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Abstract

This paper proposes a complete procedure for the design of a robust controller
for a nonlinear process, taking into account the various issues arising in the
design and using the main theoretical results from the Literature about this
topic. An extended model is set-up, linking performance and robustness to the
control law: the H., norm of the extended system in closed loop measures the
achievement of the objectives. The result is a state feedback control law which
guarantees robust performance. The problem of the design of an observer to
estimate the state of the system is also addressed, as the complete knowledge of
the state is required to calculate the control action; moreover, the implications
of the use of the observer in the design of the controller are pointed out. The
methodology is illustrated via simulation of a regulation problem in a
Continuous Stirred Tank Reactor (CSTR). The application of this methodology

to more complex systems will be discussed.
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Introduction

In the last decades there was a relevant effort to face with the design of controllers
for nonlinear multivariable processes, particularly in the chemical engineering field,
where the dynamics of the systems can be a function of many parameters (such as
physical properties, heat and mass transfer coefficients, kinetic constants) which can
be nonlinear functions of the state variables (temperature, pressure, composition).
Thus, a controller designed around a nominal operating point, as in the classical
approach, cannot guarantee satisfactory performance (disturbance rejection and/or
tracking control): the dynamic behaviour can be qualitatively different from one
operating regime to another and instability can arise.

Simple gain-scheduling schemes were proposed even in the recent past
(Shinskey, 1996): linear process models valid within a "small" region around the
linearisation point are derived and a local design is performed, thus resulting in a
look-up table that interpolates controller gains as the process traverses the operating
region. This procedure is time consuming and expensive, but is well accepted for
many applications. Galan et al. (2000) discussed the construction of a multi-linear
model approximation for a Single Input Single Output (SISO) plant, but the question
of how many models are required remains largely unanswered.

Input/Output (I/O) geometric linearisation (Singh and Rugh, 1972; Isidori and
Ruberti, 1984; Isidori, 1989) can reduce a nonlinear system to a linear one using
coordinate transformation, thus avoiding the standard Jacobian linearisation. Using
the I/O linearisation approach, Kravaris and Chung (1987) proposed the Globally
Linearising Controller, using a state feedback to make the I/O relationship linear and
then using an external linear controller around the I/O linear system. Similarly,
Sampath et al. (1998) proposed a multi-loop feedback configuration: the inner loop is
a state feedback law, based on a differential geometric method, meant for
Input/Output (I/O) linearisation, while the outer loop is designed for robust stability

and nominal performance on the basis of the robust control theory for linear systems



(Doyle, 1982).

In principle, once the nonlinearities are cancelled, the outer-loop can be
designed to impose any desired stable dynamics on the closed loop. The usual
approach is to impose linear dynamics with poles in the left half plane, thus resulting
in stable dynamics. However, the issue of where the poles should be placed in the
left half plane was not addressed in the literature. This is of outmost importance
when there is uncertainty in the model and/or the nonlinearities are not cancelled
exactly. Uncertainty can have various origins, beside linearisation of nonlinear
dynamics:

* the process structure is known but some parameters are not, or they may change

in time or they are known only in a range of approximation;

» the process is known but some of its dynamics are willingly ignored for simplicity;
* some dynamics of the process, especially at high frequencies, are unknown.
Moreover, even differential geometric techniques in presence of uncertainties do not
give perfectly linear models and these nonlinearities require, for example, standard
Jacobian linearization around their steady state values. This is different from the
Jacobian linearization of the original nonlinear system: only the perturbations due to
uncertainties are linearised, but not the whole model (Kolavennu et al., 2000). As a
consequence, the controller in the outer loop must be designed not only for nominal
stability and performance, but also for robustness in face of uncertainties.

An alternative approach, based on the explicit construction of a Lyapunov
function, was proposed by Chen and Leitmann (1987): although their method opens
an interesting way to the control of nonlinear systems in presence of uncertainties,
there exists no general procedure to find an explicit Lyapunov function for building a
robust controller.

Recent papers gave extensive results on the control of nonlinear systems that
handle uncertainty and constraints. El-Farra & Christofides (2003) focuses their
attention on control of multi-input multi-output nonlinear processes with uncertain

dynamics and actuator constraints and proposed a Lyapunov-based nonlinear



controller design approach that accounts explicitly and simultaneously for process
nonlinearities, plant-model mismatch, and input constraints. Mhaskar et al. (2005)
investigated a robust hybrid Model Predictive Control design that handle
nonlinearity and uncertainty: the proposed method provides a safety net for the
implementation of any available MPC formulation, designed with or without taking
uncertainty into account, and allows for an explicit characterization of the set of
initial conditions starting from where the closed-loop system is guaranteed to be
stable. Also in this case the key idea is to use a Lyapunov-based robust controller, for
which an explicit characterization of the closed-loop stability region can be obtained,
to provide a stability region within which MPC can be implemented. A set of
switching laws are designed that exploit the performance of MPC whenever possible,
while using the bounded controller to provide the stability guarantees. Finally
Mhaskar (2006) investigated how it is possible to incorporate appropriate stability
constraints in the optimization problem, thus guaranteeing feasibility and closed-
loop stability in presence of constraints and uncertainty.

In the present paper a different approach will be shown, modelling the
nonlinearities as uncertainties in a linearised model, thus allowing the use of the
results of robust control theory for linear systems: most important results from the
Literature (Doyle, 1982; Zhou et al., 1995; Colaneri et al., 1997) will be rationalised
and formalised in a full procedure for the design of a robust controller. The focus of
the paper in on the design of the "extended model" of the process which includes
performance requirements and parametric uncertainties. Moreover, it will be shown
that when a feasible controller cannot be designed, i.e. the objectives cannot be
satisfied, the methods allows to discriminate if the responsible of this is a too severe
performance requirement or a too large range of uncertainty for a certain parameter,
thus driving the design process to achieve the best results. Moreover, the problem of
the design of a robust observer for the estimation of the state of the system in
presence of uncertainties using the available measures will be addressed. This issue,

which has been quite often neglected in the literature, is of great importance as the



calculation of the controller action requires the knowledge of the state of the system,
which can be not completely available from the measures. Moreover, the use of the
observer strongly affects the design of the controller and the robust performance of
the system. Few papers in the past dealt with this issue; in particular El-Farra et al.
(2005) synthesized a family of output feedback controllers using a combination of
bounded state feedback controllers, high-gain observers and appropriate saturation
filters to enforce asymptotic stability for the individual closed-loop modes and
provided an explicit characterization of the corresponding output feedback stability
regions in terms of the input constraints and the observer gain. In this paper a
different approach is presented, based on the set-up of an appropriate extended
model which includes not only the control requirements but also the observer

specifications.

Robust control design

The aim of this paragraph is to summarise the fundamentals of the theory of robust
control for linear systems and to give a systematic procedure for the design of this

kind of controllers.

Controller design

Let us consider a generic linear system described by the following set of equations:
x=Ax+Bw+B,u
z=C,x+D,;w+D,,u (1)
y=Cx+D,w

where:

» x is the state of the system;

* 1y is the manipulated input of the system, i.e. the control action;

* w represents the external (bounded) disturbances, i.e. unknown signals affecting



the dynamics of the system;
» y represents the measured variables (which can be affected by external
disturbances) available for the control;
» z represents the objectives of the process, i.e. the signals carrying requirements to
be satistied by the control.
Within this framework, the system (1) corresponds to a dynamical model with four
ports constituted by two groups of inputs (w and u), and two groups of outputs (z
and y) signals; no limitations about the dimension of x, u, w and y are required and
the approach is truly multivariable.

The control problem can be stated very preliminary as the selection of a control
signal u to apply to the process to maintain (regulate) some output signals to a set
point, or to force them to follow (tracking) reference signals, in spite of the
disturbances acting on the plant. Thus, in a regulation problem the goal is to get
insensitivity of the objectives z with respect to the disturbances w. Also a tracking
problem can be defined in terms of insensitivity: if r is the reference trajectory for the
objective z, it is possible to introduce the tracking error er = z-r and try to achieve
insensitivity of e with respect to r. A further performance requirement is on control
activity due to measurement noises: excessive amplitude of the control action in all
frequency range should be avoided, i.e. a low sensitivity of the control action with
respect to measurement noises.

To quantify the desired performance it is necessary to assign a measure to input
and output signals. Various types of measures can be defined, e.g. the energy of a
signal, its power, its maximum value in frequency. These measures are called norms
and generalize the classical concept of distance in the Euclidean spaces. The most
important (and useful for our purposes) norm for an array (or a matrix) of signals U

is the norm H..:
Ul =supa| U (jo)] )

where U(jw) is the representation in the frequency (@) domain of the signals (which



can be obtained, for example, from the Laplace transform of the function, followed

by the substitution of the Laplace variable s with jw) and &(®) is the maximum

singular value of the argument matrix for every value of @ (the maximum singular
value of a transfer function matrix has intuitively the same interpretation of the gain
of a scalar system).

The definition of a norm on the spaces of the input and output signals induces a
norm on the dynamic operator which establishes a mapping between the input and
the output signal spaces. Given two norms, one for the input signal # and one for the
output signal y, a BIBO operator is characterised by:

Ivl=IGul < M| v ©
The norm of the operator G is defined as the lowest value of M that verifies the

previous inequality, thus:
(4)

This induced norm can be considered a generalization of the gain as it is intended in
electronic amplifiers.

Let us consider a SISO control problem where the aim is to calculate the control
u to make the objective ze€R insensitive to the disturbance weR. Let Gu: be the
closed loop transfer function between w and z:
2(s)=G, w(s) 6)
and let Ww: be a generic filter applied to the objective z:
z =W,,z=W, .G, w (6)

If it is possible to find a control u such that:

w,.G

w,z W,z

<1 ()

0

this means that:

G.,. ~ Vo (8)

< ‘Ww/z

The filter Ww: can thus be used to specify the performance requirements for the

controlled system. An example can be useful to understand this key-point: let us



assume that the goal of the controller is to reduce the disturbance effects of 1/100 for
all the frequencies till a crossover frequency of 10 rad/s, with a maximum of 6 dB in
the sensitivity at high frequencies. As a first guess it is possible to assume (see Figure
1):

W, - a(s+p) ©)
s+0

Equation (8) states that in the controlled system the module of the closed loop

sensitivity function w—z (G, ,) will be lower than ‘W "', thus, at low frequencies

w,z

w,z

(00, thuss—0),[W, | =102, ie.
ap 2
W,.(0—0) =—-=10°=40dB (10)
while, at high frequencies (& — o, thus s > ), |W, . " =6dB,ie.
W, (w—>oo)\=a=L=—6dB (11)
6 dB

The value of the pole ¢ of the filter can be assumed equal to the crossover frequency

(10 rad/s), so that, given the performance requirements, the filter W is fully defined.
It is well documented in any text about optimum control that with perfect

knowledge of all states and with performance measured by a square norm of the

closed loop operator the best control is an algebraic feedback from the states:

u=—Hx (12)

thus, in the design procedure, the goal is to find a controller gain H that satisfies eq.

(7). The available algorithms for the calculation of the controller gain that minimise

: if this minimum is

0

the norm of an operator looks for the minimum of HW G

w,z T w,z

lower than 1, then the controller gain satisfies eq. (8) and thus the performance
requirements; otherwise, if the minimum of the norm is larger than 1, the controller
does not satisfy the requirements. This may occur if the crossover frequency or the
disturbance reduction at low frequencies or the maximum in the sensitivity at high
frequencies are too severe: the method drives the design procedure to the best

feasible result.



With the control law given by eq. (12), the following equations describe the
dynamics of the controlled system:
x=(A-B,H)x+Bw
z=(C,-D,,H)x+D,;w (13)
y=Cx+D,w
Thus, beside the performance requirements, the controlled system has to be stable,

i.e. the eigenvalues of the matrix (A—B,H ), which depend on the gain H, must have

negative real part. Obviously the system (13) has to be controllable, i.e. it the poles of

(A-B,H) should be placed in arbitrary positions varying H (this requirement can be

relaxed in presence of poles that cannot be moved arbitrarily, but are stable; in this
case the system is said to be stabilisable).

In case of multiple objectives specification (on multiple disturbance rejection,
tracking error and control activity) the same procedure can be followed, defining a

filter W, , to describe the performance requirements for the closed loop sensitivity

between the i-th objective and the i-th disturbance (wi—zi) and calculating a
controller gain H that satisfies:

vawZ /Zi Gwi 1Zi

<1,Y(w;,z) (14)
being G, . the closed loop transfer function between wi and zi. Again, from the

results of the minimisation of the norm, it is possible to verify if any of the
performance requirements must be made less severe to satisfy eq. (14). The various
filters W, , can be designed as stated previously; for the control activity, as the goal
to guarantee that the control has not excessive amplitude in all the frequency range,
in particular at high frequency, it is necessary that the weight of the control is a
proper dynamical operator or a pure gain.

Let us consider now the presence of uncertainties in the model, due, for

example, to a parameter p that can assume values between pmin and pmax. In this case it

is possible to define:



Wp — pmax _pmin (15)
pmax + pmin

and then pose:

P = Pyeun (14 AW, ) (16)

where pmen is the mean value of the parameter p between pmin and pmsx and A is a
parameter whose value can vary in the range (-1;1):

Ja), <1 (17)
Nonlinearities can be treated in the same way. Let us consider, for example, a kinetic
constant k varying with the temperature according to an Arrhenius-type expression:
if it is possible to assume that the temperature of the system varies in a certain

interval, thus also the kinetic constant will vary between kmin and kmax and thus:

k =Ky (1+ AW, (18)
where:
k -k
W — _‘max min 19
¢ kmax + kmin ( )

and kmen is the mean value of the parameter k between kmin and kma. Eq. (16) and eq.
(18) are two particular cases of the more general expression:

G, =G(1+AW,) (20)
where Gy is the true transfer function of the process, G is the approximate transfer

function, W is the relative variation and A is such that ||A|_ <1. A can be an arbitrary

linear, proper, invariant, BIBO dynamic operator, with the unique constraint to have
limited norm H.,: this operator parameterizes all the elements in the region of the
system uncertainty. Figure 2 shows the block diagram corresponding to eq. (20) for a
SISO system; the operator A can be eliminated from the block diagram (and thus
from the model of the system), thus giving origin to a couple of new signals: wc is a
new input to the process, playing the role of a bounded disturbance (in fact we is the
output of the operator A, which is unknown, even if bounded), while zc plays the role

of a new objective: the insensitivity between the various wi and zi (specifying the

10



performance towards external disturbances) has now to be guaranteed also for all the
couples we-zg, i.e. for all the values of the parameters A (robust performance).

This model is known as "extended system" and it embeds nominal model,
process uncertainty, disturbances and requirements. Let us indicate with Ge; the
transfer matrix between w and z resulting from closing the loop of the extended
system in nominal conditions: performances and stability must be preserved for any
value of the uncertainty in the admissible region. Robust stability is the property of
the control that guarantees stability not just for the nominal model, but for any
model obtained from the uncertainty operator in the specified region. The property is
stated by the Small Gain Theorem (Zames, 1966a; Zames, 1966b):

Let Ge; be an symptomatically stable transfer matrix, and A an arbitrary

asymptotically stable operator with norm H, < 1, then the feedback loop is

stable if and only if the loop gain satisfies HAGW

<1. This implies that stability

is guaranteed by ‘Geq <1.

Finally, the design of a robust controller reduces to the calculation of the gain H of

the controller which satisfies eq. (14) for all the couples (w;,z;) representing
performance specifications (through the filters W, ) and for all those representing

the uncertainties (through Wec).

The algorithms that are used to calculate the controller gain looks for a value of
H that minimise the H., norm of all the dynamic system (and thus of the
multivariable operator GW) and not of all the input-output couples; ||GW|, <1
ensures robust performance, but this is not a necessary condition to guarantee robust
performance. Without going into details, the problem can be modified introducing a
matrix D and the algorithms, beside the gain H, calculate the values of D and of

|p™(Gw)D

_;if itis possible to find a gain H and a matrix D that verify:
Ip™(Gw)D|, <1 (21)

then robust performance is guaranteed.

11



Observer design

The use of the control law (12) requires the knowledge of all the state x; some
components of this array can be accessible through measurements, but some others
not. Moreover, the measure of all the states x can be expensive or time consuming
(thus introducing a delay in the control loop) or even not feasible. This justifies the
use of an observer to get a quick and reliable estimation of the state array x, indicated
as X in the following. Figure 3 depicts the block diagram of the observer: given the
value of the input u and of the measurements y (and also of the objectives z), which
are obviously available, the observer is a dynamic system returning the estimates of

the states and also of the objectives (z) and of the measured variables (¥): the
difference between the values of the measured variables y and their estimates ¥
quantifies the adequacy of the observer.

Given a linear system such as that of eq. (1), the following set of equations

constitutes the observer:

X=Ax+K(y-9)+Bu
2=C&+Dyu (22)
y=C,x

If eq. (22) is substracted from eq. (1) the equations describing the dynamics of the

errors on the estimation of the states and of the objectives are obtained:

) (23)
e, =Ce +D,w

{éx =(A-KGC,)e, +(B,-KD,)w
Obviously, the observer has to be stable, i.e. the eigenvalues of the matrix (A-KC,),

which are a function of the observer gain K, must have negative real part; moreover,

the couple of matrices (A,C,) must be observable, i.e. it should be possible to place
the poles of (A-KC,) in arbitrary positions varying K (this requirement can be

relaxed in presence of poles that cannot be moved arbitrarily, but are stable; in this

case the system is said to be detectable).

12



The goal is now to calculate the observer gain K so that the estimation error on

the objectives e, is insensitive with respect to the process disturbances w, i.e. to

verify:
[G...], <1 (24)
where G, , is the transfer function between the disturbances w and the estimation

errors e.. The same algorithms previously described for the calculation of the
controller gain can be used to calculate K: the only difference is in the extended

system that is used.

Observer based state feedback

The control design is affected by the presence of the observer, as now:

u=—Hx (25)

The separation principle states that for a linear system controlled with (25) the poles

of the closed loop system are given by the poles of the controller and those of the

observer, so that the two can be designed independently and then put together. Even

if robust performance is guaranteed for the controller and for the observer following

the previously described procedures, robust performance is not guaranteed for the

closed loop system if the observer and the controller are designed independently.
Two issues should be taken into account for the design of the robust controller:

1. the first is that if the best performance that can be obtained by estimating the

objectives with an observer is measured by ‘

C;w,cZ

<y,, when a full-state feedback

control is used the controller performance (measured by HGE ZH ), cannot be better
¥ oo

than the estimations obtained;

2. the second intuition is that the observer model adopted for designing state
feedback, cannot be any, but it must result from the best observer in the presence
of disturbances in the worst conditions (Zhou et al., 1995; Colaneri et al., 1997), i.e.

w=Qx (26)

13



These two intuitions integrate each other in the following result (Zhou et al., 1995;
Colaneri et al., 1997):

If the best objective estimator, designed in the worst disturbance conditions for a

given bound HGWZ <y, exists and a state feedback on the model obtained from

o0

this estimator with control performance HG%'?

<y. exists, then the output

o0

feedback control obtained integrating estimator and state feedback guarantees

internal stability and performances given by HGw/Z <y, ifand only if y. <y,.

In conclusion, the observer model offers guaranteed performances for the original
process only if it is derived from a specific class of observers and the model in closed
loop has a norm that outperforms the error of estimating the objectives.

From previous considerations the steps constituting the design process are:

1. for a given y,<1, the feedback K of an optimum observer in the worst disturbance
condition is determined. If a solution exists, y, represents a guaranteed upper
bound of the norm of the operator disturbances-objective estimation errors. For
this observer the matrix (2 corresponds to the worst disturbances. With K and 2
the model for feedback design is built (see Figure 4, block diagram A);

2. H, the feedback from the estimated states, is computed in the second step solving a
state feedback problem, assuming as new disturbances the measure reconstruction
errors and, as new objectives, the objective estimates. The feedback design results
in a closed loop operator e, — z, with a norm bounded by 7, (see Figure 4, block
diagram B);

3. if y. <y,, the control law with guaranteed bound y, has been found (see Figure 4,
block diagram C), otherwise a greater value to y, has to be assigned and the
observer - feedback design repeated. Again, if y, becomes larger than 1 some of
the requirements (the range of uncertainties of the parameters and/or the

performance requirements) have to be made less severe.

14



Illustrative example

The purpose of this section is to apply the proposed design procedure and to
evaluate its performance through an example in the chemical engineering field. Let
us consider a CSTR in which an isothermal, liquid phase, multi-component chemical
reaction is carried out:

Ae22C—B (27)
The objective is to keep the concentration of B at a desired set-point by manipulating
the molar feedrate of species C (indicated as u). The (nonlinear) balance equations are
(Kravaris and Palanki, 1988):

¢, =—kc, +§(CA,feed —CA)+k2c(2:
¢y = —503 +kycl 28)

¢c =k, —écc —(ky +k;)ct +u

Y=¢Cx
The state variables are the concentrations ca, ¢ and c¢c, while the measured
concentration is ca. The system parameters are: ki =1 s, ks=5m3 mol?! s, F =3 m?s7,
V=3 m? cafed =2 mol m?3; at the desired steady-state cas =2.18 mol m?, czs = 3.93 mol
m= and ccs = 0.87 mol m? and us=5 mol s

There is uncertainty in the parameter k2, which can vary between 0.1 and 5.9 m?
mol? s, thus, using the representation given by eq. (16):

— 2, mean

Ky = Ky o (14 AW, (29)
with k2mean = 3 m® mol™ s and W, = 0.97. Moreover, the system is nonlinear in the

state variable cc; standard Jacobi linearisation around the steady-state gives:

cc = (Cc,s )2 +2¢c (CC - Cc,s) (30)

Thus, the system of equations (28) takes the form:

15



) F
¢, =-kc, +V(CA,W —cA)+k2 |:(CC,S )2 +2c¢ (CC —Ccs )J

) F
Cp = —VCB +k, [(cc/s )2 +2¢c 6 (CC —Cc g )}

(31)

i F

cc =k, _VCC —(k, + kS)[(cC,S )2 +2Cc g (cC —Ces )J +u

Yy=c,

At steady state equations (31) yield:
F
0=—kic,s+ V(CA,feed,S “Cas ) +k, (Cc,s )2
F
0= —VCB,S +k, (CC,S )2 (32)

F
0=kp,q —VCC,S —(k, +k3)(cas )2 + 1

Y=Cags
Subtracting eq. (32) from eq. (31) the dynamics of the system is described in terms of

deviations from the steady-state values:

- - F/._ _ _
¢, =—kc, +V(CA,feed —Ca ) +2k,cc sCc

- F _ _
Cp = —V Cp + 2k3Cc,ch (33)

. =k, —§EC —2(k, +ky)ecsCc +

y=cy

where: €, =c,—c,5, C3=Cy—Cgs, Cc=Cc—Ccss Cafood =Ca ua —Ca joeass U=HU—ls. In
nominal conditions ccs = 0.887 mol m? and this value can be used for the calculation
of the controller with classical techniques (PID, LQR,...); here ccs can be assumed to
vary between 0 and 1.774 mol m?, i.e. a variation of +£100% around the steady-state

value, thus:
cc =0.887(1+AW, ) molm” (34)

with W_=1.

As a first guess, a reduction of the disturbance effects of 1/100 till a crossover
frequency of 10 rad/s is required, with a maximum of 6 dB in the sensitivity at high

frequencies, thus resulting in the following performance filter:

16



~ 0.5(s+2000)

W, .= 35
o s+10 (35)

The state representation of the filter (35) is:

z=-10z+u by

y=995z+0.5u (36)

The representation (36) is required because when the filter (35) is used, a further state
(z) is introduced in the system. With respect to the control activity a constant filter is
generally used and, as no requirements are given about this performance, a value of
0.1 is assumed. Figure 5 shows the block diagram of the extended system
corresponding to this control problem: each block identifies an operator that acts
over the input and gives, as output, the input multiplied by the function of the block
(which can be either a constant, or an operator); the block that performs the
integration of the input signal is indicated as “1/s’; the others are indicated with the
notation used in eq. (33)-(35). The summation nodes are indicated as circles and the
signals arriving to each node are summed, apart from those that have a minus sign,
that are subtracted from the summation. Various couples of input-output signals
emerge:

1) caped - z represents the channel disturbance-objective (W is the performance filter
corresponding to eq. (36));

2) n-z» represents the channel measurement noise-control activity (the performance
filter is a constant equal to 0.1);

3) w,, -z, represents the uncertainty channel on the kinetic constant k2 (0.97 is the
value of W, );
4) wc -z. represents the uncertainty channel due to c.;

5) y - u represents the channel measure-control action.

A simplified block diagram of the extended system is given in Figure 6, where only
the input (disturbances and control actions) and output (objectives and measures)
signals are evidenced; the control loop, as well as the loop due to the uncertainties,

are also evidenced. The transfer functions between the various input and output of

17



the system are given explicitly in Table 1.

Let us assume, for the moment, that all the states of the system (i.e. the values of
ca, c8, cc and z) are available for the control. Various software, e.g. the Robust Control
Toolbox of MatLab, can be used to minimise the H, norm of the input-output

operator according to eq. (21) giving a value of 0.416 for the HD*1 (GW) DHOO: this

means that the required robust performance can be achieved and the controller gain
is:

H=[1.03737 6199.42 303641 3206.43] (37)
Figure 7 shows the variations of cz when cafes changes from 2 to 7 mol m: the time
evolution (from the steady-state value) without any control and with the previously
calculated controller gain are compared, so that its effectiveness is pointed out. In
order to verify the robust performance, the same test has been repeated for three
values of the parameter k2: the results are shown in Figure 8 and demonstrate that the
performance requirements are fulfilled for all the values of k2 considered.

The designed controller requires the knowledge of the states of the system;
actually, only ca is measured, thus an observer is required to get the estimation of the
other states. The extended system used for the design of the observer is the same
depicted in Figures 5 and 6, i.e. the same uncertainties due to k2 and to the
nonlinearity and the same performance specification are considered. When the
calculations are performed, eq. (24) cannot be satisfied: the norm of the operator is
bounded by a value of 1.52 which does not guarantee anything. The norm of the
single channels is thus analysed and it is found that the responsible for the high
value of the norm of the operator is the uncertainty channel due to the linearisation;

thus, a lower value of W, is assumed, passing from 1 to 0.8. The calculations are

repeated and the norm of the operator can now be lowered to 0.861, giving an
observer gain equal to:

K=[298234 273 -532 -0.19] (38)

As an example of the various tests made to verify the effectiveness of the proposed
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observer, Figure 9 shows the results obtained in presence of a change from 2 to 4 mol
m- of cafed and from 5 to 3 of u: the evolution of molar concentration of species A, B
and C from the steady-state has been calculated by means of simulation of the system
of nonlinear equations (28) and the results obtained with an observer, using the
previously calculated gain and using the value of ca as measured input, are
compared, evidencing how the observer is able to follow the dynamics of the system
and to give a precise estimation of the states.

This result can be useful if the aim of the observer is to monitor the process, i.e.
to get an estimation of some variables that cannot be measured, but if the goal is to
use the observer in a state feedback loop, the optimum observer in the worst
disturbance condition has to be calculated. The calculations evidenced that the

condition y. <y, can be fulfilled, but the minimum value of y, that can be obtained

is about 4. Again, the norm of the single channels is analysed and it is found that the
responsible for the high value of the norm of the operator is the uncertainty channel

due to the linearisation; thus, a the value of ch is lowered to 0.5 (now the observer

has to estimate the state variables in a controlled system, so it is reasonable that ccs

varies in a narrow range). The best results are obtained with y, <y, =0.784. Figure 10
(upper graph) shows the variations of cz when caf. changes from 2 to 7 mol m?3 (the

time evolution from the steady-state value without any control was given in Figure

7).

Conclusions and further remarks

The construction of an extended model for the design of a robust controller has been
discussed in the paper: this model allows for the specification of the regulation and

tracking performance requirements as well as of the control activity requirements;

also parametric uncertainties can be included in the extended model. Performance
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and robustness are linked to the control law, which consists of a simple state
feedback.

Moreover, this procedure can guide the designer towards the best feasible
controller: consider each requirement or source of uncertainty, e.g. disturbance
rejection or steady state gain changes, and the restriction of the closed loop operator
referring to the corresponding pair disturbance-objective; if the H, norm of this
restriction is less than 1, the performance is satisfied in nominal conditions (or robust
stability is guaranteed with respect to one source of uncertainty), while if the value is
greater than 1 it means that the specified performance cannot be satisfied by any
control gain (or that the range of uncertainty is too large to allow for robust
performance).

Nonlinear system can be easily handled in this framework by describing it as
deviations of parameters from a nominal value, and then utilizing linear system
based control methods. This approach obviously implies that the range of the
uncertainty could be very large and, thus, yield very conservative results, in
particular when uncertainty is also considered. As a result, the robust controller
could be unfeasible only because of the nonlinearity has been managed in a too
conservative way. Anyway, in case the controller is unfeasible, i.e. it is not possible to
get a value of the norm H, of the extended model lower than one, the proposed
procedure allows to point out if the responsible of this is a too severe performance
requirement or a too large range of uncertainty for a certain parameter (or for a
certain non-linear variable). This is the main limitation of the proposed approach,
which is in turn compensated by its simplicity (according to Luyben's philosophy of
keeping a control system as simple as possible).

If the state of the system is not fully measured, then an observer is required:
also in this case an extended model has to be set-up and again the H, norm of this
extended system ensures the performance of the observer. The observer model offers
guaranteed performances for the original process only if it is derived from a specific

class of observers and the model in closed loop has a norm that outperforms the error
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of estimating the objectives.
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Notation
c

A B C

er

Geq

w,e

Gw,z
GW

k p

< g =

=

molar concentration, mol m?
chemical species

matrix to be used in eq. (21)
estimation error

tracking error

feed flow rate, m3 s!

equivalent transfer function

true transfer function of the process
approximate transfer function

transfer function between the disturbances w

and the estimation errors e-.
transfer function between w and z
matrix transfer function of the extended system
controller gain

parameter

observer gain

imaginary unit (j2=-1)

reference trajectory

Laplace variable

control action

array (or matrix) of signals
reactor volume, m?

state of the system

measured variables

disturbances

relative variation of a parameter
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Ww,z

Greeks
a, f, o

/4

c

Subscripts and Superscripts

AN

1,23

feed
max
mean

min

Abbreviations

BIBO

tilter used to specify the requirements on the
sensitivity of the output z with respect to the
input w

objectives of the controlled systems

tiltered objectives of the controlled systems

parameter of a generic filter W
threshold value of the norm
maximum singular value
frequency, rad/s

array used to calculate the worst disturbance

estimated value

deviation from the steady-state value
reaction identifier

controller

feeding value

maximum value

mean value

minimum value

observer

steady-state value

Bounded Input Bounded Output
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CSTR Continuous Stirred Tank Reactor

I/O Input/Output

LQOR Linear Quadratic Regulator
MPC Model Predictive Control

PID Proportional Integral Derivative
SISO Single Input Single Output
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Table 1

input —
p CA feed Wy, We, u
output \
z 4.35(5+2000) ~4.35(5+1)(s+2000) 2.5(s+1)(s+2)(s+2000) 4.35(s+2)(s +2000)
(s+10)(s +1)(s+15.3121) (s +1.60788) (s+10)(s+1)(5+15.3121)(s+1.60788) | (s+10)(s+1)(s+15.3121)(s+1.60788) | (s+10)(s+1)(s+15.3121)(s+1.60788)
Zn 0 0 0 0.1
zZ, 5.0634 -5.0634(s +1) 2.91(s+1)(s+2) 5.0634(s+2)
2 (s+15.3121)(s +1.60788) (s+15.3121)(s +1.60788) (s+15.3121)(s +1.60788) (s+15.3121)(s +1.60788)
Ze 1.74 ~1.74(s+1) ~13.92(s+1.625) 1.74(5+2)
c (s+15.3121)(s +1.60788) (s+15.3121)(s +1.60788) (s+15.3121)(s+1.60788) (s+15.3121)(s +1.60788)
y 5+14.92 5+9.7 3(s+1) 5.22
(s+15.3121)(s +1.60788) (s+15.3121)(s +1.60788) (s+15.3121)(s +1.60788)

(s+15.3121)(s+1.60788)




