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Exact Quadrature of Singular and

Nearly Singular Potential Integrals

R. D. Graglia∗ G. Lombardi†

Abstract — This paper describes a new numerical
technique based on the cancellation method to com-
pute singular and nearly singular potential integrals
with machine precision.

1 Introduction

The numerical evaluation of multiple integrals with
singular kernels is a necessary part of the moment-
method solution of electromagnetic problems for-
mulated in terms of integral equations. Self-term
integrals are obtained for coincident source and
testing domains; near-self integrals occur whenever
the source and the testing domains are very close
to each other, but do not overlap. In the self-
term case, the singular point of the integral kernel
belongs to the integration region whereas, in the
near-self case, the integration region does not con-
tain the singular point. In spite of the fact that
the singularity of the integral kernel is not encoun-
tered in the near-self case, the accurate evaluation
of these integrals is often more difficult than in the
self-term case. Important results for the numeri-
cal computation of multiple integrals involving the
three-dimensional Greens function and its gradient
have already been published [1], [2], [3], [4].

Modern electromagnetic (EM) codes model the
geometry of a given problem as the union of sub-
domains of different but simple geometrical shape.
EM problems are then numerically solved by ex-
panding the unknowns in terms of vector or scalar
functions locally defined on these sub-domains.
The expansion functions are conveniently defined
on rectilinear domains of a parent space, with all
sub-domains of the global geometry obtained by
properly mapping one or few parent domains into
the global object-space. In its parent space a do-
main is described in terms of normalized (dimen-
sionless) parent coordinates, and the parent domain
is rectilinear although the corresponding object-
space sub-domains could be curvilinear. The word
element indicates a sub-domain together with a set
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of expansion functions defined over there, and asso-
ciated with a certain number of degrees of freedom.
Several elements were defined and used in previ-
ous works. Two-dimensional (2D) triangular and
quadrilateral elements, as well as three-dimensional
(3D) tetrahedral and brick elements are for exam-
ple discussed in [5], whereas prism and pyrami-
dal elements are given in [6] and [7], respectively.
In the following we assume the reader to be com-
fortable with the definitions given in those papers,
and adopt the same notation used there to present
a new application of the singularity cancellation
method to evaluate potential integrals. The can-
cellation method is based on variable transforma-
tions whose Jacobian cancels out the singularity of
the kernel of the potential integral. The superior-
ity of the cancellation method with respect to other
methods is discussed, for example, in [4].

Our new technique to compute singular and
nearly singular potential integrals is described in
detail in [8], where we also provide the rules to
establish the quadrature weights/points (includ-
ing their number) to guarantee machine precision.
The integration scheme is based on a new ratio-
nal expression of the singular and nearly singular
integrals obtained by special variable transforma-
tions and quadratures: Gauss quadrature for ra-
tional functions [9], together with classical Gauss-
Legendre quadrature. The technique can deal with
static and dynamic potentials on surface and vol-
ume elements. In particular, in the static case of
polynomial source distributions the new cancella-
tion procedure allows for the exact integration of
the potential integrals.

Preliminary results of this work have been pre-
sented in [10]; in this paper, for the sake of brevity,
we focus our discussion on the general procedure
to obtain the variable transformation formulas re-
quired for singularity cancellation. Several numer-
ical results for potential integrals will be presented
at the conference.

2 The cancellation technique

Potential integrals on a given element are normally
evaluated by subdividing the element region in the
object-space into sub-domains, obtained by joining
with a line each vertex of the entire domain to the
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given observation point r. Subdivision requires ele-
ment sub-meshing driven by the observation point,
and re-parameterization of each sub-domain with a
parent sub-mapping in terms of parent coordinates.
We assume that the expansion functions are given
in terms of the parent coordinates of the entire el-
ement, where each element is described by a set ξ
of normalized parametric coordinates ξ = (ξ1, ξ2,
. . . , ξσ). These are chosen so that the i-th edge
of a two-dimensional element, or the i-th face of
a three-dimensional element, is the zero-coordinate
surface for the normalized coordinate ξi. Two co-
ordinates on 2D, and three coordinates on 3D ele-
ments are then selected as independent coordinates,
the remaining coordinates become dependent co-
ordinates, and each is related to the independent
coordinates via a dependency relation [5]-[7]. All
parametric coordinates are positive inside the el-
ement, and every point outside of the element has
one or more negative parent coordinate. For nested
integration over the element region

Eξ = {ξi| ξi ≥ 0,∀i ∈ [1, σ]} (1)

the ξ upper bounds must be obtained explicitly
through the dependency relationships, thereby en-
suring never negative coordinates within the inte-
gration region. The ξ upper bounds of all the ele-
ments given in [5]-[7] are always equal or less than
unity, although properly specified by the relevant
dependency relationships.

The number σ of parametric coordinates used to
describe a given element is the size of the element
or, that is the same, the size of the set ξ. There-
fore, the size of a two-dimensional element is the
number of its edges whereas, for three-dimensional
elements, the size σ is given by the number of the el-
ement faces. The size of the triangular and quadri-
lateral element is three and four, respectively; the
size of the tetrahedron is four; six is the size of the
brick, and five is the size of the triangular-prism
and of the pyramid.

In the object space the element geometry is de-
fined by np interpolation (or control) points r[I],
where [I] = [I1, I2, . . . , Iσ] is a multi-index ar-
ray of size σ, with integer entries Ij ∈ [0, np] for
j = 1, σ. The element dependency relations give
further bounds to the integer entries Ij of the multi-
index array, and these bounds depend on the shape,
size and dimension of the element [5]-[7]. The po-
sition vector in the object space is then expressed
in terms of np shape functions P[I](ξ), usually of
polynomial form, attached to each interpolation or
control point

r(ξ) =
∑
[I]

r[I] P[I](ξ) (2)

Figure 1: By joining the point ξ◦ = (ξ◦1 , . . . , ξ◦4) to
each domain vertex, a domain of size 4 is subdivided
into four triangular (at left) or tetrahedral (at right)
sub-domains.

In the global object space, the element region is the
whole set of points r(ξ) obtained by mapping with
(2) all the points of the parent region Eξ defined in
(1).

For a given element of size σ, a potential inte-
gral on ξ over the element region Eξ is subdivided
into σ sub-integrals, with integral subdomains ob-
tained by joining, in the parent space, a point
ξ◦ = (ξ◦1 , ξ◦2 , . . . , ξ◦σ) to each vertex of the parent do-
main (see Fig. 1). ξ◦ is the arbitrarily located com-
mon origin of σ different local pseudo-radial frames
introduced to locally perform each sub-integral by
properly changing the integration variables; the Ja-
cobian of each variable transformation vanishes at
ξ◦.

In applications involving 3D elements, ξ◦ is the
parent point that maps the observation point r
of the global object-space; notice that in the ob-
ject space we use no superscript for the observation
point r, whereas the source (i.e., integration) point
r′ is primed. In applications involving planar 2D
elements, ξ◦ is the parent point that maps, in the
global space, the normal projection rp of the obser-
vation point r onto the element surface, or onto its
extension. If the 2D element is not planar, the 2D
potential integrals are performed by working with
a rectilinear planar patch of the object space that
is tangent to the original curved one; in this case
ξ◦ is the point that maps the normal projection rp

of the observation point r onto this tangent patch.
The variable transformation formulas required

for singularity cancellation are easily obtained by
applying, in the parent space, a general four-step
procedure, described in the following paragraphs:
2.1-Duplication of the parent set; 2.2-Introduction
of the pseudo-radial variable; 2.3-Radial-binding
at observation point ξ◦; 2.4-Sub-domain selection
via zero-blocking and variable transformation
formulas.

2.1. Duplication of the parent set. Be-
side the parametric set ξ, we introduce a second
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Figure 2: A four-sided planar patch of the object space is broken into four triangular subdomains about
the normal projection rp of the observation point r onto the plane of the patch; the distance from r to
the plane of the patch is d.

set Υ of normalized coordinates having the same
size as ξ. The Υ-parametric coordinates satisfy the
same dependency relationships that hold for the
ξ-coordinates, and the region EΥ = {Υi|Υi ≥ 0,
∀i ∈ [1, σ]} is the duplicate of the whole integra-
tion domain Eξ; in other words, the two sets ξ
and Υ are equal, but for the name given to the
coordinates of each set.

2.2. Introduction of the pseudo-radial
variable. We introduce a new parametric variable
ρ ≥ 0, and then append this variable to the
duplicated set Υ to form the new parametric set
Υρ = (Υ1, Υ2, . . . ,Υσ, ρ), with size equal to σ + 1.

2.3. Radial-binding at ξ◦. We bind the ξ
and the Υρ set together by setting

ξi = ξ◦i (1 − ρ) + ρΥi, for i = 1, σ (3)

so to obtain, for all the allowed values of the integer
subscript i (= 1, σ){

ξi = ξ◦i at ρ = 0,
ξi = Υi at ρ = 1 (4)

The pseudo-radial variable ρ binds the two sets
together at ξ◦ since, for ρ = 0, eq. (3) requires
Υi = ξ◦i whenever ξi = ξ◦i .

2.4. Subdomain selection via zero-blocking
and variable transformation formulas. By
blocking to zero one Υ-coordinate at a time of the
augmented set Υρ one obtains σ different sets of size
σ that are used together with (3) to subdivide the
original parent domain into σ subdomains. Only
the unblocked coordinates can vary in a blocked
set, although all the coordinates remain bounded
by the dependency relationships duplicated in step
2.1. The transformation formulas for integration

on the k-th subdomain via singularity cancellation
are thus simply obtained by setting

Υk = 0 (5)

into (3), for k = 1, 2, . . . , σ. The k-th subdomain
is mapped by the region {ρ ∈ [0, 1], Υ ∈ EΥ, with
Υk = 0}. The coordinate-surface ξk = 0 bounds
the k-th subdomain as well as the entire parent
element, because of eqs. (3, 5) and the second of
(4), that yields Υk = ξk = 0 at ρ = 1.

2.5. Transformation Jacobians. The Ja-
cobians of the variable transformation formulas
obtained in this manner vanish at ρ = 0, where
the parent integration point ξ coincides with
ξ◦ = (ξ◦1 , ξ◦2 , . . . , ξ◦σ); this is why ρ is referred to
as a pseudo-radial variable. In particular, for
the k-th subdomain selected by setting Υk = 0,
the Jacobian Jk becomes Jk = ξ◦k ρ in case of
2D elements whereas, for 3D-elements, one has
Jk = ξ◦k ρ2.

To exemplify the procedure, let us consider a tri-
angular (T ) and a quadrilateral (Q) element subdi-
vided into triangular subdomains. The procedure
maps each sub-domain Tk into the square domain
{ρ ∈ [0, 1],Υ ∈ [0, 1]}.

The triangular domain T is split into three sub-
domains Tk (k = 1, 2, 3) with subscripts counted
modulo three. By setting Υk = 0 as per eq.
(5), the duplicated dependency relation (see [5])
Υk+Υk+1+Υk−1 = 1 yields Υk−1 = (1−Υk+1). In
this case, by dropping the subscript in Υk+1 (that
is, by setting Υ = Υk+1), the variable transforma-
tion formulas (3) for the k-th subdomain read as
follows⎧⎨⎩

ξk = ξ◦k (1 − ρ)
ξk+1 = ξ◦k+1 (1 − ρ) + ρΥ
ξk−1 = ξ◦k−1 (1 − ρ) + ρ (1 − Υ)

(6)
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For the quadrilateral domain Q (see Fig. 2),
split into four subdomains Tk (k = 1, 2, 3, 4), one
counts the subscripts modulo four to write the
two dependency relationships (ξk + ξk+2) = 1 and
(ξk+1 + ξk−1) = 1 (see [5]). By setting Υk = 0
as per eq. (5), the duplicated dependency relation-
ships yield Υk+2 = 1 and Υk−1 = (1−Υk+1). One
then drops the subscript in Υk+1 and simplifies the
transformation formulas (3) for the k-th subdomain
of a quadrilateral as it follows⎧⎪⎪⎨⎪⎪⎩

ξk = ξ◦k (1 − ρ)
ξk+2 = ξ◦k+2 (1 − ρ) + ρ
ξk+1 = ξ◦k+1 (1 − ρ) + ρΥ
ξk−1 = ξ◦k−1 (1 − ρ) + ρ (1 − Υ)

(7)

Notice that (6) and (7) fully comply with the depen-
dency relationships of the triangular and quadri-
lateral element, respectively. Both (6) and (7) can
deal with a point ξ◦ located outside the parent do-
main, or on its border.

3 Evaluation of the potential integral

The singularity cancellation procedure can be ap-
plied, for example, to potential integrals of the form

IS =
∫

S

Λ(r′)
exp (−jkR)

4πR
dS′ (8)

where Λ(r) is a vector or scalar basis function,
R = r − r′ is the vector distance from observation
to integration point, and R = |R|. By using suc-
cessive variable transformations into parent coordi-
nates and then into pseudo-radial coordinates, and
by using the modified Euler’s substitution given in
[8] one gets

IS =
J
4π

∑
k

ξ◦k
�k

∫ 1

0

dρ

∫ 1

0

Λ (ρ, ϕ)
exp (−jkR)

ϕ − ϕ̃
dϕ

(9)
where J is the Jacobian of the transformation be-
tween global and parametric ξ-coordinates, and ϕ
is the new integration variable that has substituted
Υ, and with ϕ̃ = −Ck/ρ. Ck is a real function of ρ
that does not depend on ϕ, with Ck > 0 and ϕ̃ < 0
for all ρ in the integration interval [0, 1]. The in-
tegral (9) is evaluated numerically by integrating
first along ϕ (using Gauss quadrature for rational
functions [9]), that is for ρ = const., and then on ρ
(using Gauss-Legendre quadrature). This integral
simplifies considerably when the observation points
lies on the patch-surface (self-element integration)
or on its extension, that is for d = 0.

Preliminary results for a right triangle T , with
catheti of 1[m] in length are reported in [10].
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