variables that do not change
inside the loop, so that they can be computed outside the
loop. This reduces the number of multiplications from 1000
to only 303. These cases are fairly common when the code
is generated through automatic synthesis.

A machine-independent C-to-C optimization to predict
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for (i=0; i<100; i++) {
a3 = a2 * a1 * A[0];
a4 = a1 * a3 * A[1];
a5 = a2 * a3 * a4 * A[2];

A[4] = a5 * A[i];

A[5] = a4 * A[4] * 1.01;
}

Figure 1. An example of loop optimization.
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Figure 2. Simulation preparation flow.

at least the most common optimization compiler optimiza-
tions is a trade-off between source level and assembler-level
estimation. This is not straightforward though, since some
optimizations are effective for specific architectures only.

Thus we decided to perform the estimation after com-
pilation. Our approach, that is closely related to compiled-
code co-verification techniques, inherits features of both ap-
proaches described in [12] and [14]. An annotated C sim-
ulation model is generated from the assembler output of
the compiler and coupled with a high-level co-verification
framework. Although the performance annotations reflect
the compiler optimizations, the approach itself does not de-
pend on the choice of the compiler. As in [12], a pipeline
analysis is performed at annotation time for each basic
block to speed-up simulation execution.

3. Compilation-based software estimation

The flow proposed in this paper is shown in figure 2. The
high-level C code of a given software task of the system is
compiled with the target C compiler. The output assembler
is translated to an assembler-level C co-simulation model,
annotated with timing information. The accuracy is high
since all the architectural effects (instruction scheduling,
register allocation, addressing modes, memory accesses. . . )
are visible at this level. On the other path, the same assem-
bler is used to generate the executable that will run in the
target environment.

Our software estimation technique supports also co-
simulation. Assembler-level translated C models can be
mixed with functional non-translated models, possibly an-
notated using less precise techniques or by hand. This is
a flexible mechanism to incorporate refined delay estimates
into the performance model as they become available. Li-
brary functions can be pre-characterized in terms of delay
model, making our approach more efficient with respect to
an ISS-based solution which, for example, has to interpret
any function in the C library every time it is called.

The basic assumptions needed to generate an accurate
simulation model using this method are:

� the input program has been optimized by the target
compiler. Except for hardware optimizations, made by
the target architecture at run time, no other optimiza-
tion will be made (e.g., by the assembler);

� the optimizations made at run time by the target ar-
chitecture (e.g., register renaming) are known. Model
efficiency is best if they are data-independent;

� the input for the translator is generated by the same
compiler that will be used for the target executable.

Figure 3 shows a fragment of behavioral C code, the
resulting assembler, and the C simulation model. The
model is composed of timing annotations (DELAY macros
in figure 3) and behavioral part. DELAY accepts a se-
quence of assembly mnemonics as argument, and accumu-
lates timing information during execution. The behavior is
an assembler-level C, that references directly the host mem-
ory but uses emulated target registers and stack. These, as
well as arithmetic operations, etc., are mapped on the hard-
ware host resources by the compiler of an ISA.

Function and timing cannot always be split. For exam-
ple, in the model control instructions may be deferred. In
the sequel we will discuss the modeling of delay slots, indi-
rect jumps, calling conventions, condition codes, and mem-
ory access. The target processor is a RISC MIPS R3000,
but the same considerations apply to most modern proces-
sors (we will comment on differences due, e.g., to a CISC
architecture wherever appropriate.)

3.1. Delay slots

The delay slots allow pipeline performance exploitation
exposing the pipeline behavior. MIPS R3000 has one delay
slot after all jump and load instructions [9]. Since it’s not
fully interlocked,1 the target of the load can not be used
in the delay slot. Thus, the loads are modeled with a NOP
inserted in the delay slot whenever necessary.

1MIPS is an acronym for Microprocessor without Interlocking Pipe
Stages. This absence of interlocks also characterizes modern VLIW archi-
tectures.
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v s t t m p = v s t ;
s t a r t u p ( p roc ) ;
i f ( f r o z e n i n p e v e n t s [ p roc ] [ 0 ] & 1 )

goto L16 ;

sb $2 , v s t t m p . 2
j a l s t a r t u p
lw $2 , p roc
# nop
s l l $2 , $2 , 2
lw $2 , f r o z e n i n p e v e n t s ( $2 )
# nop
l b u $4 , 0 ( $2 )
# nop
a n d i $2 , $4 , 0 x0001
. s e t n o r e o r d e r
. s e t nomacro
bne $2 , $0 , $L16
a n d i $2 , $4 , 0 x0004
. s e t r e o r d e r
. s e t macro

DELAY( sb ) ; v s t t m p = R2 ;
DELAY( j a l ) ; / / s t a r t u p ( p roc ) ; d e f e r r e d
DELAY( lw ) ; R2 = proc ;

s t a r t u p ( p ro c ) ;
DELAY( nop ) ;
DELAY( s l l ) ; R2 = R2

���
2;

DELAY( lw ) ; R2 = � ( & f r o z e n i n p e v e n t s +R2 ) ;
DELAY( nop ) ;
DELAY( l b u ) ; R4 = � ( 0 + R2 ) ;
DELAY( nop ) ;
DELAY( a n d i ) ; R2 = R4 & 0 x0001 ;
DELAY( bne ) ; j c o n d = ( R2 ! = R0 ) ;

/ / i f ( j c o n d ) goto L16 ; d e f e r r e d
DELAY( a n d i ) ; R2 = R4 & 0 x0004 ;

i f ( j c o n d ) got o L16 ;

Figure 3. From top to bottom: C code, assem-
bly code and the C simulation model.

Since the jump instructions may alter the program flow,
the C model executes the instruction in the delay slot before
the branch. For example, a branch instruction like:

sub $2 , $1 , $3
j $31 ; re turn on MIPS
add $2 , $2 , 3

preserves the behavior if modeled in C as follows:

R2 = R1 � R3 ;
/ / re turn ; d e f e r r e d
R2 = R2 + 3 ;
re turn ;

3.2. Indirect jumps

Indirect jumps are the most difficult to model. A run-
time C construct (a switch statement) is necessary to
translate physical to symbolic addresses.

All possible destinations of the indirect jumps are asso-
ciated a unique symbol (for example, by annotating every
instruction of the assembler source with a unique label and
assemble it to an object file.) The physical address – sym-
bolic label pairs are used to build a table for the C prepro-
cessor as follows:

# d e f i n e LSW1 0 x0001
# d e f i n e LSW2 0 x0002
# d e f i n e LSW3 0 x0003
. . .

The same set of labels is used in the selector of the
switch statement in the C model, each translated con-
struct being preceded by the corresponding label:

PC = LSW1;
f o r ( ; ; )

swi tch ( PC ) �
. . . . . .

LSW1 : case LSW1:
lw $4 , p ro c R4 = � ( i n t � ) ( & proc ) ;

LSW2 : case LSW2:
j $4 / / d e f e r r e d jump

VCC lbv = R4 ;
LSW3 : case LSW3:

subu $sp , $sp , 2 4 SP = SP � 2 4 ;
PC = VCC lbv ; break ;

. . . . . .�

For all instructions except jumps the program flow falls
smoothly through the switch cases. The indirect jump
behavior saves the destination address, executes the delay
slot instruction, then sets the switch selector (PC) to the
destination address and breaks out of the switch. The
endless loop re-enters the switch at the jump target. The
only overhead is the update of PC and the execution of the
switch at each indirect jump.

This is a general solution, with applicability restricted
to small pieces of code. The size of the switch in the
simulation model may easily overflow the host compiler ca-
pacity or force it to turn off optimizations. When the target
compiler code generation strategy is known, more efficient
indirect jump handling can be used. One such case is the
jump table produced for switch statements [4], which may
be reconstructed to C switch statements. Another case is
for procedure return in many RISC processors, such as the
MIPS and ALPHA [7], which can be translated to C re-
turns.
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3.3. Calling conventions

Different architectures use different calling techniques:
using the stack, registers, register windows, etc. For exam-
ple, the SPARC uses overlapping windows, whereas some
MIPS compilers perform an inter-procedural register allo-
cation. Interfacing translated and non-translated functions
is challenging, since the host and target machines typically
use different calling conventions.

There are three cases, depending upon whether caller and
callee are translated or not:

1. Both caller and callee are translated or not. No special
actions performed;

2. Only the caller is translated. The actual arguments may
be in emulated registers, specific stack locations, etc.
They are used into the modeled C function call.

For example, MIPS uses registers $4-$8 for the first 4
integer-size arguments and $2 for an integer return. If
the callee arguments, for example, are two integers:

i n t c a l l e e f u n c t i o n ( i n t a , i n t b ) ;

the call statement in the generated C code must be:
R2 = c a l l e e f u n c t i o n ( R4 , R5 ) ;

where R2, R4, and R5 are emulated registers.

3. Only the callee is translated. A callee model prologue
converts from the host to the target calling convention:
voi d f ( i n t a , i n t b ) �

R4 = a ; / � Conv er s i on from h o s t t o � /
R5 = b ; / � t a r g e t c a l l i n g conv . � /
/ � Body of t h e f u n c t i o n � /�

If it is also called by translated functions, its code is du-
plicated with no prolog, and its calls are as in case 1.
voi d my f ( vo id ) �

/ � Body of t h e f u n c t i o n � /�

3.4. Condition codes

The condition codes are used in branch decisions much
less than they are set. There is a known problem in model-
ing this efficiently [6]. A data flow analysis flags only the
condition code changes that may be used by a conditional
branch instruction and only the flagged condition codes up-
dates are output.

3.5. Memory access

The simulation model accesses directly the host memory.
Our method supports a mix of translated and non-translated
functions who share variables.

Uninitialized static, local, and external symbols are con-
verted to arrays of chars in the C model, and extended to
the next host word boundary. Appropriate casts are pro-
vided in all translated statements for correct memory ac-
cess. The assembler code directly provides the instructions
for accessing struct fields, and vector elements, derefer-
encing pointers, etc., starting from the base symbol address.

We use arrays of chars to have a base type size of one
byte and facilitate the translation of indirect addressing. The
offset in assembler is measured in bytes, thus we need a base
type size of one byte in the C model also.

If a program includes both translated and non-translated
functions, then the target and host machine need to have
the same representation for the basic storage types: ints,
shorts, the same representation for the floating point
types, and the same ‘endianness’.

4. Experimental results

We report experimental results on two examples taken
from very different domains – a car dashboard controller
and a classical bubble sort algorithm. The dashboard con-
troller is a control-dominated reactive multi-tasking appli-
cation with both hard and soft deadlines.2 The bubble sort
algorithm is a data dominated application.

Figure 4 reports the relative error of the estimated exe-
cution time on a MIPS R3000 architecture, with respect to
a cycle accurate profiler. Four modules of the dashboard
application (belt, odometer, fuel, and speedome-
ter) and the bubble sort algorithm were measured. The
new method is compared against the source-level estima-
tion distributed with the POLIS tool [13].

The source annotation ignores the level of optimiza-
tion of the compiler, hence the errors are high. Since
the compilation-based approach reflects all compiler opti-
mizations as well as many local architectural effects, like
pipeline stalls, its error is very low.

The simulation using the proposed approach runs in the
worst case three times slower than the model generated us-
ing source code annotation, thus achieving a performance
close to 13 million simulated clock cycles per CPU second
(without cache simulation) on a 500MHz Pentium II work-
station.3 This performance was achieved within an embed-
ded system design environment [5].

5. Conclusions and Acknowledgments

System functionality is often implemented in software,
yet estimating software performance of embedded multi-

2The interested reader can find additional information on this system
and on its specification within the POLIS environment in [3].

3The ����� performance loss with respect to real time is due to the sim-
ulation overhead, for task synchronization, etc.
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Figure 4. Relative estimation error of the ex-
ecution time for unoptimized code (a) and
optimized code (b), for two estimation tech-
niques.

tasking reactive systems is still a difficult problem. Rea-
sonably accurate performance estimation is needed for es-
timating the effect of the pipelines, multiple instructions is-
sue, code and data caches, and memory hierarchies. The
work presented in this paper attempts to analyze the time
performance of software as accurately as possible, while
still achieving a high simulation speed (at least one order
of magnitude faster than a cycle-accurate ISS [14].)

We are planning to apply this technique also to VLIW

(Very Long Instruction Word) processors. This type of pro-
cessors presents a synergy between the compiler design and
the hardware design. A VLIW compiler performs complete
static code scheduling avoiding runtime pipeline interlocks,
so that the code can be executed without having to take any
control decisions at runtime. This makes our method very
well suited for these architectures.
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