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Sensorless Direct Field-Oriented Control of
Three-Phase Induction Motor Drives for

Low-Cost Applications
Radu Bojoi, Member, IEEE, Paolo Guglielmi, Member, IEEE, and Gian-Mario Pellegrino, Member, IEEE

Abstract—A sensorless direct rotor field-oriented control
(SDRFOC) scheme of three-phase induction motors for low-cost
applications is presented in this paper. The SDRFOC algorithm is
based on a sensorless closed-loop rotor flux observer whose main
advantages are simplicity and robustness to motor parameter de-
tuning. The whole algorithm has been developed and implemented
on a low-cost fixed-point digital signal processor controller. Exper-
imental results are presented for a 0.5-kW induction motor drive
for a primary vacuum pump used in industry applications.

Index Terms—Digital control, digital signal processor (DSP),
induction motor drive, low-cost applications, sensorless field-
oriented control (SFOC).

I. INTRODUCTION

CONTROLLED induction motor drives without mechani-
cal speed sensors have the advantage of reduced cost and

high reliability. Low-power low-cost applications usually adopt
V/Hz scalar control when no particular dynamic performance
is required. Variable-speed pumps, fans, and appliances can be
mentioned as examples. Furthermore, these applications usu-
ally do not require zero-speed operation and often do not need
accurate speed estimation. The main advantage of V/Hz control
is its simplicity and for this reason it has been traditionally
implemented using low-cost microcontrollers.

During the last few years, a particular interest has been noted
on applying sensorless field-oriented control (SFOC) to the
aforementioned applications. The continuous development of
digital signal processors (DSPs), together with the reduction
of power electronics cost, has allowed the use of DSPs that
are able to implement advanced control algorithms, such as
SFOC [1].

The key issue for an SFOC is how to obtain an accurate
machine flux estimate to get a decoupled control of the machine
flux and torque. In addition, the rotor speed estimation is also
needed for speed control. Although many research efforts have
been dedicated to propose simple and robust SFOC algorithms
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as alternatives to the existing V/Hz control schemes, the SFOC
schemes cannot be yet considered as standards for low cost
applications.

In the last two decades, intensive research work has been
dedicated to SFOC schemes for induction machines and many
different algorithms for the machine flux estimation using only
electrical quantities (voltages and currents) have been proposed.
These algorithms can be divided into two main groups [2]:
1) closed-loop observers and 2) open-loop estimators. The
closed-loop observers use an internal feedback loop together
with the machine model to improve the flux estimation accuracy
and robustness against parameter variations. For this reason,
they are preferred for industrial applications. The open-loop
estimators are based only on the machine model and exhibit
lower performance compared with the closed-loop observers in
terms of accuracy.

Various control schemes dealing with closed-loop observers
have been reported in the literature. The model reference adap-
tive system approach [3] is based on the comparison between
the outputs of two machine models: the first one (reference
model) does not contain the rotor speed, while the second one
(adaptive model) uses the speed to estimate the machine flux.
The outputs of the two models are compared to obtain an error
signal. The error is the input of a proper adaptation mechanism
to generate the estimated speed which is fed back to the
adaptive model. This solution requires open-loop integration
and drift problems could appear; this aspect is solved using a
low-pass filter (LPF) instead of an integrator.

The adaptive-observers (AO) approach, using the Luenberger
[4] observer or the Kalman filter [5], gets accurate flux and
speed estimates under detuned operating conditions. The key
issue of the AO is the computation of their gain matrix to get
stability and optimum filtering when both inputs and outputs
are corrupted by noise (Kalman filter). These solutions are still
considered computationally intensive or difficult to tune, so
their application in low cost drives is limited.

The sliding-mode observers [6]–[10] are considered as a
promising control solution for industry applications due to their
robustness against parameter detuning and their reduced order
compared to the Luenberger observer and Kalman filter.

The goal of this paper is to propose a simple and robust
sensorless direct rotor field-oriented control (SDRFOC) scheme
for low cost applications to replace the existing V/Hz control
schemes. Such an SDRFOC improves the motor exploitation
(torque, power factor) and the drive efficiency. The proposed
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scheme is based on a sensorless closed-loop rotor flux ob-
server. This algorithm is very effective for low cost applications
where accuracy in the speed estimation is not mandatory. The
SDRFOC scheme has been developed and implemented on a
low-cost fixed-point DSP-based controller. Experimental re-
sults are presented for a 0.5-kW induction motor drive for a
primary vacuum pump used in industry applications.

II. ROTOR FLUX OBSERVER

A. Machine Model

The machine dynamic model is obtained using normalized
quantities. The base quantities for normalization are given in
the Appendix. The normalization procedure is necessary for
digital implementation using fixed-point processors. It has been
found that it is convenient to normalize the machine model
using the full-scale values of the current/voltage acquisition
and the maximum value of the electrical speed. The dynamic
normalized voltage and flux equations in stationary reference
frame are given in (1) under the common assumptions of
sinusoidal winding distributions, magnetic linearity and no iron
losses {

v̄s = rs · īs + 1
ωbase

· d
dt λ̄s

0 = rr · īr + 1
ωbase

· d
dt λ̄r − j · ωr · λ̄r{

λ̄s = ls · īs + lm · īr
λ̄r = lm · īs + lr · īr.

(1)

By eliminating the rotor current using the flux equations, the
machine voltage equations become{ 1

ωbase
· d

dt λ̄s = −rs · īs + v̄s

1
ωbase

· d
dt λ̄r = lm

τrn
· īs +

(
− 1

τrn
+ j · ωr

)
λ̄r

(2)

where τrn = lr/rr is the normalized rotor time constant.

B. Sensorless Rotor Flux Observer

The stator voltage equations (or the stator model) can be
used to estimate the rotor flux components in stationary (α, β)
reference frame without information on the rotor speed. This
solution, known as the voltage–current (V –I) estimator, first
estimates the stator flux vector by voltage integration; the rotor
flux vector is obtained as

ˆ̄λr = k−1
r · (ˆ̄λs − σ · ls · īs) (3)

where ˆ̄λs = ωbase ·
∫

(vs − rs · is)dt, σ is the total leakage fac-
tor and kr = lm/lr.

The flux estimator based on the stator model is simple but
requires open-loop integration with drift problems for real
implementations. For this reason, an LPF is usually adopted
instead of a pure integrator [11]. This solution requires a phase
compensation scheme for low speed operation and is very
sensitive to stator resistance variation.

The proposed rotor flux observer is based on the V –I es-
timator in a closed-loop scheme without any LPF. The internal

Fig. 1. Sensorless rotor flux observer.

feedback is obtained by manipulating the rotor model. Thus, the
rotor flux derivative is approximated in (2) with its steady-state
expression

1
ωbase

· d

dt
λ̄r

∼= j · ωe · λ̄r (4)

where ωe is the normalized electrical speed.
In this case, from (2) and (4), the stator current vector can be

obtained from the rotor flux [12] as

ˆ̄is =
(

1
lm

+ j · ωslip · τrn

lm

)
· ˆ̄λr, ωslip = ωe − ωr. (5)

The slip speed ωslip is computed in the (d, q) synchronous
reference frame aligned with the rotor flux as

ωslip =
lm · iqs
τrn · λ̂r

(6)

where λ̂r =
√

λ̂2
rα + λ̂2

rβ is the magnitude of the rotor flux
vector and iqs is the q-axis component of the measured stator
current vector in (d, q) reference frame.

Combining (5) and (6) yields

ˆ̄is =
(

1
lm

+ j · iqs

λ̂r

)
· ˆ̄λr. (7)

The estimated stator current components in stationary refer-
ence frame will be{

îsα = 1
lm

· λ̂rα − iqs · sin ϑ̂e

îsβ = 1
lm

· λ̂rβ + iqs · cos ϑ̂e

(8)

where the sine and cosine functions of the rotor flux vector
position are sin ϑ̂e = λ̂rβ/λ̂r, cos ϑ̂e = λ̂rα/λ̂r.

The rotor flux observer presented in this paper is reported
in Fig. 1. As already mentioned, the scheme is based on the
V –I estimator: the internal feedback is provided by the error
between the measured and the estimated stator current vectors.
The observer is a reduced-order scheme since the observer
state variables are only the stator flux components in the (α, β)
reference frame.



BOJOI et al.: SENSORLESS DIRECT FOC OF INDUCTION MOTOR DRIVES FOR LOW-COST APPLICATIONS 477

Fig. 2. SDRFOC scheme.

The current error is fed back to the observer input through
a complex gain g = gre + j · gim. The presence of the imagi-
nary part improves the observer response during transients. As
shown by Fig. 1, the rotor flux observer is simple to imple-
ment with low-cost fixed-point DSP controllers. The internal
feedback gives robustness against motor parameter variations
and allows use of a pure integrator for stator flux estimation
(avoiding LPFs and related phase compensation schemes).

As usual for rotor field-oriented control (FOC) schemes, the
current control imposes the d-axis (flux-producing) and q-axis
(torque-producing) stator current components. If the current
control scheme is implemented in synchronous reference frame,
it is more convenient to use in (8) the reference value of the
q-axis current instead of the noisy measured one (Fig. 1). The
observer input is the voltage command vector in stationary
reference frame.

III. SENSORLESS ROTOR FOC

The rotor flux observer has been tested in an SDRFOC
scheme, whose block diagram is shown in Fig. 2. The rotor
speed is estimated by means of the electrical speed and the slip
speed as

ω̂r = ω̂e − ω̂slip. (9)

The slip speed is computed using (6) with the q-axis ref-
erence value instead of the measured one to have a smoother
speed estimate. The electrical speed (10) is computed by means
of the stator flux components and their time derivatives, which
are the stator back EMFs êsα, êsβ (see Figs. 1 and 2)

ω̂e =
λ̂sα · ˙̂

λsβ − λ̂sβ · ˙̂
λsα

λ̂2
s

=
λ̂sα · êsβ − λ̂sβ · êsα

λ̂2
s

(10)

where λ̂s =
√

λ̂2
sα + λ̂2

sβ is the magnitude of the stator flux
vector.

It must be underlined that (10) does not involve time deriv-
ative computation when back EMF voltages are used. For this
reason, the electrical speed estimate is smoother compared with
algorithms using time derivatives of the stator flux [10]. More-
over, this solution is straightforward and simpler compared with
other phase-locked-loop-based algorithms.

Fig. 3. Dead-time compensation scheme.

The field orientation is insensitive to rotor resistance de-
tuning. A constant value for lm (in Fig. 1) results in a small
orientation error when magnetic saturation occurs. A proper
choice of the lm value limits this error to negligible values in
the whole operation range. The only sensitive parameter is the
stator resistance rs, and only at low speed. A high feedback
gain g limits the effects of rs detuning on the field orientation,
together with the effects of the stator voltage estimation errors.
The adaptation of g to the actual speed is an option since the
effects of rs detuning are no longer important at high speed.
The reduction of g at high speed improves the observer stability.
The imaginary part of the complex gain has similar effects at
high speed and nearly no significance at low speed. Refer to
Appendix for the complex gain value.

As illustrated in Fig. 1, the flux observer is fed by the stator
voltage vector command in stationary reference frame. For the
FOC schemes, it is always convenient and usual to assume an
ideal inverter, so that the desired voltages computed by the
current control are applied to the machine. At low speed, the
inverter nonlinear behavior, due to the dead-time introduced by
the gate drive circuits and ON-state switch voltage drops, leads
to an error between the command voltage vector and the real
voltage vector applied to the machine.

For this reason, a feedforward dead-time compensation
scheme has been implemented (Fig. 3). This scheme uses the
reference currents that are transformed in phase quantities by
means of a (d, q) → (abc) transformation (Fig. 3). The inverter
phase duty-cycles (computed from the phase command volt-
ages generated by the current control) are then modified by a
compensation duty cycle according to

δ′χ = δχ + ∆δerror
χ , χ = as, bs, cs (11)

where δχ is the phase duty cycle computed from the phase
command voltage v∗

χ.
The compensation duty-cycle ∆δerror

χ (in per unit) is com-
puted for each inverter phase as [13]

∆δerror
χ = sgn

(
i∗χ

)
· verror,abc,

χ = as, bs, cs; verror,abc = td · fSW (12)

where fSW is the inverter switching frequency, td is the inverter
dead time, and sgn(i∗χ) are the sign functions of the phase
reference currents i∗abcs.

In practice, this scheme can be used to also compensate
the power switch threshold voltage vth [2] that represents
the main component of the power switch forward voltages.
This compensation is performed by adjusting the voltage error
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Fig. 4. Experimental setup with vacuum pump.

verror,abc to get sinusoidal command voltages v∗
sαβ in stationary

reference frame. The final inverter duty-cycle commands are
used to obtain the inverter switching functions by means of the
DSP digital pulsewidth modulation modulator.

IV. EXPERIMENTAL RESULTS

The experimental tests have been performed with a 0.5-kW
three-phase induction motor driving a vacuum pump for indus-
try applications (Fig. 4). An insulated gate bipolar transistor
(IGBT) inverter whose switching frequency has been set at
8 kHz supplies the motor. The motor phase currents are mea-
sured by means of shunt resistances mounted between the
emitters of bottom IGBTs and the negative dc-link rail. The
motor speed is measured by means of an encoder only for
comparison with the estimated speed.

The control algorithm has been implemented on a digital
platform based on the 16-bit, fixed-point Motorola DSP56F803
controller. The control sampling frequency is 8 kHz. During
execution of the control routine, the DSP can save data into
its external memory; the data can be read and saved on a PC
in Matlab format using the features of the DSP development
software. In addition, up to 4 D/A channels on the board can
be used to visualize in real-time the time variations of different
variables.

The load torque given by the vacuum pump depends on speed
and on the temperature of the lubrication oil. A strong ripple
is superimposed on the average torque, resulting in a nonnull
stall torque. The transient response to a speed step command
between 0 and 1400 r/min (the pump works only for positive
speeds) is shown in Fig. 5, while the drive response to a load
step change (acting on the pump valve) is illustrated in Fig. 6.
As shown by these tests, the drive response is good and fulfills
the load requirements. The error between the real speed and
estimated speed is small in this speed range (in Figs. 5 and 6
the real speed and the estimated speed waveforms practically
overlap). It must be noted here that zero or very low speed
operation is not required by the application, as well as a high
accuracy of speed estimation.

To investigate the rotor flux observer performance, the mea-
sured currents and the observed currents are shown in Figs. 7
and 8 at pump startup. It should be noted how the observed
currents converge very fast to the measured ones. To improve
the observer performance at startup, the observed currents and
rotor fluxes can be properly initialized during the machine
fluxing period, as shown in Figs. 7 and 8. The observed rotor

Fig. 5. Drive response to speed step command 0 ÷ 0.36 per unit (10 V/1 per
unit). (1) ω̂r (in per unit). (2) iqs (in per unit). (3) ωr (in per unit). (4) λ̂r (in
per unit).

Fig. 6. Drive response to load step change (10 V/1 per unit). (1) ω̂r (in per
unit). (2) iqs (in per unit). (3) ωr (in per unit). (4) λ̂r (in per unit).

Fig. 7. Measured and estimated α-axis currents at startup. (1) isα (in per unit).
(2) îsα (in per unit). (3) εα = isα − îsα (in per unit).

flux components at startup (after the initial fluxing period) are
shown in Fig. 9, demonstrating good transient response of the
estimation scheme.
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Fig. 8. Measured and estimated β-axis currents at startup. (1) isβ (in per unit).
(2) îsβ (in per unit). (3) εβ = isβ − îsβ (in per unit).

Fig. 9. Observed rotor flux components at startup. (1) λ̂rα (in per unit).
(2) λ̂rβ (in per unit).

Fig. 10. Laboratory test rig.

As explained earlier, the vacuum pump requires only positive
speed in a limited range. For this reason, the same motor type
has been used in a laboratory test rig illustrated in Fig. 10.

Fig. 11. Load rejection behavior at the limit of constant torque region
(10 V/1 per unit). (1) ω̂r (in per unit). (2) ω̂e (in per unit). (3) iqs (in per unit).
(4) λ̂r (in per unit).

Fig. 12. Drive startup with inertial load up to 0.8 per unit (3100 r/min).
(10 V/1 per unit). (1) ω̂r (in per unit). (2) ω̂e (in per unit). (3) iqs (in per unit).
(4) λ̂r (in per unit).

The induction motor is loaded by means of a torque-
controlled, permanent-magnet synchronous motor. The temper-
ature θs of the induction motor stator end windings is monitored
using a thermocouple.

The load rejection behavior of the drive for a speed of
0.35 per unit (limit of the constant torque region) is shown in
Fig. 11 for a motor stator end windings temperature of about
85 ◦C. The applied load torque is about 120% of the motor
rated torque. A good field orientation is noted since the rotor
flux remains almost constant.

At the same stator end windings temperature, the drive
transient performance involving field-weakening operation is
shown in Fig. 12 for drive startup from standstill up to 0.8 per
unit (∼=3100 r/min), while Fig. 13 illustrates the drive speed
reversal from −0.8 to 0.8 per unit.

As an extreme operating condition, Fig. 14 shows the tran-
sient response of the drive for a short step load torque higher
than the maximum motor torque. The SFOC shows robust
orientation even in extreme situations (Fig. 14), and in general,
good robustness against parameter detuning (stator and rotor
resistance).

The drive performance is seriously altered at low speed,
when the command voltages are highly distorted to impose
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Fig. 13. Speed reversal from −0.8 to 0.8 per unit (10 V/1 per unit). (1) λ̂r (in
per unit). (2) iqs (in per unit). (3) ω̂e (in per unit). (4) ω̂r (in per unit).

Fig. 14. Short step load change higher than the maximum motor torque.
(10 V/1 per unit). (1) ω̂r (in per unit). (2) ω̂e (in per unit). (3) iqs (in per unit).
(4) λ̂r (in per unit).

Fig. 15. Stator command voltage components and voltage vector locus in
stationary reference frame at low speed (10 V/1 per unit) without dead-time
compensation. (1) v∗

sα (in per unit). (2) v∗
sβ (in per unit).

sinusoidal currents (Fig. 15). When enabled, the dead-time
compensation scheme (Fig. 3) eliminates the command volt-
ages distortion, as shown in Fig. 16.

At zero speed the field orientation is robust only at light
loads. For higher loads, the behavior at zero speed is dominated
by the stator resistance detuning. For this reason, the proposed

Fig. 16. Stator command voltage components and voltage vector locus in
stationary reference frame at low speed (10 V/1 per unit) with dead-time
compensation. (1) v∗

sα (in per unit). (2) v∗
sβ (in per unit).

SRDFOC scheme is suitable for applications not requiring very
low speed operation.

For applications requiring high speed estimation accuracy
and/or operation at very low speed, particular stator resistance
estimation schemes must be used [2].

V. CONCLUSION

This paper deals with an SDRFOC scheme for three-phase
induction motor drives to be employed in low-cost applications.
A sensorless closed-loop rotor flux observer was used for rotor
flux estimation. The observer is very simple to implement with
low-cost fixed point DSP controllers, making it an attractive
solution to replace the traditional V/Hz open-loop control. The
effectiveness of the observer is demonstrated by experimental
results obtained for a low cost vacuum pump drive and a
laboratory test rig.

APPENDIX

The prototype is a 0.5-kW 135 V/50 Hz 4.6 A four-pole,
three-phase induction machine with the following parameters:
Rs = 2.175 Ω, Rr = 1.9 Ω, Lls = Llr = 4.68 mH, Lm =
86.6 mH. The base quantities used for machine model normal-
ization are: base voltage Vbase = 450 V, base current Ibase =
15 A and base electrical speed ωbase = 2 · π · 128 rad/s. The
complex gain of the observer is g = 0.5 + j0.1 (in per unit).
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