
24 September 2023

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Fredholm factorization of Wiener-Hopf scalar and matrix kernels / Daniele, Vito; Lombardi, Guido. - In: RADIO SCIENCE.
- ISSN 0048-6604. - STAMPA. - 42:RS6S01(2007), pp. 1-19. [10.1029/2007RS003673]

Original

Fredholm factorization of Wiener-Hopf scalar and matrix kernels

Publisher:

Published
DOI:10.1029/2007RS003673

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1662347 since:

American Geophysical Union



Fredholm factorization of Wiener-Hopf scalar

and matrix kernels

V. Daniele1,2 and G. Lombardi1

Received 18 April 2007; revised 23 July 2007; accepted 13 August 2007; published 24 November 2007.

[1] A general theory to factorize the Wiener-Hopf (W-H) kernel using Fredholm Integral
Equations (FIE) of the second kind is presented. This technique, hereafter called Fredholm
factorization, factorizes the W-H kernel using simple numerical quadrature. W-H
kernels can be either of scalar form or of matrix form with arbitrary dimensions. The
kernel spectrum can be continuous (with branch points), discrete (with poles), or mixed
(with branch points and poles). In order to validate the proposed method, rational
matrix kernels in particular are studied since they admit exact closed form factorization. In
the appendix a new analytical method to factorize rational matrix kernels is also described.
The Fredholm factorization is discussed in detail, supplying several numerical tests.
Physical aspects are also illustrated in the framework of scattering problems: in particular,
diffraction problems. Mathematical proofs are reported in the paper.

Citation: Daniele, V., and G. Lombardi (2007), Fredholm factorization of Wiener-Hopf scalar and matrix kernels, Radio Sci.,

42, RS6S01, doi:10.1029/2007RS003673.

1. Introduction

[2] The Wiener-Hopf (W-H) method is a general
analytical technique which is able to deal with different
kind of mathematical-physical and/or engineering prob-
lems [Noble, 1988; Weinstein, 1969; Daniele, 2003,
2004]. According to the authors’ opinion the Wiener-
Hopf method is one of the most important mathematical
tool to obtain closed form solutions for a consistent
number of fundamental (canonical) problems.
[3] In application problems, the W-H technique deals

with the solution of the functional equation defined in the
complex a plane:

G að ÞFþ að Þ ¼ Fs
� að Þ þ R

a� ao

¼ F� að Þ ð1Þ

This equation is called the Wiener-Hopf equation and it
can be classified as scalar or vector, by respectively
involving scalar quantities (F+(a), R, F�

s (a), F�(a) and
G(a)) or n-dimensional vector quantities (F+(a), R,
F�
s (a) and F�(a)) and matrix quantities of order n

(G(a)).
[4] The unknowns of equation (1) are the plus and the

minus functions F+(a) and F�
s (a). The functions F+(a)

and F�(a) are generally Laplace transforms and they
vanish as a ! 1.

Fþ að Þ ¼
Z1
0

f zð Þeja zdz

F� að Þ ¼
Z0
�1

f zð Þeja zdz

The plus and the minus functions are called standard if
they are regular respectively in the upper half plane
Im[a] � 0 and in the lower half plane Im[a] 	 0.
[5] The function G(a) is called kernel of the W-H

equation. Note that the G(a) and its inverse (G�1(a) =
[G(a)]�1) are regular function in the real axis Im[a] = 0.
The kernel is defined by the physical problem; therefore
it is known together with R and ao. R and ao are related
to the source, it is always supposed that Im[ao] 6¼ 0. The
properties of the problem are defined by the spectrum of
G(a). We assume the absence of essential singularities in
the spectrum, except at the infinity. The zeroes of
det[G(a)] and det[G�1(a)] define the structural singular-
ities. We observe that the branch point singularities
define the continuous spectrum and the poles define
the discrete spectrum.
[6] Although (1) presents two unknowns, F+(a) and

F�
s (a), the Wiener-Hopf equation constitute a closed

mathematical problem which yields proper solution
without any additional information, see proofs of the
existence and the uniqueness of the solution in the

ð2Þ
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classical mathematical literature [Gohberg and Krein,
1960].
[7] The W-H technique yields the following solution

of the equation (1) [Noble, 1988; Daniele, 2004]:

Fþ að Þ ¼ G�1
þ að ÞG�1

� aoð Þ R

a� ao

¼ G�1
þ að ÞGþ aoð ÞG�1 aoð Þ R

a� ao

ð3Þ

F� að Þ ¼ Fs
� að Þ þ R

a� ao

¼ G� að ÞG�1
� aoð Þ R

a� ao

ð4Þ

where G+
�1(a) = [G+(a)]

�1 and G�
�1(a) = [G�(a)]

�1

arise from the factorization of the kernel G(a):

G að Þ ¼ G� að ÞGþ að Þ ð5Þ

[8] In (3) and (4) the factorized function G+(a) and
G�(a) and their inverses G+

�1(a) and G�
�1(a) are regular

respectively in the half planes Im[a]� 0 and Im[a]	 0 and
present algebraic behavior asa!1. The solution (3)–(4)
shows that the central problem for the solution of
Wiener-Hopf equation (1) is the factorization of the
kernel (5). The simplest class of W-H equations are the
scalar ones where closed form solutions are always
possible [Noble, 1988; Weinstein, 1969; Daniele,
2004]. Conversely the general solution for vector W-H
equations is not available in closed form and only some
progress has been done to develop a general method of
explicit solution [Daniele, 2004; Hashimoto et al., 1993].
[9] Today we are able to factorize in closed form

triangular matrices, rational matrices, i.e., matrices with
entries that are rational functions of a, and matrices that
commute with rational matrices [Daniele, 1984, 2004].
The need of developing an approximate technique of
factorization arises from all the cases where no explicit
factorization is possible.
[10] Several powerful mathematical methods of func-

tional analysis help to efficiently solve W-H problems,
for instance: iterative methods, moment methods, regu-
larization methods and so on.
[11] Furthermore, since it is possible to factorize

rational matrices in closed form, the vector factorization
problem can be approximated by introducing rational
approximants (for instance Padé type [Abrahams, 2000])
for the entries of the matrix kernel. We have investigated
this technique in practical engineering applications [see
Daniele, 2004].
[12] We are convinced that the reduction to Fredholm

equations is possibly the best way to face the factoriza-
tion problems.

[13] We confide in the Fredholm method since we
experienced its efficacy and efficiency in different prob-
lems using different quadratures. Conversely the Padé
approximants (or more in general rational approximants)
do not assure accuracy/convergency when the order of
the rational representation is increased.
[14] The aim of this paper is to present an efficient

method to solve a general W-H problem which is based
on the reduction of the factorization problem to the
solution of a Fredholm equation of the second kind.
[15] This paper is organized as follow. In section 2 we

derive the factorization of kernel using an homogeneous
W-H formulation. Section 3 and 4 shows respectively the
reduction of the W-H equations to Fredholm integral
equations and their numerical solution. Section 4
includes some tools to improve the convergence of
Fredholm integral equations and details on the analytical
continuation of the numerical solution. Section 5 vali-
dates the proposed technique, presenting several numer-
ical tests with kernel of practical applications. This
section presents the efficiency and the convergence of
the approximate Fredholm solution in particular in the
framework of scattering/diffraction problems. See
Gohberg and Krupnik [1992] and Jones [1979] for
proofs on the compactness of kernel for Fredholm
integral equations derived from W-H problems.

2. Kernel Factorization Using

Homogeneous W-H Formulation

[16] In order to factorize a matrix kernel G(a), let us
introduce the homogeneous W-H equation [Vekua,
1967]:

G að ÞUiþ að Þ ¼ Ui� að Þ ð6Þ

where the plus function Ui+(a) and the minus function
Ui�(a) are not Laplace transforms, but such that the
quantities

Uiþ;� að Þ
a vanish as a!1. Using n independent

solutions of (6) {Ui+(a), Ui�(a)} with i = 1.n, we obtain
the factorized matrices of G(a):

G� að Þ ¼ U1� að Þ;U2� að Þ; ::;Un� að Þj j

Gþ að Þ ¼ U1þ að Þ;U2þ að Þ; ::;Unþ að Þj j�1

8<
: ð7Þ

To get n independent solutions of (6) we introduce new
auxiliary unknowns which are Laplace transforms:

Xiþ að Þ ¼ Uiþ að Þ
a� ap

ð8Þ
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where ap is an arbitrary point with negative imaginary
part (Im[ap] < 0). In the following we suppose that ap

does not belong to the null space of G(a) and G�1(a):

Null G að Þ½  ¼ a : det G½  �ð Þ ¼ 0f g ð9Þ

Null G�1 að Þ
� �

¼ a : det G�1
� �

�ð Þ ¼ 0
� �

ð10Þ

Note that if a 2 Null[G(a)] then Ui�(a) = 0 and if a 2
Null[G�1(a)] then Ui+(a) = 0.
[17] From (6)–(8) we obtain:

G að ÞXiþ að Þ ¼ Ui� að Þ
a� ap

ð11Þ

where the unknowns Xi+(a) and
Ui� að Þ
a�ap

vanish as a ! 1.
Equation (11) can be rewritten as:

G að ÞXiþ að Þ ¼
Ui� að Þ � Ui� ap

	 

a� ap

þ
Ui� ap

	 

a� ap

ð12Þ

[18] We assume Ui�(ap) = Ri with i = 1.n where Ri is
the canonical basis for the n-dimensional space.
[19] From (12) we obtain n independent solutions

Ui+(a) = (a � ap) Xi+(a) that provide the factorized
matrix G+(a) using (7). We observe that vectors Ui+(a)
depend on the choice of ap; therefore we use the notation
G+(a, ap) instead of G+(a) for the factorized matrix
when we want to focus the dependence on ap. From
(3)–(5) we note that the factorized matrix G+(a) can be
defined up to a multiplicative constant matrix. In the
following we show that the change of ap on the
evaluation of G+(a) yields different G+(a, ap) matrices
which differ from each other up to a premultiplicative
constant matrix.
[20] Let us introduce the factorized matrices G+,�(a),

G+(a, a1) and G+(a, a2) where G+,�(a) are arbitrary
factorized matrices of G(a) and, G+(a, a1) and G+(a, a2)
are determined by the W-H equation with different ap

values: a1 and a2. From (12) we obtain the vectors Xi+
1 (a)

and Xi+
2 (a) respectively for ap = a1 and ap = a2:

X
1;2
iþ að Þ ¼

G�1
þ að ÞG�1

� a1;2

	 

a� a1;2

Ri ð13Þ

From (7)–(8) and (13) we obtain the expression of
G+(a, a1) and G+(a, a2) and it yields:

Gþ a;a2ð Þ ¼ K Gþ a;a1ð Þ ð14Þ

where the constant matrix K is obtained after some
algebraic manipulation and is given by:

K ¼ G�1
� a2ð ÞR1;G

�1
� a2ð ÞR2;G

�1
� a2ð ÞR3; ::;G

�1
� a2ð ÞRn

�� ���1

� G�1
� a1ð ÞR1;G

�1
� a1ð ÞR2;G

�1
� a1ð ÞR3; ::;G

�1
� a1ð ÞRn

�� ��
ð15Þ

In the following we avoid the details on the optimization
of ap in the Im[a] < 0 plane. However, we notice that an
unsuitable choice of ap gives an unsatisfactory numerical
precision on the evaluation of the factorized matrices
using approximate techniques. In fact the use of ap

introduces an apparent singularity, consequently even
though it does not produce effects on the analytical closed
form solutions, it increases the numerical instability on the
approximate numerical solution in the region of the a
plane close to ap. In order to avoid this problem we
suggest to define ap in the context of a physical problem.
For instance in scattering problems with open structures a
physical source is constituted by a plane wave that yields a
source term with a pole in the a plane. In this context we
suggest to assumeap in the region where the source pole is
located.

3. Reduction of the Wiener-Hopf Equation

to Fredholm Integral Equation

[21] As the Riemann-Hilbert problem [Vekua, 1967],
the Wiener-Hopf equations can be formulated in terms of
Fredholm integral equations. Let us consider equation (1)
and integrate it on the g1,2 indented contours (see
Figure 1). Three different cases are discriminated in
terms of Im[ao]:

3.1. Case A: Im[ao] <<< 0

[22] We assume standard plus and minus functions in
(1) and we close the contour g1 with a half ring located in
the half plane Im[a] < 0 with radius r ! 1. By
integrating clockwise we obtain:Z
g1

G uð ÞFþ uð Þ
u� a

du�
Z
g1

Fs
� uð Þ

u� a
du

¼
Z
g1

R

u� aoð Þ u� að Þ du ð16Þ

Using the residue formula it yields:

Z
g1

G uð ÞFþ uð Þ
u� a

du ¼ 2pj
R

a� ao

ð17Þ
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Z
g1

Fs
� uð Þ

u� a
du ¼ 0 ð18Þ

because F�(u) is regular in the half plane Im[u] < 0.
Using the g2 contour we obtain similarly:

Z
g2

Fþ uð Þ
u� a

du ¼ 0 ð19Þ

The integrals defined in (16) and (19) can be written
respectively in terms of Cauchy principal value integrals:

Z
g1

G uð ÞFþ uð Þ
u� a

du ¼ P:V :

Zþ1

�1

G uð ÞFþ uð Þ
u� a

du

þ jpG að ÞFþ að Þ ð20Þ

Z
g2

Fþ uð Þ
u� a

du ¼ P:V :

Zþ1

�1

Fþ uð Þ
u� a

du� jpFþ að Þ ¼ 0

ð21Þ

We substitute (20) in (16) and multiply the result by
G�
�1(a):

G�1 að ÞP:V :
Z1
�1

G uð ÞFþ uð Þ
u� a

duþ jpFþ að Þ

¼ 2p j G�1 að Þ R

a� ao

ð22Þ

Finally, we combine (22) with (21), and we obtain the
following Fredholm integral equation that holds in the
real axis:

Fþ að Þ þ 1

2pj

Z1
�1

G�1 að ÞG uð Þ � 1½ Fþ uð Þ
u� a

du

¼ G�1 að Þ R

a� ao

; Im ao½  < 0 ð23Þ

where 1 is the identity matrix of order n (n is the vector
dimension of the unknowns).

3.2. Case B: Im[ao] >>> 0

[23] A slight modification of the previous procedure
yields a similar Fredholm integral equations for Im[ao] > 0:

Fþ að Þ þ 1

2pj

Z1
�1

G�1 að ÞG uð Þ � 1½ Fþ uð Þ
u� a

du

¼ G�1 aoð Þ R

a� ao

; Im ao½  > 0 ð24Þ

In particular we need to consider that the plus unknown
F+(a) is nonstandard: it means that the spectrum of
F+(a) contains the pole ao located in the upper half plane
in addiction to standard singularities of plus function
(located in lower half plane).

3.3. Case C: Im[ao] = 0

[24] As we have supposed Im[ao] 6¼ 0, this case is
reported only for the completeness of the discussion.
Using the same procedure as in case A, when Im[ao] = 0,
we need to consider the presence of a new pole in the
real axis: ao. The g1,2 contours need to be indented both

Figure 1. Integration paths for the deduction of the Fredholm integral equation.
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near a and ao. Therefore we obtain the following
Fredholm integral equation:

Fþ að Þ þ 1

2p j

Z1
�1

G�1 að ÞG uð Þ � 1½ Fþ uð Þ
u� a

du

¼ 1

2

G�1 að ÞR
a� ao

þ 1

2

G�1 aoð ÞR
a� ao

ð25Þ

[25] The reduction of W-H equations to Fredholm
integral equations is very important for several proper-
ties. In particular we observe that efficient techniques are
available in literature to obtain approximate solutions of
the Fredholm integral equations of second kind
[Kantorovich and Krylov, 1958]; therefore we must
ascertain that the previous integral equations are really
of second kind; that is, we state that the kernel
[
G�1 að ÞG uð Þ�1

u�a ] is a compact operator [see Gohberg and

Krupnik, 1992]. For instance compact operators are those
where G(a) and G�1(a) exist and are finite in all the
points of the integration line (including the 1 points)
relevant to the Fredholm equation (23)–(25).

3.4. Physical Meaning of the Fredholm Equation in
the Framework of Scattering Problems

[26] In the following we show that the integral term

F að Þ ¼
Z1
�1

G�1 að ÞG uð Þ � 1
� �

Fþ uð Þ
u� a

du ð26Þ

in the Fredholm equations (23), (24), and (25) does not
involve the source pole. In fact by assuming:

Fþ að Þ ¼ T

a� ao

þ fr að Þ ð27Þ

where fr(a) is regular in ao, it yields:

1

2pj

Z1
�1

G uð Þ � G að Þ½ T
u� að Þ u� aoð Þ du ¼ T

2pj a� aoð ÞP:V :

�
Z1
�1

G uð Þ � G að Þ
u� a

� G uð Þ � G aoð Þ
u� ao

� 
du

þ G aoð Þ � G að Þ½ T
2 a� aoð Þ ð28Þ

where we have used P.V.
R1

�1

1
u�ao

du = lim
M!þ1

RþM

�M

1
u�ao

du =

�pj. From (28) we state that the integral function F(a) is
regular at a = ao.
[27] In scattering problems with open structures a

physical source is typically constituted by a plane wave
that yields a source term with a pole in the a plane, that

is ao. Incident and reflected components are related to
this pole (geometrical optics component). The integral
F(a) generates an extra component whose spectrum does
not contain the geometrical optics component. This
component is the diffracted field.

4. Numerical Solution of the Fredholm

Equations Relevant to W-H Equations

[28] Nowadays general numerical methods for the
solution of integral equation are well known in literature.
In particular, we recall that the integral equations derived
from W-H problems are Fredholm integral equations of
second kind. Inhomogeneous Fredholm equations of
second kind are usually well conditioned [Kantorovich
and Krylov, 1958]. Equations (23)–(25) for scattering
problems are well conditioned. Efficient techniques to
solve these equations are already available in literature:
see for example the Nystrom method.
[29] Because of the high convergence rate of equations

(23)–(25) we apply a simplified form of discretization.
Without loss of generality, let us consider (23) in the
following modified form:

G að ÞFþ að Þ þ 1

2p j

Zþ1

�1

G tð Þ � G að Þ½ Fþ tð Þ
t � a

dt

¼ R

a� ao

; Im ao½  < 0 ð29Þ

We discretize (29) using an elementary quadrature
scheme:

G að ÞFþ að Þ þ h

2pj

XA=h
i¼�A=h

m a; h ið ÞFþ h ið Þ ¼ R

a� ao

ð30Þ
where m(a, t) is defined as

m a; tð Þ ¼
G tð Þ � G að Þ

t � a
; t 6¼ a

dG að Þ
da

; t ¼ a

8><
>: ð31Þ

and the quantities h and ±A represent respectively the
discretization step and the endpoints of the truncated
integration interval. By enforcing a = hr with r = 0, ±1,
±2, .., ±A/h, (30) becomes the following linear system of
equations:

G h rð ÞFþ h rð Þ þ h

2p j

XA=h
i¼�A=h

m h r; h ið ÞFþ h ið Þ

¼ R

h r � ao

; r ¼ 0;�1;�2; ::� A

h
ð32Þ
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This system presents 2A
h
+ 1 equations with 2A

h
+ 1

unknowns, i.e., F+(hi) with i = 0, ±1, ±2, .. ±A
h
. The

solution of this system leads to the following representa-
tion of the W-H unknowns:

Fþ að Þ �Fþa að Þ ¼ G�1 að Þ

� � h

2p j

XA=h
i¼�A=h

m a; h ið ÞFþ h ið Þ þ R

a� ao

2
4

3
5
ð33Þ

F� að Þ �F�a að Þ ¼ � h

2p j

XA=h
i¼�A=h

m a; h ið ÞFþ h ið Þ

þ R

a� ao

ð34Þ

The accuracy of the numerical solution depends on the
parameters A and h. To improve the accuracy the
discretization step h has to be chosen as small as possible
and the parameter A has to be chosen as large as possible.
Moreover, the choice of an elementary quadrature is

relevant to demonstrate the high convergence rate of the
proposed formulation.

4.1. Contour Warps to Improve the Numerical
Convergence

[30] Generally the numerical solution of Fredholm
integral equation of second kind is very efficient even
using simple numerical quadrature. From theoretical
considerations [Kantorovich and Krylov, 1958] we ascer-
tain that by diminishing h and increasing A the numerical
solution converges to the exact solution of the integral
equation. However, we experience slow convergence and
degradation of numerical precision when we deal with
equations where the singularities of source and/or kernel
are critical, i.e., near the integration path. This problem are
well known in literature, see for example [Kantorovich
and Krylov, 1958]. There are several techniques to over-
come this problem, for example we can apply specialized
numerical quadrature. We suggest a different approach
which is based on warping the contour path: in particular
we warp the real a axis into a new contour, far enough
from the critical singularities. This method has been
already used with success by the authors to factorized
matrices of order 4 in diffraction problems: diffraction by

Figure 2. Sampling of the contour warp �3 	 y 	 3 with step 0.1: (a) (35), (b) (36), (c) (37) with
p = q = 0.1, and (d) (38).
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a plane wave at skew incidence on an arbitrary impene-
trable wedge immersed in an homogeneous material [see
Daniele and Lombardi, 2006]. Let us define l(y) as a line
on the a plane located enough far from the critical points
of the Fredholm equation.
[31] For instance, in wedge problems [Daniele and

Lombardi, 2006], the critical point includes the branch
points ±k (where k is the propagation constant) and the
pole ao (source pole of the incident plane wave). In order
to avoid critical points near the integration line for
slightly lossy media, we introduce the special contour
defined by Daniele and Lombardi [2006]:

l yð Þ ¼ �k cos � p
2
þ jy

� �
; �1 < y < 1 ð35Þ

This contour joins the points ±jk with a straight a line.
[32] We have tested several different kind of contour

warps. The optimal choice of the contour l(y) is based
on the study of the spectrum of the W-H problem, i.e.,
the source and the kernel. For example we suggest the
use of (35) and (36) for spectrum with singularities in the
second and fourth quadrant, and the use of (37) with
singularities with small imaginary part near 0. Another
useful contour warp is (38).

l yð Þ ¼ ke jp
4y; �1 < y < 1 ð36Þ

l yð Þ ¼ k yþ j
arctan y

pþ qy2

� 
; �1 < y < 1 ð37Þ

where p and q are positive parameters,

l yð Þ ¼ �k cos � p
2
þ gd yð Þ

2
� jy

� �
; �1 < y < 1

ð38Þ

where gd(y) = arccos( 1
cosh yð Þ)sign(y) is the Gudermann’s

function. Figure 2 reports the contour warps (35)–(38).
[33] Note that if we sample y with uniform distribution,

we can generate samples with non uniform distribution
in the original domain a. This is a special feature that can
influence the convergence of the quadrature.
[34] If no singularity of G(a) and G�1(a) is present in

the region between real a axis and l(y), the contour warp
reduces the Fredholm equation (22) to the equation:

Fþ a yð Þð Þ ¼ � G�1 a yð Þð Þ
2p j

�
Zþ1

�1

G t xð Þð Þ � G a yð Þð Þ½ Fþ t xð Þð Þ
t xð Þ � a yð Þ t0 xð Þdx

þ G�1 a yð Þð ÞR
a yð Þ � ao

ð39Þ

where �1 < y < 1 and where t(y) = a(y) = l(y) for a
given l(y). The discretized version of (39) is:

G a yð Þð Fþ að Þ

þ h

2p j

XA=h
i¼�A=h

m a yð Þ; t h ið Þð ÞFþ t h ið Þð Þt0 hið Þ

¼ R

a yð Þ � ao

ð40Þ

and it yields the following linear system of 2A
h
+ 1

equations where the 2A
h
+ 1 unknowns are F+(t(hi)):

G a h rð Þð Fþ h rð Þ

þ h

2pj

XA=h
i¼�A=h

m a h rð Þ; t h ið Þð ÞFþ t h ið Þð Þt0 h ið Þ

¼ R

a h rð Þ � ao

ð41Þ

with r = 0, ±1, ±2, .., ±A
h
. The approximate solution for

the W-H unknowns in the a plane is:

Fþa að Þ ¼G�1 að Þ
�
� h

2p j

XA=h
i¼�A=h

m a; t h ið Þð ÞFþ h ið Þt0 hið Þ

þ R

a� a0


ð42Þ

F�a að Þ ¼ � h

2p j

XA=h
i¼�A=h

m a; t h ið Þð ÞFþ t h ið Þð Þt0 hið Þ

þ R

a� a0

ð43Þ

4.2. Analytical Continuation Outside the Integration
Line

[35] Equations (42) and (43) provide the approximate
representation of F+(a) and F�(a) in the whole a plane
through the analytical continuation of the numerical
solutions obtained on the integration line l(y). When
branch lines are present the analytical continuation is a
critical procedure: in fact, the analytical continuation
provides correct results only for the principal branch of
F+(a) and F�(a). For instance in wedge diffraction
problems it is convenient to define the Sommerfeld
functions to represent the diffracted field (these functions
are defined in the w plane where a = �k cos(w))
[Daniele and Lombardi, 2006]. The relation between
the Sommerfeld functions and the W-H solutions needs
the introduction of other branch of F+(a) besides the
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principal one. The extension of the solution F+a(a) on
other branches is described by Daniele and Lombardi
[2006] and it uses difference equations derived from the
W-H equations.
[36] Moreover we observe the following important

aspects: (1) the approximate solutions (42) and (43)
introduce spurious poles and (2) in specific problems it
is important to evaluate residues of F+(a) and F�(a)
in points that are structural singularities (zeroes of
det[G(a)] and/or det[G�1(a)]). For what concerns
aspect 1, we observe that the exact representation of
F+(a), see (44), shows a compensation of the minus
structural singularities (poles or branch points located in
the upper half plane Im[a] > 0) in the second member.

Fþ að Þ ¼ � 1

2p j

Zþ1

�1

G�1 að Þ G að Þ � G tð Þ½ Fþ tð Þ
a� t

dt

þ G�1 að Þ R

a� ao

; Im ao½  < 0 ð44Þ

In fact if we suppose the presence of the zero ac of
det[G(a)] in Im[a] > 0, we obtain that the residue of the
integral part in (44) is:

Rac
¼ � 1

2p j
Res G�1 að Þ
� �

ac

Zþ1

�1

�G tð ÞFþ tð Þ
ac � t

dt

¼ 1

2p j
Res G�1 að Þ
� �

ac

Zþ1

�1

F� tð Þ
ac � t

dt ð45Þ

Taking into account that F�(a) presents only the pole
ao with residue R in the half plane Im[a] < 0, we
obtain:

Rac
¼ 1

2p j
Res G�1 að Þ
� �

ac

Zþ1

�1

F� tð Þ
ac � t

dt

¼ �Res G�1 að Þ
� �

ac

R

ac � ao

ð46Þ

Since the second term of (44) (nonintegral part)
presents a residue in ac that compensates the one in
the integral term of (44) (see (46)), the analytical exact
representation of F+(a) does not present spurious poles
located in the upper half plane (Im[a] > 0).
Consequently we state that F+(a) is a standard plus
function.
[37] Similar considerations can be done if the kernel

(or its inverse) presents a branch line in the upper half
plane (Im[a] > 0). Let us suppose that a branch point ac

of G�1(a) is located in Im[a] > 0. We observe a

compensation between the first and the second term in
(44). The jump of the first term (integral term) along the
two lips of the branch line is:

D
1

2p j

Zþ1

�1

G�1 að ÞG tð ÞFþ tð Þ
a� t

dt

2
4

3
5

¼ D G�1 að Þ
� � 1

2p j

Zþ1

�1

F� tð Þ
a� t

dt

¼ �D G�1 að Þ
� � R

a� ao

ð47Þ

where D represents the jump between the two lips. (47)
is equal and opposite in sign to the jump of the second
term

D G�1 að Þ
� � R

a� ao

ð48Þ

[38] Thus we conclude that in the exact analytical
representation (44) we obtain a compensation effects
for offending minus singularities, either poles or branch
points.
[39] The compensation effect for offending singulari-

ties ac (Im[ac] > 0) derives from the equality

1

2p j

Zþ1

�1

G tð ÞFþ tð Þ
ac � t

dt ¼ � R

ac � ao

ð49Þ

that holds if ac is located in the upper half plane Im[a] > 0.
[40] If we evaluate numerically (44), we experience

spurious singularities in the numerical solution F+a(a)
because of the presence of offending singularities in the
kernel or its inverse. In fact the compensation effects
does not hold exactly in the numerical representation.
[41] For example, when G�1(a) contains an ‘‘offend-

ing’’ singularity ac (located in Im[a] > 0), the numeri-
cally sampled form of (49) is:

h

2p j

Xi¼A=h

i¼�A=h

G hið ÞFþ hið Þ
ac � hi

� � R

ac � ao

ð50Þ

The presence of a finite sum, instead of an exact integral
along the real axis, does not guarantee the compensation
effect of the analytical expression in (44). Therefore we
may experience degradation of precision for the F+a(a)
when a is close to ac and besides F+a(a) may contains
spurious singularities in its spectrum.
[42] The ascertain of the equality (50) in the upper half

plane (Im[a] > 0) is an accuracy index for the numerical
solution F+a(a), in particular for what concerns spurious
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offending singularities. Similar considerations hold for
F�a(a).
[43] For what concerns aspect 2, the evaluation of

residues of F+(a) in ai points (Im[ai] < 0), that are
structural singularities (zeroes of det[G(a)] and/or
det[G�1(a)]), is usually very important in practical
applications. For example, in the framework of wave-
guide scattering, the residues of F+(a) are the excitation
coefficients of modes with propagation constant ai in
closed structure located in the plus region. The evalua-
tion of residue for structural singularities is often numer-
ically unstable if we use approximate representations of
F+(a) as (42). To overcome this problem we observe
that:

Res Fþ að Þ½ ai
¼ Res G�1 að Þ

� �
ai
F� aið Þ ð51Þ

where G�1(a) is evaluated analytically, F�(a) is regular
in ai and it can be numerically evaluated.

5. Numerical Validation

[44] In the following we compare exact factorizations
with approximate factorizations obtained from the nu-
merical solution of Fredholm integral equations as de-
scribed in the previous sections. We recall that the
spectrum of W-H kernels is related to the nature of

structural singularities (branch point and/or poles). In
the following we consider scattering/diffraction problems
with scalar and matrix kernel whose spectrum is contin-
uous, discrete or mixed.

5.1. Scalar Kernels

[45] Example 1 is an approximate factorization of a
scalar kernel with a mixed spectrum. The following
scalar kernel arises from the diffraction (or radiation)
problem of a truncated planar waveguide of thickness d
immersed in a free space medium with propagation
constant k (see Figure 3):

g að Þ ¼ weffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

p ej
ffiffiffiffiffiffiffiffiffiffi
k2�a2

p
d

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

p
d

h i ð52Þ

where w is the angular frequency and e the permittivity
of the medium. Since g(a) yields an integral equation
with non compact operator m(a, t) (31) and since the
factorization of 1ffiffiffiffiffiffiffiffiffiffi

k2�a2
p is known in closed form

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
k � a

p 1ffiffiffiffiffiffiffiffiffiffiffiffi
k þ a

p ð53Þ

let us consider the factorization problem of the following
normalized kernel G(a)

G að Þ ¼ ej
ffiffiffiffiffiffiffiffiffiffi
k2�a2

p
d

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

p
d

h i ¼ G� að ÞGþ að Þ ð54Þ

Figure 3. Example 1: the truncated planar waveguide.

Figure 4. Example 1: spectrum of (54) with l = 1, k =
2�
� (1 � j), and d = l.

Figure 5. Example 1: jF+(a)j obtained using the
approximate analytical approach (reference solutionM-L)
and the approximate numerical Fredholm approach (FIE)
with the proposed different contours 1, 2, and 3.
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From G(a) we obtain a Fredholm integral equation of
second kind, since the Fredholm kernel m(a, t) (31) is a
compact operator. Note that:

gþ að Þ ¼
ffiffiffiffiffiffi
we

pffiffiffiffiffiffiffiffiffiffiffiffi
k � a

p Gþ að Þ ð55Þ

[46] Using the Mittag-Leffler (M-L) expansion the
factorized functions G+(a) and G�(a) are known and
are given by the following expressions [Daniele, 2004]:

Gþ að Þ ¼
G � a

Ad
þ B

Ad
þ 1

� �
exp t d

p log jt �a
k

� qa
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos kdð Þ

p
e
g a
AdG B

Ad
þ 1

� �

�
Y1
n¼1

1� a
AdnþB

� �
1� a

an

� � ð56Þ

G� að Þ ¼ Gþ �að Þ ð57Þ

where t =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

p
, Ad = �jp

d
, B = �1

2
Ad, q =

jdp[log(�
j2p
kd
) + 1 � g] and where G(a) and g are

respectively the Euler gamma function and the Euler-
Mascheroni constant. The spectrum of G(a) is a mixed
spectrum for the presence of simple poles a = ±an, n 2N0

besides the branch points ±k. The poles an are:

an ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � n� 1=2ð Þp

d

� �2
s

; n 2 N0; Im an½  < 0

ð58Þ

Without loss of generality, in order to highlight the
properties of kernel, Figure 4 shows the spectrum of
G(a) for l = 1 (wavelength), k = 2p

l (1 � j), d = l.
Figure 4 reports the poles ±an as dots, while the

Figure 6. Example 1: relative error along the real axis
a obtained using contour 2 and contour 3.

Figure 7. Example 1: Relative error along the contours 2 and 3 (y is the parameter of the two
contours).
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continuous lines are referred to branch lines. In practical
cases (small imaginary part of k) we have arcs of hyperbola
and poles very close to the real axis. The use of warp, as
described in section 4.1, is useful to improve the numerical
convergence of line integral in the Fredholm integral
equation when singularities are close to the real axis.
[47] In the following we compare numerical results

obtained using three different contours to solve the
Fredholm integral equation. The reference approximate
solution is obtained from (56)–(57) truncating the infi-
nite product to a given number N of terms. The three
contours are: 1) the real axis, 2) l(y) = Re[k] e jp

4 y and 3)
l(y) = Re[k](y + j arctan(y)) with �1 < y < +1. To
investigate the convergence we have chosen the follow-
ing parameters:(1) the physical parameters l = 1, k = 2p

l (1
� j10�8), and d = 1.1l

2
, (2) the source the fundamental

mode of the planar waveguide as = a1 with excitation
coefficient equal to 1 (a1 = 5.597– �7.054 � 10�8),
(3) the quadrature parameters A = 40 and h = 0.2, and
(4) the truncation of products N = 200.
[48] Figure 5 shows the plots of jF+(a)j obtained using

the approximate analytical approach (reference solution
M-L) and the Fredholm approach, see (41)–(43), with
the proposed different contours. Note that the reference
solution and the numerical solution obtained with con-
tours 2 and 3 are indistinguishable, on the contrary using
contour 1 (the real axis a) we obtain uncorrect results.
This substantial degradation of the solution is due to the
presence of singularities very close to the integration
path: the branch points ±k and the poles ±an are with
very small imaginary part.
[49] Figures 6 and 7 show the relative error obtained

using contour 2 and contour 3 with respect to the
reference solution respectively along the real axis a
(Figure 6) and versus the parameter of the contour y
(Figure 7).
[50] In order to understand the effect of the contour

warp on the Fredholm integral equation, let us consider
its kernel m(a, t) (31) along the three different contours.
The spectral properties are summarized in Figure 8. Note
that the spectrum is more concentrated and smooth along
the contours 2 and 3.

[51] In order to investigate the accuracy in depth we
evaluate the residue of F�(a) in the pole �a1. If we use
the full kernel g(a) instead of G(a), this residue is the
reflection coefficient of the fundamental mode due to the
truncation of the planar waveguide.
[52] Note that the evaluation of this residue is often

unstable if we use approximate representation of F�(a),
see section 4.2. To overcome this problem we use the
following property obtained from the W-H equation (1):

Res F� að Þ½ j�a1
¼ Res G að Þ½ j�a1

Fþ �a1ð Þ ð59Þ

where F+(�a1) is analytical in �a1 and G(a) is known
in closed form. F+(�a1) determines the precision of
residue Res[F�(a)]j�a1. See Table 1 to compare the
values of F+(�a1) obtained from the approximate
solution with the three suggested contours with respect
to the one obtained from the reference solution. Note that
contour 1 yields error on the evaluation of F+(�a1) as
expected from Figure 5.
[53] The accuracy of the numerical solution depends

on the parameters A and h, besides the choice of the
contour warp. To improve the accuracy the discretization
step h has to be chosen as small as possible and the
parameter A (truncation of the integration interval) has to
be chosen as large as possible. Besides the choice of an
elementary quadrature is relevant to demonstrate the
convergence of the proposed formulation. Specialized
quadrature can improve the convergence.

5.2. Rational Matrix Kernels

[54] The Wiener-Hopf formulation of practical prob-
lems usually involves matrix kernels. The central prob-
lem in solving vector Wiener-Hopf equations is the
factorization of a n � n matrix. An important family of

Figure 8. Example 1: Spectral properties of kernel m(a, t) along the three different contours.
(b) and (c) Plotted versus the parameter of the contours, i.e., plots of m(l(y), l(u)).

Table 1. Example 1: Estimation of F+(�a1)

Ref. Contour 1 Contour 2 Contour 3

Re[F+(�a1)] �0.0482257 �0.000549844 �0.0455368 �0.0483479
Im[F+(�a1)] +0.0117099 +0.000242659 +0.0147477 +0.0157931
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matrix kernels are the ones whose elements are rational
functions, i.e., rational matrix kernels. Since the exact
factorization of such kernels is available in literature
[Bart et al., 1979], in this section we validate the
Fredholm factorization for this class of matrices.
Besides, to overcome cumbersome factorization
techniques, we present a new simple procedure to
factorize rational matrix kernels (see Appendix A).
This procedure is applied to find exact factorized
matrices in Example 2 and 3.
5.2.1. Example 2: Rational Matrices of Order 2
[55] In this example we consider the Wiener-Hopf

problem

G að ÞFþ að Þ ¼ F� að Þ þ R

a� ao

ð60Þ

whose kernel is a rational matrix of order 2 of the
following kind:

G �ð Þ ¼
1 jq

a2 þ a2

b2 þ a2

jq 1

0
B@

1
CA ¼ G� að ÞGþ að Þ ð61Þ

With this example we want to show all the capabilities of
the Fredholm factorization; thus we present the following
tests: (1) factorization of kernel using the procedure
of section 2 together with the Fredholm method
(sections 3–4) for a given fictitious pole ap, (2) solution
of the W-H problem (60) for given sources ao 6¼ ap using
the factorization found in test 1; and (3) the factorized
matrices (obtained using different methods) differs from
each other up to a premultiplicative constant matrix:
evaluation of the constant matrix.
[56] The exact factorization is obtained for exam-

ple simply using the analytical method proposed in
Appendix A:

G� að Þ ¼

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2q2

p
þ j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
a

� �
�b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2q2

p� �
bþ jað Þ

1

bq� q
ffiffiffiffiffiffiffiffiffiffiffiffi
b2þa2q2

p ffiffiffiffiffiffiffiffi
1þq2

p

0 � j

�bþ
ffiffiffiffiffiffiffiffiffiffiffiffi
b2þa2q2

p ffiffiffiffiffiffiffiffi
1þq2

p

�������������

�������������

Gþ að Þ ¼

0
�b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2q2

p� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2q2

p
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p
a

� �
q b� jað Þ

bq� q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ a2q2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ q2

p �
bq� q

ffiffiffiffiffiffiffiffiffiffiffiffi
b2þa2q2

p ffiffiffiffiffiffiffiffi
1þq2

p
� �

jbþ að Þ

q b� jað Þ

������������

������������

[57] The numerical tests 1–3 are performed with the
following parameters: a = 1, b = 2, and q = 0.5.
[58] In tests 1–2, the Fredholm approximate solutions

are obtained with the method discussed in this paper.
In order to use the Fredholm approximate method
it is important to ascertain the location of the structural
singularities, i.e., the zeroes of det[G(a)] and
det[G�1(a)]. The structural poles are: ±j1.84391 and
±j2. These poles are rather far from the real axis;
therefore no contour warp is applied in the Fredholm
approximate method. By assuming a fictitious source
pole ap = 1 � j0.1, the integration parameters A = 10 and
h = 0.1 we apply the Fredholm procedure to (12). Using
(7)–(8) we numerically obtain the factorized matrices
G�(a), G+(a).
[59] In order to validate the Fredholm procedure, we

compare the solution F+(a) obtained using the Fredholm
approximated factorization with respect to the exact
solution obtained from (62) and (63).
[60] We recall that:

Fþ að Þ ¼ G�1
þ að ÞG�1

� aoð Þ R

a� ao

ð64Þ

[61] The source pole is ao 6¼ ap and the source
coefficient R is a combination of the canonical basis:

R ¼ R1 þ 0:5R2 ð65Þ

where R1 = j 10 j, R2 = j 01 j.
[62] We have selected three values of ao which are

quite different from ap: ao = ±j0.1 and ao = 1 + j. The
two source poles ao = ±j0.1 give F+(a) that differ from
each other almost only in the phase.

ð62Þ

ð63Þ

RS6S01 DANIELE AND LOMBARDI: FREDHOLM FACTORIZATION OF W-H KERNELS

12 of 19

RS6S01



[63] Figure 9 reports the absolute value of the F+(a)
components obtained using the exact factorization and
the Fredholm factorization with ao = ±j0.1.
[64] Figure 10 reports the relative error per F+(a)

component. Note that the importance of the relative error
has to be correlated with the intensity of the solution. We
observe that the relative errors for ao = ±j0.1 are very
similar.
[65] Figures 11a and 11b report the absolute value of

the F+(a) components obtained using the exact factor-

ization and the Fredholm factorization for ao = 1 + j.
Besides Figures 11c and 11d report the relative error per
F+(a) component. Note that the analytical continuation
of the approximate Fredholm solution shows a wide
range of validity.
[66] In test 3, we recall that the factorized matrix G+(a)

can be defined up to a multiplicative constant matrix.
The change of the arbitrary point ap on the evaluation of
G+(a) yields different G+(a, ap) matrices, see (14)
and (15). For example if we compare the G+,�(a)

Figure 9. Example 2: jF+(a)j components obtained using the analytical approach (reference
solution) and the approximate numerical Fredholm approach for ao = ±j0.1 (the two cases overlap
in absolute value).

Figure 10. Example 2: relative errors of the jF+(a)j components obtained using the Fredholm
approach with respect to the analytical solution for ao = ±j0.1.
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obtained from the analytical expressions (62)–(63) and
the ones obtained using the Fredholm approach
(G+,�

(F) (a)) with ap = 1 � j0.1 we obtain different
expressions which differs up to the following premul-
tiplicative constant matrix

K ¼ 0:154055� j6:01646 12:8130
0 6:40651

����
���� ð66Þ

that is,

KGþ að Þ ¼ G
Fð Þ
þ að Þ

G� að Þ ¼ G Fð Þ
� að ÞK

8<
: ð67Þ

in particular:

KGþ að Þ ¼ 1
�0:329107�j0:11085� 0:0601167�j0:347788ð Þa

2jþa

j0:5 1

�����
�����

[67] The evaluation of K can be obtained by sampling
and comparing G+,�(a) and G+,�

(F) (a) in one point: a
characteristic point is the origin of the a plane (0 + j0).
[68] Figure 12 shows one of the most significant

components of the factorized kernel, G+(a)12, and the

Figure 11. Example 2: (a)–(b) jF+(a)j components obtained using the analytical approach
(reference solution) and the Fredholm approach for ao = 1 + j and (c)–(d) relative errors.

ð68Þ
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relative error obtained using the Fredholm approach with
respect to the analytic approach.
5.2.2. Example 3: Rational Matrices of Order 3
[69] In this example we consider the Wiener-Hopf

problem

G að ÞFþ að Þ ¼ F� að Þ þ R

a� ao

ð69Þ

whose kernel is a rational matrix of order 3 of the
following form:

G að Þ ¼

j

a2 þ 1
2

a2 þ 4

a2 þ 1

1 2
a2 þ 9

a2 þ 1
a2

a2 þ 1

1

a2 þ 1
2

0
BBBBBB@

1
CCCCCCA

ð70Þ

The source pole and the source coefficient in (69) are
respectively ao = �j2 and R = j1, 0, 0jt.
[70] We avoid to report the cumbersome exact factor-

ized matrices that are obtained (for example) simply
using the method proposed in Appendix A. The exact
analytical solution is obtained using the exact factorized
matrices and equation (3)–(4).
[71] In order to use the Fredholm approximate

method it is important to ascertain the location of the
structural singularities, i.e., the zeroes of det[G(a)]

and det[G�1(a)]. The structural poles are reported in
Figure 13: two of them are very close to the real axis thus
we need to apply a contour warp to obtain good
convergence in the numerical approach.
[72] By assuming the integration parameters A = 20

and h = 0.1, we compare the exact solution with the
approximate Fredholm solution using different integra-
tion contours: 1) real axis 2) l(y) = ye�jp

4. Note that in the
region between the real axis and the contour (2), no
structural singularity is present.
[73] Figure 14 shows the absolute value of the factor-

ized solution components jF+(a)j obtained using the
numerical approach with contour 1 and using the exact
expressions; the relative error per F+(a) component is
reported, too. Figure 15 shows the absolute value of the
factorized solution components jF+(a)j obtained using
the numerical approach with contour 2 and using the
exact expressions; the relative error per F+(a) component
is reported, too. Note that Figure 15 is plotted along the
parameter y of contour l(y). The importance of the
relative error has to be correlated with the intensity of
the solution.

5.3. Matrix Kernels With Mixed Spectrum

[74] Another important family of matrix kernels is the
one whose elements contain terms that are irrational
functions; that is, the kernel has continuous spectrum
due to the presence of branch points in addition to the
discrete spectrum due to the presence of poles. Closed
form factorization of such kernels is not in general
available; therefore the Fredholm approximate method
can be one of the most powerful method to deal with this

Figure 12. Example 2: (a) jKG+(a)j12 component obtained using the analytical approach
(reference solution) and jG+

(F)(a)j12 obtained using the Fredholm approach and (b) relative error.
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kind of kernel. In this context, the authors of this paper
have studied a practical engineering problem: diffraction
by arbitrary impenetrable wedges (surface impedance) at
skew incidence (see Figure 16). For further details on the

4 � 4 matrix kernel for wedge problems, see Daniele
and Lombardi [2006]. In order to validate the Fredholm
factorization, we consider the PEC (Perfect electric
conductor) wedge at skew incidence (Example 4) where
a closed form solution is available and well known in
literature [see, e.g., Daniele and Lombardi, 2006]. In this
problem the kernel is a matrix of order 4 and does not
present poles; that is, its spectrum is continuous.
[75] With reference to Figure 16, we set the following

physical parameters: wedge aperture angle F = 7p/8,
incident wave with zenithal angle b = p/4 and azimuthal
angle 8o = 2p/3, excitation Ezo = 1, Hzo = 0.
[76] Figure 17 shows the relative error of the GTD

diffraction coefficient in log10 scale versus the azimuthal
angle 8. The estimation of the GTD is obtained through
the Fredholm approximate solution of the problem and
the relative error is evaluated with respect to the exact
solution.
[77] In particular, the top portion of Figure 17 reports

the GTD diffraction coefficient (dB), while the bottom
portion shows the relative error obtained from the
Fredholm solution for different sets of quadrature param-

Figure 13. Example 3: spectrum of (70). Black dots
are zeros of det[G(a)], and gray dots are zeros of
det[G�1(a)].

Figure 14. Example 3: (a)–(c) jF+(a)j components obtained using the analytical approach
(reference solution) and the Fredholm approach with contour 1 (real axis) and (d)–(f) relative error
per F+(a) component.
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eters (A, h) with respect to the exact value. Note that
contour warp (35) is applied in the Fredholm solution.
Figure 17 proves the convergence of the proposed
method.
[78] We note that in the framework of wedge diffraction

problems the use of Fredholm integral equations has been

applied with success to the Sommerfeld-Malyuzhinets
technique [see, e.g., Budaev, 1995; Zhu and Lyalinov,
2004; Lyalinov and Zhu, 2005].
[79] In the framework of Wiener-Hopf technique the

use of Fredholm integral equations yields the general
solution of impenetrable wedges with anisotropic
impedance surfaces at skew incidence [Daniele and
Lombardi, 2006]: diffraction components, surface waves
and total field.

6. Conclusion

[80] Mathematical and physical details relevant to a
general theory of Wiener-Hopf factorization using
Fredholm integral equation are presented.
[81] The Fredholm approach factorizes kernels of gen-

eral form: matrix, scalar with arbitrary spectral properties.
Several numerical tests validate this analytical-numerical
technique to factorize W-H kernels of practical mathe-
matical-physical and/or engineering problems. The paper
shows the power and the versatility of the W-H formu-
lation and the efficacy of reducing the W-H factorization

Figure 15. Example 3: (a)–(c) jF+(a)j components obtained using the analytical approach
(reference solution) and the Fredholm approach with contour 2 and (d)–(f) relative error per F+(a)
component. All plots are versus the parameter y of the contour 2.

Figure 16. The impenetrable wedge at skew incidence.
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problem to the approximate solution of Fredholm Inte-
gral equation of second kind.

Appendix A: New Procedure to Factorize

Rational Kernel in Closed Form

[82] Let us consider a rational matrix G(a) and its
inverse G�1(a) of the following form:

G að Þ ¼ A að Þ
d að Þ ; G�1 að Þ ¼ B að Þ

d að Þ ðA1Þ

where A(a) and B(a) are polynomial matrices of order n,
and d(a) and d(a) are scalar polynomials. In the
following we suppose:

G að Þ
a

! 0; a ! 1 ðA2Þ

G�1 að Þ
a

! 0; a ! 1 ðA3Þ

From section 2 the homogenous Wiener-Hopf
equation (6) yields the factorized matrices (7). We recall
equation (12) valid for i = 1.n:

G að ÞXiþ að Þ ¼
Ui� að Þ � Ui� ap

	 

a� ap

þ
Ui� ap

	 

a� ap

ðA4Þ

By substituting (A1) we obtain:

A að Þ
d að Þ Fiþ að Þ ¼ Fs

i� að Þ þ Ri

a� ap

ðA5Þ

where Ri = Ui�(ap) is the canonical basis for the
n-dimensional space and Fi+(a) = Xi+(a) and Fi�

s (a) =
Ui� að Þ�Ui� apð Þ

a�ap
are respectively standard plus functions and

standard minus functions, i.e., Laplace transforms. We
define:

Fi� að Þ ¼ Fs
i� að Þ þ Ri

a� ap

ðA6Þ

Without lack of clarity in the following we suppress the
subscript i in the equations and we denote the r zeroes of
the denominator d(a) with Im[a] > 0 and the s zeroes of
the denominator d(a) with Im[a] < 0 as follows

a‘ : d a‘ð Þ ¼ 0 Im a‘½  > 0f g ðA7Þ

g‘ : d g‘ð Þ ¼ 0 Im g‘½  < 0f g ðA8Þ

{a‘} and {g‘} are defined respectively the minus zeroes
and the plus zeroes.Without loss of generality we consider
the zeroes as simple zeroes. The zeroes {a‘} of d(a)
induce poles in F�(a):

F� að Þ ¼ R

a� ap

þ
Xr
‘¼1

Q a‘ð Þ
a� a‘

ðA9Þ

Similarly from:

Fþ að Þ ¼ B að Þ
d að Þ F� að Þ ðA10Þ

we obtain:

Fþ að Þ ¼ G�1 ap

	 
 R

a� ap

þ
Xs
‘¼1

T g‘ð Þ
a� g‘

ðA11Þ

The representations (A9) and (A11) introduce r + s
unknown vectors (Q(a‘) and T(g‘)), i.e., n(r + s) scalar
unknowns. We enforce n(r + s) equations using the
equalities:

A að Þ
d að Þ Fþ að Þ ¼ F� að Þ ‘ ¼ 1:r ðA12Þ

Fþ að Þ ¼ B að Þ
d að Þ F� að Þ ‘ ¼ 1:s ðA13Þ

[83] From (A12) we obtain r vector equations (nr
scalar equations):

Res F� að Þ½ a¼a‘
¼ Q a‘ð Þ ¼ A a‘ð Þ

d0 a‘ð ÞFþ a‘ð Þ; ‘ ¼ 1:r

ðA14Þ

Figure 17. Example 4: GTD diffraction coefficient
for PEC wedge and relative error of the Fredholm
approximate estimate with respect to exact value.
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From (A13) we obtain s vector equations (ns scalar
equations):

Res Fþ að Þ½ a¼g‘
¼ T g‘ð Þ ¼ B g‘ð Þ

d0 g‘ð Þ
Fþ g‘ð Þ; ‘ ¼ 1:s

ðA15Þ

From the n(r + s) scalar equations (A14) and (A15) we
determine the residues {Q(a‘)} and {T(g‘)}. Therefore
from (A9) to (A11), the definition of F+,�(a) and (7) we
obtain the factorized matrices. Note that a generalization
can be obtained considering the multiplicity of the poles
{a‘} and {g‘} higher than 1.
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