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Abstract. We survey applications of holonomic methods to the study of sub-
manifold geometry, showing the consequences of some sort of extrinsic version

of de Rham decomposition and Berger’s Theorem, the so-called Normal Ho-

lonomy Theorem. At the same time, from geometric methods in submanifold
theory we sketch very strong applications to the holonomy of Lorentzian man-

ifolds. Moreover we give a conceptual modern proof of a result of Kostant for
homogeneous spaces.
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1. Introduction

A connection on a Riemannian manifold M can be interpreted as a way of
comparing different tangent spaces, by means of parallel transport.

The parallel translation depends, in general, on the curve and this dependence
is measured by the holonomy group, i.e. the linear group of isometries obtained by
parallel transporting along based loops.

Actually holonomy groups can be defined for any connection on a vector bundle.
For example, in this note we will be particularly interested on the holonomy group
of the normal connection, called normal holonomy group.

Holonomy plays an important rôle in (intrinsic) Riemannian geometry, in the
context of special Riemannian metrics, e.g., symmetric, Kähler, hyperkähler and
quaternionic Kähler ones.

The main purpose of this note is to survey the application of holonomic meth-
ods to the study of submanifold geometry and vice versa. Namely, from geometric
methods in submanifold theory we will sketch very strong applications to the ho-
lonomy of Lorentzian manifolds. But we will also be interested on Riemannian
holonomy and we will give a conceptual modern proof of a result of Kostant for
homogeneous spaces.

The survey is organized as follows. In Section 2 we recall some important result
on holonomy of a Riemannian manifold. This also allows to make a comparison with
results on normal holonomy, to which is devoted Section 3. Important in the ex-
trinsic context is Normal Holonomy Theorem (3.2) [O1], which asserts that the non
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2 SERGIO CONSOLE, ANTONIO J. DI SCALA, CARLOS OLMOS

trivial part of normal holonomy action on the normal space is an s-representation
(i.e., isotropy representation of a Riemannian symmetric space). Recall that by
Dadok’s Theorem s-representations are orbit equivalent to polar actions and that
principal orbits of s-representation are isoparametric submanifolds. Normal Holo-
nomy Theorem is some sort of an extrinsic analogue to de Rham Decomposition
Theorem and Berger’s Theorem on Riemannian holonomy. One of its main con-
sequences is the recognition that orbits of s-representations play a similar rôle, in
submanifold geometry, as Riemannian symmetric spaces in intrinsic Riemannian
geometry. This is illustrated by high rank theorems (Theorems 3.6, 3.9, 3.10),
which have similarities with higher rank results on Riemannian manifolds. The
extrinsic notion of rank is related to maximal flat parallel subbundles of the normal
bundle.

In Section 4 we relate homogeneity and holonomy in the general framework of
homogeneous (pseudo) Riemannian vector bundles endowed with a connection. The
Lie algebra of the holonomy group (holonomy algebra) can be described in terms of
projection of Killing vector fields on the homogeneous bundle. As an application to
Riemannian manifolds we get Kostant’s method for computing the Lie algebra of
the holonomy group of a homogeneous Riemannian manifold. Moreover it is given
a local characterization of Kähler and Ricci flat Riemannian manifolds in terms of
the normalizer of the Lie algebra of the local holonomy group (Proposition 4.1).
For a submanifold M which is an orbit of an orthogonal representation of a Lie
group G, normal holonomy measures how much G fails to act polarly and M from
being a principal orbit.
Polar actions on the tangent bundle of a simply connected Riemannian manifold M
allow to characterize symmetric spaces. This is done in Theorem 4.2, which states
that the tangent bundle TM admits a polar action having M as an orbit if and
only if M is symmetric.

In Section 5 we show how the theory of homogeneous submanifolds of the hyper-
bolic space Hn can be used to obtain general results on the action of a connected
Lie subgroup of O(n, 1) on the lorentzian space Rn,1. A consequence is a com-
pletely geometric proof, using submanifold geometry, of the fact that the restricted
holonomy group of an irreducible lorentzian manifold is SO0(n, 1), [B1], [B2].

At least a sketch of a proof is given for all results mentioned. In some cases we
include complete proofs, if it is difficult to find them out through the literature.

2. Riemannian holonomy

We first recall some basic facts on holonomy. If we fix a point p ∈M , the parallel
displacement along any loop γ at p determines an isometry of TpM . The set of all
such isometries is a subgroup Φp(M) of the orthogonal group O(Tp(M)), called the
holonomy subgroup of M at p. If q is another point of M and γ a path from p to
q, we have Φq(M) = τγ Φp(M) τ−1

γ , so that the holonomy group at different point
are conjugated and one speaks of holonomy group of M neglecting the base point.
There is a variant of this definition, the restricted holonomy group Φ∗p(M), obtained
by considering only those loops which are homotopically trivial. This group actually
behaves more nicely: it is a connected, closed Lie subgroup of SO(TpM) and is in
fact the identity component of of Φp(M). It can be regarded as the holonomy group
of the universal covering space of M .
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Holonomy is strictly tight to curvature, which is roughly an infinitesimal measure
of holonomy. More precisely, the Ambrose-Singer Holonomy Theorem states that
the Lie algebra of the holonomy group is spanned by the curvature operators Rxy,
x, y ∈ TpM together with their parallel translates.

To describe the importance holonomy plays in intrinsic geometry, we discuss an
important property of holonomy, the so-called holonomy principle: evaluation at p
establishes a one-to-one correspondence between parallel tensor fields and tensors
invariant under holonomy. The existence of holonomy invariant tensors has strong
consequences on the geometry. We discuss some examples of this situation.

• For a generic metric there is no invariant tensor, so Φp(M) = O(TpM).

• An invariant projector or subspace implies that the manifold locally splits (de
Rham decomposition Theorem). Thus one can always restrict to irreducible holo-
nomy actions.

• It is a classical result of Cartan that, if the Riemannian curvature tensor of a Rie-
mannian manifold M is invariant under parallel transport, M is locally symmetric,
i.e., at each point p in M there exists an open ball Br(p) such that the correspond-
ing local geodesic symmetry sp is an isometry. A connected Riemannian manifold
is called a symmetric space if at each point p ∈M such a local geodesic symmetry
extends to a global isometry sp : M →M . Symmetric spaces play a prominent rôle
in Riemannian geometry and are very tightly connected to holonomy.

Indeed, let M be an irreducible symmetric space, which can be represented
as a quotient M = G/K, where G is the identity component of the isometry
group of M and K is the isotropy subgroup at some point p ∈ M . One can show
that the isotropy representation of K on TpM agrees with the (effective made)
representation of the restricted holonomy group Φ∗p(M) on TpM . Observe that, by
the Ambrose-Singer Holonomy Theorem and the invariance of the curvature tensor
by parallel transport, the holonomy algebra is spanned by the curvature operators
Rxy, x, y ∈ TpM . Now the curvature operators allow to recover the symmetric space
by a classical construction due to É. Cartan. We briefly outline this construction
which can be actually carried out any time we have an algebraic curvature tensor
on some vector space V (i.e., a tensor with the same algebraic properties of the
curvature one, including the first Bianchi identity) which is in addition invariant by
the action of a group K (i.e. k ·R = R, for any k ∈ K). Indeed, one can construct
an orthogonal symmetric Lie algebra g, by setting g := k⊕ V and defining

[B,C] = BC − CB, B,C ∈ k,
[x, y] = Rxy, x, y ∈ V,
[A, z] = Az, A ∈ k, z ∈ V .

Passing to Lie groups one locally recovers G/K (globally if G/K is simply con-
nected)

Yet another characterization of symmetric spaces in terms of holonomy is the
following. One can define the transvection group of Riemannian manifold N as the
group Tr(N) of isometries of N that preserve any holonomy subbundle HolvN ,
v ∈ TpN . Recall that HolvN is the subset of the tangent bundle TN (which is
in fact a subbundle) obtained by parallel displacement of v along any piecewise
differentiable curve starting from p. More concretely, Tr(N) is the group of all
isometries ϕ such that, for any p ∈ N , there exists a piecewise differentiable curve
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γ joining p and ϕ(p) such that ϕ∗p : TpN → Tϕ(p)N coincides with the parallel
displacement along γ.

Now, a symmetric space can be characterized by the fact that the transvection
group acts transitively on any holonomy subbundle. This is to say that, for any
p, q ∈ M , for any piecewise differentiable curve γ from p to q, there exists an
isometry g such that g(p) = q and g∗p : TpM → TqM coincides with the parallel
transport along γ.

• If the Ricci tensor is parallel, then M is a product of Einstein manifolds (see e.g.,
[Be]).

• If there is a complex structure J on a Riemannian manifold M which is orthogonal
and parallel, then M is a Kähler manifold. In this case the holonomy group is
contained in U(TpM).

Thus, the existence of a geometric structure on a Riemannian manifold can be
read in terms of the holonomy invariance of a tensor and this in turn implies a
reduction of the holonomy group (i.e., that it is smaller than O(TpM)).

A fundamental theorem for the restricted holonomy group Φ∗p(M) of a Rie-
mannian manifold one is Berger’s Theorem ([B1], see also [Be], [Sal], [Sim]), which
classifies the irreducible action of the restricted holonomy group on the tangent
space at any point. The restricted holonomy group of a Riemannian manifold M is
either transitive on the unit sphere of TpM or it acts as the isotropy representation
of a symmetric space (which is also called s-representation) and M is in fact locally
symmetric. If Φ∗p(M) is transitive on the unit sphere of TpM and the action is
irreducible, then it is one the following groups: SO(n), U(n/2) (n ≥ 4), SU(n/2)
(n ≥ 4), Sp(1) · Sp(n/4) (n ≥ 4), Sp(n/4) (n ≥ 4), Spin(9) (n = 16), Spin(7)
(n = 8) or G2 (n = 7).
The reduction of Φ∗p(M) to any of the above group corresponds to some geometric
structure on M .

3. Normal holonomy

Let M be a m dimensional submanifold of a space of constant curvature and
denote by νM the normal bundle, endowed with the normal connection ∇⊥. We
denote by Φ⊥p the normal holonomy at p ∈M , i.e. the holonomy at p of the normal
connection.

Like Riemannian holonomy, normal holonomy has a fundamental rôle in the
geometry of submanifolds of spaces of constant curvature.

We discuss the analogies and the differences with the intrinsic case, in relation
of reductions of normal holonomy, or equivalently, the existence of invariant tensor
field.

• Φ⊥p = O(νpM) means that there are no parallel normal vector fields. This is the
case of a generic submanifold.

• An invariant projector or subspace for the normal holonomy Φ⊥p does not imply
in general that the submanifold locally splits (both extrinsically and intrinsically).
For example, for a submanifold of Euclidean space contained in a sphere, the line
determined by the position vector p is an invariant subspace under normal holonomy
(it is always in the flat part of νM), but such a submanifold does not necessarily
split.
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However, if M is a complex submanifold of Cn, then one has a version of de Rham
decomposition Theorem: if Φ⊥ splits, M locally splits as a product of submanifolds
[D2].

• In the extrinsic case several tensors play an analogue rôle as the Riemannian
curvature tensor: the second fundamental form (or equivalently the shape operator),
the normal curvature are maybe the most important. A problem, in the context of
normal holonomy, is that these tensors do not take values into the normal spaces
only. For this reason, to find holonomy invariant tensors, one has to derive new
ones. An important class of tensors valued only on the normal spaces is given by
the so-called higher order mean curvatures [St]. The mean curvature of order k in
direction ξ, Hk(ξ), is the k-th elementary symmetric function of the eigenvalues of
Aξ. So, up to a constant, Hk(ξ) is the sum of the k-th powers of the eigenvalues
{λi} of Aξ, i.e.,

∑
i1<...<ik

λi1 . . . λik . Observe that H1(ξ) = 〈H, ξ〉, where H is the
mean curvature vector field. Let hk(ξ1, . . . , ξk) be the symmetric tensor on νM
defined by polarization of Hk(ξ).
Suppose that any hk (or equivalently any Hk) is invariant by parallel transport.
Thus Hk(ξ(t)) is constant for any parallel normal vector field ξ(t) along any piece-
wise differentiable curve. Since the sum of the k-th powers of the eigenvalues up to
order m = dimM generate all symmetric polynomials on λ1, ..., λm, the character-
istic polynomial of Aξ(t) is constant, so Aξ(t) has constant eigenvalues. Conversely,
it is easy to see that if Aξ(t) has constant eigenvalues, any hk (or equivalently any
Hk) is invariant by normal holonomy. A submanifold with this property is called
a submanifold with constant principal curvatures. The importance of the above
tensorial definition of a submanifold with constant principal curvature is illustrated
in the proof of the Theorem 3.3. This class of submanifolds can be regarded for
many reasons (which we will clarify in this note) as the extrinsic analogue of lo-
cally symmetric spaces. A very important example of submanifolds with constant
principal curvatures is given by the orbits of s-representations, i.e. the orbits of
the isotropy representations of Riemannian symmetric spaces, which have the same
rôle, in submanifold geometry, as symmetric spaces in Riemannian geometry (as
we will illustrate later). Orbits of s-representations are intrinsically real partial flag
manifolds and are classically also called R-spaces.

An important special case of submanifolds with constant principal curvatures is
given by the ones with flat normal bundle, which are called isoparametric subman-
ifolds. Actually they are somehow “generic” among submanifolds with constant
principal curvatures. Indeed E. Heintze, C. Olmos and G. Thorbergsson gave the
following complete characterization of the submanifolds of space forms with con-
stant principal curvatures [HOT].

Theorem 3.1. Let M be a submanifold of space form. Then M has constant
principal curvatures if and only if it is either isoparametric or a focal manifold of
an isoparametric submanifold.

In analogy with the intrinsic case, for symmetric spaces, one can give a char-
acterization of submanifolds with constant principal curvatures in terms of normal
holonomy. Let Tr(∇⊥) be the transvection group of the normal holonomy. Then
orbits of s-representations can be characterized by the fact that Tr(∇⊥) acts tran-
sitively on any normal holonomy subbundle. More explicitly, for any p, q ∈M and
any curve γ on M joining p and q, there exists an isometry g of Euclidean space,
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leaving the submanifold M invariant, sending p to q and such that

g∗p|νpM : νpM → νqM

coincides with the ∇⊥− parallel transport along γ [OS].

One can classify the behaviour of normal holonomy action on νpM . The starting
point for this is a proof of Berger’s Theorem, due to J. Simons [Sim], which is based
on algebraic properties of the curvature tensor, namely its antisymmetry properties
and the first Bianchi identity.

It is with similar methods that in [O1] it was proved an analogous result for
the restricted normal holonomy group. Roughly, the non trivial part of normal
holonomy acts on νpM as an s-representation. More precisely

Theorem 3.2. (Normal Holonomy Theorem) Let M be a submanifold of a space
form. Let p ∈M and let Φ⊥∗ be the restricted normal holonomy group at p. Then
Φ⊥∗ is compact, there exists a unique (up to order) orthogonal decomposition of the
normal space at p νpM = V0⊕ ...⊕Vk into Φ⊥∗-invariant subspaces and there exist
normal subgroups of Φ⊥∗, Φ⊥0, ...,Φ⊥k such that
(i) Φ⊥∗ = Φ⊥0 × ...× Φ⊥k (direct product),
(ii) Φ⊥i acts trivially on Vj, if i 6= j,
(iii) Φ⊥0 = {1} and, if i ≥ 1, Φ⊥i acts irreducibly on Vi as the isotropy represen-
tation of a simple Riemannian symmetric space.

We sketch the proof. By the Ambrose-Singer holonomy theorem, the normal
curvature R⊥ and its parallel translates generate the holonomy algebra. Unfortu-
nately R⊥ is not a tensor on νpM only. So it does not make sense to apply Simons’
construction to it. The idea in [O1] is to define a tensor

R⊥ : ⊗3νM → νM

which provides the same geometric information as the normal curvature tensor R⊥

but has the same algebraic properties as a Riemannian curvature tensor (i.e., it has
the same (anti)-symmetry properties and satisfies the first Bianchi identity).
To construct a tensor of type (1, 3) on νM we can regard R⊥ as a homomor-
phism R⊥ : Λ2(TpM) → Λ2(νpM) (where Λ2 is the second exterior power), thus
R⊥ composed with its adjoint operator R⊥∗ gives rise to an endomorphism R⊥ :
Λ2(νpM) → Λ2(νpM), which can be identified with a (3, 1) tensor. By the Ricci
equations 〈R⊥xyξ, η〉 = 〈[Aξ, Aη]x, y〉, thus R⊥∗(ξ ∧ η) = [Aξ, Aη]. Hence

〈R⊥(ξ1, ξ2)ξ3, ξ4〉 = 〈R⊥∗(ξ1 ∧ ξ2), R⊥∗(ξ3 ∧ ξ4)〉 = −Tr([Aξ1 , Aξ2 ][Aξ3 , Aξ4 ]),

since the inner product on Λ2 is given by 〈A,B〉 = −Tr(AB). From the above
formula, one can see that R⊥ is an algebraic curvature tensor; moreover R⊥ and
its parallel translates still generate the Lie algebra L(Φ⊥∗) of Φ⊥∗. Note that, by
the above expression, the scalar curvature of R⊥ is non positive and vanishes if and
only if R⊥ vanishes.
Then the proof will follow some ideas of Cartan and Simons [Sim]. As a first step,
using the first Bianchi identity, one can show that, if the action of Φ⊥∗ is reducible,
also the group Φ⊥∗ splits as a product in such a way that (i) and (ii) in the
Theorem hold. Thus one can concentrate on irreducible holonomy actions. Since a
connected Lie subgroup of the orthogonal group acting irreducibly on a vector space
is compact, one gets that Φ⊥∗ is compact. To show that a non trivial irreducible
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normal holonomy action is an s-representation the main point is to prove that there
exists a new non-zero algebraic curvature tensor R̃⊥ which is Φ⊥∗-invariant, i.e.,
it satisfies g · R̃⊥ = R̃⊥ for any g ∈ Φ⊥∗. This is due to the fact that the scalar
curvature of R⊥ is not zero, so also R⊥ is not zero and one can average it by means
of the action of the compact group Φ⊥∗ getting a non zero

R̃⊥ :=
∫

Φ⊥∗
h · R⊥, h ∈ Φ⊥

∗
,

since averaging does not change scalar curvature. Clearly g · R̃⊥ = R̃⊥ for any
g ∈ Φ⊥∗. Such a Φ⊥∗-invariant curvature tensor R̃⊥, by the classical Cartan’s
construction corresponds to an s-representation (cf. the previous Section). Since
just the curvature tensor is changed, but the holonomy representation is the same,
this allows to say that the irreducible action of the normal holonomy coincides with
an s-representation.

√

E. Heintze and C. Olmos in [HO] computed the normal holonomy of all s-re-
presentations getting that all s-representations arise as normal holonomy represen-
tations with eleven exceptions. Up to now, no example was found of a submanifold
realizing one of these exceptions as normal holonomy representation. The simplest
of the these exceptions, since it has rank one, is the isotropy representation of the
Cayley projective space represented by F4/Spin(9). K. Tezlaff [Te] gave a nega-
tive answer to the question whether this representation is the normal holonomy
representation of one of the focal manifolds of the inhomogeneous isoparametric
hypersurfaces in spheres of Ferus, Karcher and Münzner [FKM], which would be
good candidates.

A still open conjecture is that if M is a full irreducible homogeneous submanifold
of the sphere which is not an orbit of an s-representation then the normal holonomy
group acts transitively on the unit sphere of the normal space [O3].

Normal Holonomy Theorem is an important tool in the study of the geometry
of submanifolds. We now review some of its important applications. Even though
many construction can be done for submanifolds of space forms, we will restrict
to submanifolds of Euclidean space in the sequel. Clearly these results also hold
for submanifolds of the sphere, since one can regard them as submanifolds of Eu-
clidean space, but not in general for submanifolds of real hyperbolic space. For
submanifolds of real hyperbolic space one has a different behaviour in connection
with normal holonomy (see [W], [DO]). We will mention some of these peculiarities
in the sequel.

Focal manifolds. We begin recalling the notion of focal point. Let E : νM → Rn
be the map sending ξx ∈ νxM to x+ ξx. A focal point is a critical value x+ ξx of
E. Since the differential of E at ξx has the same rank as the matrix id − Aξx , a
point x+ ξx is focal if and only if ker(id −Aξx) 6= 0.
If ξ is a parallel normal field and dim ker(id −Aξx) does not depend on x, then the
offset

Mξ := {x+ ξx | x ∈M}

is an immersed submanifold, which is called parallel to M , if ker(id −Aξx) is trivial
(so that no point of Mξ is focal and M and Mξ have the same dimensions) and
focal, if ker(id −Aξx) is not trivial.
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An important case when dim ker(id−Aξx) is independent of x is when the parallel
normal field ξ is in addition isoparametric, i.e., Aξ has constant eigenvalues.
In this case, if we diagonalize Aξ, (letting λ1, ..., λg be the different eigenvalues)
the corresponding eigendistributions E1, ..., Eg are integrable with totally geodesic
leaves (we shall denote by Si(q) the leaf of Ei through q ∈M).
If λi 6= 0, set ξi := 1

λi
ξ, we have that Ei = ker(id −Aξi), so the focal manifold Mξi

has tangent space at x given by
∑
j 6=iEj(x) and one says that the eigendistribution

Ei is focalized. The submersion πi : M → Mξi has Si(q) as leaf through q̄ =
πi(q) = q + ξi(q). Si(q) is a totally geodesic submanifold of the affine space q +
νqM ⊕ Ei(q), which can be identified with the normal space at q̄ to the focal
manifold Mξi . Observe that −ξi(q̄) belongs to Si(q) and, if we take the orbit of
−ξi(q̄) under the restricted normal holonomy group Φ⊥∗Mξi

of Mξi , then Φ⊥∗Mξi
·

(−ξi(q̄)) is locally contained in Si(q) [CO]. An important consequence of the Normal
holonomy theorem is that if equality holds (even locally) for any index i then M is
a submanifold with constant principal curvatures. More precisely

Theorem 3.3. [CO] Let M be a submanifold of Rn. Let ξ be a parallel isoparamet-
ric normal field on M with non zero eigenvalues λ1, ..., λg and ξi = λ−1

i ξ. Assume
furthermore that, for any i, Si(q) locally coincides with the orbit Φ⊥∗Mξi

(−ξi(q̄)) of
the restricted normal holonomy group of Mξi at q̄. Then M is a submanifold with
constant principal curvatures.

For the proof, it is crucial the observation that having constant principal cur-
vatures is a tensorial property. Indeed, this allows to check the constancy of the
eigenvalues of the shape operator along curves tangent to either vertical or hori-
zontal subspaces (with respect to the submersions M →Mξi).
Then, for both cases, one has to use the fact that the restricted normal holonomy
group acts as an s−representation, so that Si(q) is a totally geodesic submanifold
of M with constant principal curvatures.

Holonomy tubes. Another construction that can be done, using normal holonomy
is somehow inverse to focalization and consists of the holonomy tube.
If ηp ∈ νp(M) the holonomy tube at ηp (M)ηp is the image in the exponential map
of the normal holonomy subbundle, Hol⊥ηpM , that one gets by parallel translating ηp
with respect to ∇⊥, along any piecewise differentiable curve in M . More explicitly

(M)ηp = {γ(1) + η̃p(1) | γ : [0, 1]→M is piecewise differentiable, γ(0) = p and
η̃p is ∇⊥ − parallel along γ,with η̃p(0) = ηp}.

Hol⊥ηpM is always an immersed submanifold of νM and, if the normal holonomy
group is compact, in particular if M is simply connected, it is embedded. Most of
the times we will need the holonomy tube for local results, so we will suppose M
to be simply connected.
Since the holonomy tube (M)ηp is the image in the exponential map of Hol⊥ηpM , if
1 is not an eigenvalue of Aτ⊥γ ηp , for any ∇⊥-parallel transport τ⊥γ ηp of ηp along any
piecewise differentiable curve γ, or, in particular, if ‖ηp‖ is less than the distance
between M and the set of its focal points, then the holonomy tube (M)ηp is an
immersed submanifold of Rn. In this case there is an obvious projection πηp :
(M)ηp →M whose fibres are orbits of the (restricted) normal holonomy group.
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An important local property of the holonomy tube is that, if ηp lies on a principal
orbit of the restricted normal holonomy group, then the holonomy tube has flat
normal bundle [HOT].

Both constructions of parallel (focal) manifolds and holonomy tubes fit together
in a general framework of partial tubes, which were introduced by S. Carter and A.
West [CW].

Isoparametric rank. A useful technique is to combine the two constructions of
parallel focal manifolds and that of holonomy tubes. Namely, given a parallel
normal isoparametric section and a parallel focal manifold Mξ of M we pass to a
holonomy tube with respect to−ξ(q) (at some q) and then we compare the geometry
of M with the one of the tube (Mξ)−ξ(q).

For example, if we do this in the case of the focal manifold which “focalize” an
eigendistribution Ei, as a restatement of Theorem 3.3, we have that if all holonomy
tubes (Mξi)−ξi(q) locally coincide with M , then M is a submanifold with constant
principal curvatures.

Actually, if ξ is a parallel normal isoparametric field and M is not reducible at
any point (i.e., no neighbourhood splits as an extrinsic product), then we have the
following [OW].

Theorem 3.4. Let M be a submanifold of euclidean space and assume that M is
not reducible at any point. Let ξ be an isoparametric parallel normal field to M
which is not umbilical. Then, if q ∈ M , the holonomy tube (Mξ)−ξ(q) around the
parallel (focal) manifold Mξ ⊂ Rn coincides locally with M .

As a consequence of Theorem 3.3, we have [CO]

Theorem 3.5. Let M → Sn−1 ⊂ Rn be a full submanifold which is not reducible at
any point. Suppose that M admits a isoparametric parallel normal field to M which
is not umbilical. Then, M is a submanifold with constant principal curvatures.

If one introduces the notion of isoparametric rank at q of a submanifold M of
Euclidean space as the maximal number of linearly independent parallel isopara-
metric normal sections (defined in a neighbourhood of q), one can restate the above
Theorem as a higher rank rigidity result for submanifolds of the Euclidean sphere
Sn−1 [CO].

Theorem 3.6. Let M → Sn−1 ⊂ Rn be a locally irreducible (i.e. it is not reducible
at any point) full submanifold with isoparametric rank greater or equal to two. Then,
M is a submanifold with constant principal curvatures.

In [OW] it is proved that, on the other hand, irreducible and full submanifolds
of hyperbolic space must have isoparametric rank zero.

Geometric characterization of submanifolds with constant principal curvatures.
One can apply the construction of holonomy tube also to give a proof of the geomet-
ric characterization of submanifolds with constant principal curvatures (Theorem
3.1). Let M be a submanifold of Rn and consider, for ξp ∈ νpM , the holonomy
tube (M)ξp . Recall that (M)ξp has flat normal bundle.

Theorem 3.7. Suppose ξp ∈ νpM lies on a principal orbit of the restricted normal
holonomy group and that ‖ξp‖ is less than the focal distance of M . Then (M)ξp is
isoparametric if and only if M has constant principal curvatures.
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For the proof it is crucial to relate the shape operators compare the shape op-
erators A and Â of M and (M)ξp respectively. In a common normal direction ζ to
M and (M)ξp one has the “tube formula”

Aζp = Âζp |H[(id − Â−ξp)|H]−1 ,

where H denotes the horizontal distribution in the submersion (M)ξp →M .
As a consequence of Theorem 3.7 one gets Theorem 3.1, i.e., a submanifold

M of Euclidean space has constant principal curvatures if and only if it is either
isoparametric or a focal manifold of an isoparametric submanifold.

The homogeneous slice theorem. We have seen that if all fibres of the projection of a
submanifold M onto a full focal manifold Mξi which focalizes an eigendistribution
Ei of a parallel isoparametric normal vector field ξ, are homogeneous under the
normal holonomy then M has constant principal curvatures. We now see that
the converse is also true as a consequence of the following property of the normal
holonomy of a submanifold with constant principal curvatures [CO].

Lemma 3.1. (“Holonomy Lemma”) Let M be a full submanifold of Rn with con-
stant principal curvatures. For any q ∈M the eigenvalues of the shape operator A
locally distinguish different orbits of the restricted normal holonomy group Φ⊥∗q .

In other terms, if ζ and η belong to different orbits of the normal holonomy
group at q then Aζ and Aη have different eigenvalues.

If M ′ is a irreducible full isoparametric submanifold, π : M ′ → M is a focal
manifold, a fibre F of π is union of normal holonomy orbits of the focal manifold.
The eigenvalues of the shape operator of M on the whole fibre F are constant.
Hence, by the Holonomy Lemma, its connected component should consist of only
one orbit. Thus, by the Normal Holonomy Theorem, we get the following important
result from [HOT]

Theorem 3.8. (“Homogeneous Slice Theorem”) The fibres of the projection of an
isoparametric submanifold on a full focal manifold are orbits of an s-representation.

The Theorem of Thorbergsson. We have already mentioned that principal orbits
of s-representations provide examples of isoparametric submanifolds of Euclidean
space. Moreover, as a consequence of a theorem of J. Dadok [Da], if an isoparametric
submanifold is homogeneous, it is an orbit of an s-representation. The codimension
of a homogeneous isoparametric submanifold equals the rank of the symmetric
space of the corresponding s-representation. This is one of reasons for which it
is customary to call the codimension of an isoparametric submanifold, its rank.
Clearly another reason is the fact that νM is flat (see later for a more general
notion of rank of a submanifold).
Already in the 30’s, B. Segre showed that the isoparametric hypersurfaces in Eu-
clidean space are parallel hyperplanes, concentric hyperspheres and coaxial cylin-
ders. In particular, they are all homogeneous. Full irreducible isoparametric sub-
manifolds of codimension two in Euclidean space, or equivalently, isoparametric
hypersurfaces in spheres were studied by E. Cartan, who proved that in some cases
they are homogeneous, but recognized that this was a much harder object of study.
H. Ozeki and M. Takeuchi [OT1] [OT2] in 1975 were the first to find explicit in-
homogeneous examples and a more systematic approach to find inhomogeneous
examples was given by D. Ferus, H. Karcher and H. F. Münzner [FKM].
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As to higher rank, in 1991, G. Thorbergsson [Th] proved that the following

Theorem 3.9. Any irreducible full isoparametric submanifold of Euclidean space
of rank at least three is homogeneous and actually a principal orbit of an s-represen-
tation.

The proof of Thorbergsson uses Tits buildings and the Homogeneous Slice The-
orem. There is an alternative proof of Thorbergsson’s result using the theory of
homogeneous structures on submanifolds [O2] and normal holonomy. The idea of
the proof is the following. By a result in [OS], if there exists on a submanifold M
of Rn a metric connection (called canonical connection) ∇c such that ∇cα = 0 and
∇c(∇ −∇c) = 0, then M is an orbit of an s-representation. Given an irreducible
full isoparametric submanifold of Euclidean space of codimension at least three one
can focalize at the same time any two eigendistributions. The corresponding fibres
are, by the Homogeneous Slice Theorem orbits of s-representations. The way is con-
structed a canonical connection ∇c on M is then by gluing together the canonical
connections that one has naturally on these fibres. The proof of the compatibility
between these canonical connections is based on the relation between the normal
holonomy groups of the different focal manifolds. The common eigendistributions
of the shape operator of M are parallel with respect to the canonical connection.
This implies readily that ∇cα = 0. To show that ∇c(∇−∇c) = 0 one has to use the
geometric fact that the ∇c parallel transport along a horizontal curve with respect
to some focalization equals the ∇⊥ parallel displacement in the focal manifold along
the projection of the curve.

√

Homogeneous submanifolds with higher rank.
The last result shows that orbits of the s-representations agree, up codimension two,
with isoparametric submanifolds and their focal manifolds of the euclidean space.
Then it is natural to find the geometric reasons for that a (compact) homogeneous
submanifold G.p = Mn, n ≥ 2 will be an orbit of an s-representation. Note that
if M is isoparametric then G acts polarly and then Dadok’s theorem implies that
M is an orbit of an s-representation. Unfortunately, there exists orbits which are
submanifolds with principal curvatures and such that the corresponding isopara-
metric submanifold (i.e. the holonomy tube) is inhomogeneous (see [FKM]). Then,
it seems natural to study how far the dimension of the flat factor of the normal
holonomy group of an orbit force it to be an s-representation orbit. More precisely,
let us say that the rank of a submanifold is defined to be the maximal number of
linearly independent (locally defined) parallel normal vectors fields. The following
theorem of C. Olmos [O3] illustrate how the rank is related to the fact of being an
s-representation.

Theorem 3.10. Let G.p = Mn, n ≥ 2, be an irreducible full homogeneous sub-
manifold (contained in a sphere) of the Euclidean space with rank (Mn) ≥ 2. Then
Mn an orbit of the isotropy representation of a simple symmetric space.

This Theorem can be derived by Theorem 3.6 and the Theorem of Thorbergsson
3.9 together with the observation that for homogeneous submanifolds the rank
equals the isoparametric rank. This is a consequence of a result that we will explain
in the next section stating that parallel transport in the maximal parallel and flat
part of the normal bundle is given by the group action. Thus a parallel normal
section is isoparametric.
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The following result show that also the rank forces that an orbit must be con-
tained in a sphere (see [O4]).

Theorem 3.11. Let G.p = Mn, n ≥ 2, be an irreducible and full homogeneous
submanifold of the Euclidean space with rank (Mn) ≥ 1. Then Mn is contained in
a sphere.

We resume all the above facts in the following theorem.

Theorem 3.12. Let G.p = Mn, n ≥ 2, be an irreducible and full homogeneous
submanifold of the Euclidean space. Then,

(i) rank (Mn) ≥ 1 if and only if Mn is contained in a sphere.
(ii) rank (Mn) ≥ 2 if and only if Mn is an orbit of an s-representation.

The following corollary uses the fact that minimal homogeneous submanifolds of
euclidean spaces must be totally geodesic (see [D]).

Corollary 3.1. Let G.p = Mn, n ≥ 2, be an irreducible and full homogeneous
submanifold of the Euclidean space with parallel mean curvature vector H. Then,
H 6= 0 and Mn is either minimal in a sphere, or it is an orbit of an s-representation.

4. Homogeneity and holonomy

In this section we briefly relate homogeneity and holonomy. In particular, we are
interested on the computation of the holonomy group in homogeneous situations.
We put special emphasis on the tangent bundle of a homogeneous riemannian man-
ifolds and the normal bundle of a homogeneous submanifold of euclidean space.
But, we will work in the first part on the framework of arbitrary homogeneous
(pseudo)metric vector bundles with a connection. This is due to the fact that, in
our opinion, the main ideas are better understood in this general context. Another
reason is that one can prove, without extra efforts, very general results which could
have applications to the pseudoriemannian case.

Let E π→M be a finite dimensional real vector bundle over M with a covariant
derivative operator ∇ (also called a connection), which corresponds, as usual, to
a connection H in the sense of distributions (i.e., (1) H ⊕ ν = TE, where ν is
the vertical distribution; (2) (µc)∗(Hq) = Hµc(q), for all c ∈ R, where µc is the
multiplication by c). Let 〈 , 〉 be a C∞ metric on the fibers and let g be a riemannian
metric on M (in fact, 〈 , 〉 and g, needs not to be positive definite). We assume that
there is a Lie group G which acts on E by bundle morphisms, whose induced action
on M is by isometries and it is transitive. Moreover, we assume that the action on
E preserves both the metric on the fibers and the connection. A vector X in the Lie
algebra G of G induce, in a natural way, a Killing vector field X̃ both on E and M
(i.e. if ξp ∈ E (resp. p ∈M) then X̃(ξp) := X.ξp := d

dt |t=0 exp(tX)ξp (resp.X̃(p) :=
X.p := d

dt |t=0 exp(tX)p, where exp(tX) is the monoparametric subgroup associated
with X).

We will always get in mind, as remarked above, the following two important
cases:

a) M = G/H is a homogeneous riemannian manifold, where G is a Lie subgroup
of the isometry group I(M), E = TM is the tangent bundle and ∇ is the usual
Levi-Civita connection.
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b) M = G.v, where v ∈ RN and G is a Lie subgroup of the isometry group
I(RN ). Here, E = ν(M) is the normal bundle endowed with the usual normal
connection ∇⊥.

The bundle E is endowed with the so called Sasaki (riemannian) metric g̃.
Namely,

i) H is perpendicular to the vertical distribution ν, defined by the tangent
space to the fibers Eq = π−1(q).

ii) The restriction of g̃ to ν coincides with the metric on the fibers.
iii) π is a riemannian submersion.

The Sasaki metric may be regarded as follows. If c̃(t) is a curve in E then it may
be viewed as a section along the curve c(t) = π(c̃(t)). In this way, g̃(c̃ ′(0), c̃ ′(0)) =
〈Ddt |0c̃(t),

D
dt |0c̃〉+ g(c′(0), c′(0)).

Observe that G acts by isometries, with respect to the Sasaki metric, on E. As
it is well known, the fibers Eq, q ∈ M , are totally geodesic submanifolds of E. In
fact, if c(t) is a curve in M starting at q, then the parallel transport τ ct along c(t)
defines an isometry from Eq into Ec(t). Let γ(s) be a curve in Eq and consider
f(s, t) = τ ct (γ(s)). We have that 〈τ ct (γ′(s)), τ ct (γ′(s))〉 does not depend on t and so,
0 = ∂

∂t g̃( ∂∂sf,
∂
∂sf) = 2g̃(D∂t

∂
∂sf,

∂
∂sf) = 2g̃( D∂s

∂
∂tf,

∂
∂sf) = 2〈A ∂

∂t f
∂
∂sf,

∂
∂sf〉, where

A denotes the shape operator of Eq as a submanifold of E. Then Eq is totally
geodesic.

We now describe how the holonomy algebra (i.e. the Lie algebra of the holonomy
group of the connection ∇ of the bundle E π→M) is linked with the group G. As we
saw above the fibres Eq of the bundle E are totally geodesic. Then, the projections
to Eq of the Killing fields X̃ of E, induced by any X ∈ G, gives a Killing field
Bq(X) of the fiber Eq. (Observe that this projection vanishes at 0q, then Bq(X)
belongs to so(Eq), the Lie algebra of SO(Eq)). The Lie algebra spanned by these
Bq(X) is included in the Lie algebra of the normalizer N(Holq) of the holonomy
group Holq in SO(Eq). In fact, this is due to the following geometric reasons:

For any curve c inM and g ∈ G, τg.ct = g.τ ct .g
−1, sinceG preserves the connection

(and so, g.Holp.g−1 = Holg.p, where Hol denotes holonomy group of the connection
on the bundle E).

Let τXt be the flow on E associated to the horizontal component [X̃]H of the
Killing field X̃ (i.e. if ξp ∈ Ep, then τXt (ξp) is the parallel transport of ξp along
the curve exp(sX).p from 0 to t). Let FXt be the flow of the Killing field X̃ on E
(i.e. FXt (ξp) := exp(tX)ξp). Then, the fact that isometries and parallel transport
are geometric objects implies that τXt ◦ FXs = FXs ◦ τXt . Taking into account this
identity, one finds that φt := τX−t◦FXt defines a one parameter group of isometries of
E with the following properties: (i) φt(Eq) = Eq, (ii) φt|Eq belongs to N(Holq), the
normalizer in SO(Eq) of the holonomy group Holq and (iii) φt|Eq = eBq(X)t, where
Bq(X) is the claimed projection of the Killing field X to Eq (i.e. Bq(X)ξq = [X.ξq]ν ,
where [ ]ν denotes vertical projection). Note that (iii) is a simple consequence of
the general fact that if two flows FXt , F

Y
t commute then FXt ◦ FYt = FX+Y

t .

The following theorem makes precise the above description and establishes, using
the transitivity of G on M , the inclusion of the holonomy algebra into the Lie
algebra generated by the Bq(X) (see [OSv]).
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Theorem 4.1. The Lie algebra Lq generated by {Bq(X) : X ∈ G} contains the Lie
algebra of the holonomy group Holq and it is contained in the Lie algebra N (Holq)
of its normalizer in SO(Eq).

Proof. In order to illustrate better the main ideas we will only prove a simplified
version of the theorem. The inclusion in the normalizer was observed before. Let
Lq denote the Lie group associated to Lq and let ξq ∈ Eq. Let us consider Sξq :=
G.Lq.ξq ⊂ E. Note that either Sξp ∩ Sηq = ∅ or Sξp = Sηq for all ηp, ξq ∈ E.

It is standard to show that Sξq is a subbundle of E over M (of course not a
vector subbundle). Observe that the connected component of the fiber at q of Sξq
is Lq.ξq, since the connected component of the isotropy subgroup Gq is contained
in Lq. So, the restrictions X̃|Sξq and [X̃]ν|Sξq are both tangent to Sξq and hence

the horizontal component [X̃]H|Sξq is also tangent to Sξq . Since G acts transitively

on M , {[X̃]H(ξq) : X ∈ G} coincides with the horizontal space Hξq (note that
π∗(X̃) = X).

Then, Hη ⊂ TηSξq for all η ∈ Sξq . This implies that Hol∗q .ξq ⊂ Lq.ξq, where Hol∗q
is the connected component of Holq (i.e., the restricted holonomy group). In other
words, any orbit of Hol∗q is contained in an orbit of Lq. For obtaining the inclusion
Hol∗ ⊂ Lq one has to carry out a similar argument but replacing E by the principal
bundle over M of orthonormal basis of E.

√

Applications.
• E = TM , the tangent bundle: in this case we will show that Bq(X) = (∇X̄)q,
where X̄(p) = X.p, p ∈M (cf. [N]).

Bq(X).ξ = D
dt |0 exp(tX).ξ = D

∂t |0
∂
∂s |0 exp(tX).γξ(s)

= D
∂s |0

∂
∂t |0 exp(tX).γξ(s) = D

ds |0X.γξ(s) = ∇ξX̄

where γξ is the geodesic of M with initial condition ξ.
If M is locally irreducible and the scalar curvature is not (identically) zero,

then the restricted holonomy group Φ∗q of M is non exceptional, i.e. it acts on
TqM as an s-representation (see [Sim], pp.229). Then, Φ∗q coincides with the con-
nected component of its normalizer in SO(TqM). So, the Lie algebra of Φ∗q is
algebraically generated by {Bq(X) : X ∈ G}. More generally, if M is not Ricci flat
the same conclusion holds due to [K] and is now a consequence of next proposition.
But a homogeneous riemannian manifold cannot be Ricci flat, unless it is flat due
Alekseevsky-Kimel’feld [AK] (a conceptual proof of it is due to Heintze and ap-
peared in [BB] pp. 553). Then the holonomy algebra can always be calculated in
this way for a locally irreducible M(the so called Kostant’s method). The following
result is essentially due to Lichnerowicz. Since it is difficult to find out through the
literature we include a simple proof of it.

Proposition 4.1. Let Md be a riemannian manifold which is irreducible at q and
let g be the Lie algebra of the local holonomy group Φlocq at q. Let n be the normalizer
of g in so(TqM). Then, n is bigger than g if and only if M is Kähler and Ricci flat
near q.

Proof. Let us endow so(TqM) with the usual scalar product 〈A,B〉 = −tr(A.B).
If we decompose orthogonally n = g⊕ k, then g and k are ideals of n and [g, k] = 0
and so k commutes with g. Choose now 0 6= J ∈ k. Then J2 is a symmetric
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endomorphism which commutes with g. So, J2 commutes with Φlocq and then near
q each eigenspace of J2 defines a parallel distribution. Since M is locally irreducible
at q, using de Rham decomposition theorem, we conclude that J2 = −c2Id and so
we may assume, by rescaling J , that J2 = −Id. Extending J by parallelism we
obtain a parallel almost complex structure on Md, so d = 2n and the Nijenhuis
tensor vanish. Thus, M is Kähler near q, in virtue of the well-known Nirenberg-
Newlander Theorem.

If R is the curvature tensor of M at q then Ru,v commutes with J , for any u, v ∈
TqM , sinceRu,v belongs to the holonomy algebra g. Observe also that 〈Ru,v, J〉 = 0.
If ( , ) denotes the scalar product in TqM and e1, Je1, · · · , en, Jen is an orthonormal
basis, as usual, we write r(X,Y ) =

∑
i(RX,eiei, Y ) the Ricci tensor and Ricc(X)

the symmetric endomorphism associated with it (i.e. r(X,Y ) = (Ricc(X), Y ) for
all X,Y ∈ TM). Let us compute, as in [Be, pp. 74],

−(JRicc(X), Y ) = (Ricc(X), JY ) = Σn1 (Rei,XJY, ei) = Σn1 (JRei,XY, ei)

using Bianchi identity

= Σn1 (JRY,Xei, ei) + Σn1 (JRei,YX, ei) = −〈J,RY,X〉+ Σn1 (Rei,Y JX, ei)
= (Ricc(Y ), JX) = −(JRicc(Y ), X).

Then J.Ricc is symmetric. But the symmetric endomorphism Ricc commutes
with J , as an easy calculation shows from the fact that J commutes with all Ru,v.
Then J.Ricc is skew-symmetric and so null. Hence the Ricci tensor vanishes at
q. Since M is Kähler the metric is analytic and so the local holonomy group
at any point p near q is conjugated, by means of parallel transport, to the local
holonomy group at q. So, with the same argument, we obtain that M is Ricci
flat at p. Note that the above computations also shows that in a Kähler manifold
(Ricc(X), JY ) = r(X, JY ) = − 〈RX,Y ,J〉2 .

Conversely, assume that M is Ricci flat and Kähler near q ∈ M . We claim
that J(q) ∈ n and J(q) /∈ g. It is clear that J(q) ∈ n. The above formula and the
parallelism of J shows that 〈τ−1

γ RXp,Ypτγ , J(q)〉 = 0, where γ is any curve in a small
neighborhood of q which begin at q and finish at p and τγ is the parallel transport
along γ. So, the Ambrose-Singer Holonomy Theorem implies that J(q) ⊥ g and
the proof is complete.

√

• E = ν(M), the normal bundle of a submanifold of RN : recall that in this case the
non trivial part of the normal holonomy representation is an s-representation. So,
the semisimple part of the normal holonomy group coincides with the connected
component of its own normalizer (in the orthogonal group). If M is an irreducible
submanifold which is not a curve, then the group G gives the parallel transport
in ν0(M) (the maximal parallel and flat subbundle of ν(M) (see [O3]). So, in
this case, the Lie algebra of the normal holonomy group is algebraically generated
by {Bq(X) : X ∈ G}. Moreover, we have that Bq(X) can be regarded as the
projection to the affine subspace q+ νq(M) of the Killing field of RN (restricted to
this normal space) induced by X ∈ G. So, the normal holonomy group measures
how far is G from acting polarly and M from being a principal orbit (in which case
this projection would be trivial from the definition of polarity).

Polar actions on the tangent bundle and symmetry. For polar actions and rep-
resentations we refer to [Da, PT2, PT1, HPTT]. Let M be a complete simple
connected riemannian manifold and let TM be its tangent bundle endowed with
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the Sasaki metric. We will regard M as the (riemannian) embedded submanifold
of TM which consists of the zero vectors. We have the following characterization
of symmetric spaces in terms of polar (or equivalently, hyperpolar) actions on TM .
The following result was obtained by J. Eschenburg and the third author when
writing the article [EO].

Theorem 4.2. Let M be a simply connected complete riemannian manifold. Then
the tangent bundle TM admits a polar action having M as an orbit if and only if
M is symmetric.

Proof. Assume M is irreducible. Let G acts polarly on TM and G.0q = M . If
Σ is a section for this action with q ∈ Σ, then Σ ⊂ TqM , since horizontal and
vertical distributions are perpendicular with respect to the Sasaki metric. Since Σ
meets G-orbits perpendicularly, we have that the horizontal distribution of TM is
tangent to the G-orbits. Then the parallel transport of any v ∈ TqM belongs to
G.v. If the codimension of G.v is greater than 1, then the holonomy group does
not act transitively on the (unit) sphere of TqM . Then M is symmetric by the
theorem of Berger [B1, Sim]. If G.v has codimension 1 then M must be two point
homogeneous and hence symmetric by [Wa] (for a conceptual proof see [Sz]). If
M = M1 × · · · ×Mk is reducible, by projecting Killings to the factors we obtain a
bigger group, let us say G̃ = G1 × · · · ×Gk and such that Gi acts polarly on Mi.

Let us show the converse. As we note in Section 2, the transvection group Tr(N)
acts transitively on any holonomy bundle. Then, the polarity follows from the fact
the holonomy representation acts polarly.

√

Note that from the above results follows that an irreducible homogeneous space
in which the holonomy agree with the isotropy must be symmetric.

5. Lorentzian holonomy and homogeneous submanifolds of Hn

In this section we show how the theory of homogeneous submanifolds of the hy-
perbolic space Hn can be used to obtain general results on the action of a connected
Lie subgroup of O(n, 1) on the lorentzian space Rn,1, namely,

Theorem 5.1. [DO] Let G be a connected (non necessarily closed) Lie subgroup of
SO(n, 1) and assume that the action of G on the Lorentzian space Rn,1 is weakly
irreducible. Then either G acts transitively on Hn or G acts transitively on a
horosphere of hyperbolic space. Moreover, if G acts irreducibly, then G = SO0(n, 1).

We will explain the concept of weak irreducibility later, and we will also sketch
the proof of the above Theorem. First, we observe that Theorem 5.1 has an im-
mediate corollary, which provides a purely geometric answer to a question posed in
[BI],

Corollary 5.1. (M. Berger [B1], [B2]) Let Mn be a Lorentzian manifold. If the
restricted holonomy group acts irreducibly on TMn it coincides with SO0(n, 1). In
particular, if Mn is locally symmetric it has constant sectional curvature.

Before giving the ideas of the proof of the Theorem 5.1, we recall some basic
facts of hyperbolic geometry.

Let (V, 〈, 〉) be a (real) vector space endowed with a nondegenerate symmetric
bilinear form of signature (n, 1). It is standard to identify V with Lorentzian space
Rn,1 and Aut(〈, 〉) ∼= O(n, 1). It is well known that the hyperbolic space Hn can
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be identified with a connected component of the set of points p ∈ Rn,1 such that
〈p, p〉 = −1. As in the case of the sphere, the distance d = d(p, q) between two points
of Hn can be computed by the equation: cosh(d) = −〈p, q〉. This equation comes
from the fact that geodesics has the form exp(tvp) = cosh(‖vp‖t)p+sinh(‖vp‖t) vp

‖vp‖ .
Observe, that a connected subgroup of O(n, 1) acts on Hn by isometries. An affine
subspace q + V of Rn,1 is called euclidean, lorentzian or degenerate, depending on
whether the restriction of 〈, 〉 to V is positive definite, indefinite or degenerate. A
horosphere is a submanifold of the hyperbolic space which is obtained by intersecting
Hn with an affine degenerate hyperplane. Thus, a degenerate hyperplane q + V
produces a foliation of Hn by parallel horospheres. The infinity Hn(∞) is the
set of equivalence classes of asymptotic geodesics. It is not difficult to see that two
geodesics exp(t.vp) and exp(t.vp′) are asymptotic if and only if vp

‖vp‖+p = λ( v′p
‖v′p‖

+p′)
for some real number λ. As a consequence we can identify the infinity Hn(∞) with
the set of degenerated hyperplanes { vp

‖vp‖+p}⊥. In this way a point z at the infinity
defines a foliation of Hn by parallel horospheres. We say that the horosphere Q is
centred at z ∈ Hn(∞) if Q is a leaf of that foliation.

An action of a subgroup G of O(n, 1) is called weakly irreducible if it leaves
invariant only degenerate subspaces.

A fundamental tool in the proof of the Theorem 5.1 is the following result.

Theorem 5.2. [DO] Let G be a connected (non necessarily closed) Lie subgroup of
the isometries of hyperbolic space Hn. Then one of the following assertions holds:

i) G has a fixed point.
ii) G has a unique non trivial totally geodesic orbit (possibly the full space).
iii) All orbits are included in horospheres centred at the same point at the infinity.

The following fact plays an important role in the proof of Theorem 5.2: if a
connected Lie subgroup (non necessarily closed) of isometries hyperbolic space Hn

has a totally geodesic orbit (maybe a fixed point) then no other orbit can be minimal
[DO]. A simple consequence of this fact and Theorem 5.2 is the following theorem.

Theorem 5.3. [DO] A minimal (extrinsically) homogeneous submanifold of hyper-
bolic space must be totally geodesic.

The same fact is also true in Euclidean space [D] (see also [O4]). On the other
hand, it is well-known that in spheres there exist abundant many non totally ge-
odesic minimal (extrinsically) homogeneous submanifolds [H], [H-L]. Also, there
exist non totally geodesic minimal (extrinsically) homogeneous submanifolds in
non compact symmetric spaces [Br]. It is interesting to note that a subgroup G of
isometries of Euclidean space has always a totally geodesic orbit (possibly a fixed
point or the whole space).

A key fact in the proof of Theorem 5.2 is the following observation: if a normal
subgroup H of a group G of isometries of Hn has a totally geodesic orbit H.p of
positive dimension then G.p = H.p. This is because G permutes H−orbits and then
one can use the fact that totally geodesic orbits are unique to conclude H.p = G.p.

The next step for proving Theorem 5.2 is to study separately the two following
cases: G is semisimple (of noncompact type) and G is not semisimple. In this
last case one proves first the theorem for abelian groups. The above observation,
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applied to a normal abelian subgroup of G, implies that either G must translate
a geodesic or G fixes a point at the infinity or G admits a proper totally geodesic
invariant submanifold. It follows that a connected Lie subgroup G of O(n, 1) which
acts irreducibly on Rn,1 must be semisimple.

In case that G is a semisimple Lie group we use an Iwasawa decomposition
G = NAK. Then one proves that the proper (solvable) subgroup NA of G has a
minimal orbit which is also a G orbit. For this choose a fixed point p of the compact
group K (which always exists by a well known Theorem of Cartan). It is possible
to prove that the isotropy subgroup Gp of G at p agrees with K. Then the mean
curvature vector H of the orbit G.p = NA.p is invariant by the isotropy subgroup
at p and, if it is not equal to zero, then the G−orbits through points on normal
K−invariant geodesics turn out to be homothetical to the orbit G.p. Observe that
these orbits are also NA orbits. Finally, one can control the volume element of
these orbits in terms of Jacobi fields and prove that there exists a minimal G orbit
which is also a NA orbit.

Finally, one proves that if G has a fixed point z at the infinity then either G
has a totally geodesic orbit (possibly G acts transitively) or it has fixed points in
Hn or all orbits of G are contained in horospheres centred at the same point z at
the infinity. This is because in case G has neither fixed points in Hn nor its orbits
lie in horospheres, then one can construct a codimension one normal subgroup N
of G such that all N -orbits are contained in the horosphere foliation defined by z.
Then, N acts on horospheres by isometries and one use the fact that N must have a
totally geodesic orbit in each horosphere (because each horosphere is an Euclidean
space). Finally, it is not hard to show that the union of all these totally geodesic
orbits over all horospheres is a totally geodesic G−invariant submanifold of Hn.

Now an induction argument involving the dimension of the Lie group G and
the dimension of the corresponding hyperbolic space Hn completes the proof of
Theorem 5.2.

Then the proof of the Theorem 5.1 runs as follows: Assume that G does not act
transitively in Hn. Then, G-orbits must be contained in horospheres. But if an
orbit is a proper submanifold of one horosphere, one can construct a proper totally
geodesic G−invariant submanifold as the union of the parallel orbits to totally
geodesic orbits of the action of G restricted to the horosphere. Then one obtains
a contradiction because totally geodesic submanifolds are obtained by intersecting
the hyperbolic space Hn with lorentzian subspaces. Thus, G must act transitively
on each horosphere.

Finally, if G acts irreducibly then G must act transitively on the hyperbolic space
and G must be semisimple of noncompact type by a previous observation. Then,
showing that the isotropy group at same point agrees with a maximal compact
subgroup, the second part of the theorem follows from the theory of Riemannian
symmetric spaces of noncompact type [He].
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I, Tôhoku Math. J. 27 (1975), 515-559.

[OT2] Ozeki, H. and Takeuchi, M.: On some types of isoparametric hypersurfaces in spheres

II, Tohoku Math. J. 28 (1976), 7-55.

[OW] Olmos, C. and Will, A.: Normal holonomy in Lorentzian space and submanifold ge-

ometry, Indiana Univ. Math. J. (to appear).

[PT1] Palais, R and Terng, C.-L.:A general theory of canonical forms, Trans. Am. Math.

Soc. 300 (1987), 771-789.

[PT2] Palais, R and Terng, C.-L.: Critical Point Theory and Submanifold geometry, Lect.

Notes in Math. 1353, Berlin Heidelberg New York: Springer 1988.

[Sal] Salamon, S. M.: Riemannian geometry and holonomy groups. Longman, Harlow, 1989.

[Sim] Simons, J.:: On the transitivity of holonomy systems, Ann. Math. 76 (1962), 213–234.
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