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Abstract
We study an assertion in Riemann’s Habilitation Lecture of 1854. Namely,

the determination of the metric given nn−1
2 sectional curvatures.

1 Introduction

Modern differential geometry was born with the Riemann’s Habilitation Lecture
“Ueber die Hypothesen, welche der Geometrie zu Grunde liegen” (On the Hypothe-
ses which lie at the Foundations of Geometry) of 1854 at Göttingen [R], [We]. In
this lecture Riemann defines the curvature tensor R. One says that M is flat if M
is locally isometric to IRn with the usual metric; the tensor R vanishes if and only
if the metric is flat. M. Spivak [Sp1] translates Riemann’s Lecture and explains it
in modern terms. Let

Q(X, Y ) :=
〈R(X, Y )Y,X〉
| X ∧ Y |2

be the sectional curvature. Spivak [Sp1, pp. 4B-25], [Sp2, pp. 176] makes the
following:

Assertion 1.1 If M is n-dimensional and if Q=0 for nn−1
2

independent 2-dimensional
subspaces of each Mq, then M is flat.

It is well known that the metric is flat if and only if the sectional curvature
Q vanishes identically. The number nn−1

2
of Assertion 1.1 is “deduced” from the

following “counting argument” given by Riemann: the metric ds2 =
∑
gijdxidxj

contains n(n+1)
2

functions while a new coordinate system involves only n functions,

so that we can change only n of the gij, leaving n(n−1)
2

other functions which depend

on the metric; thus there should be some set of n(n−1)
2

functions which will determine
the metric completely (see [Di, pp.198], [Sp1, pp. 4B-4]). We quote from the original
text as follows [We], [R]:
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“... wenn also das Krümmungsmass in jedem Punkte in nn−1
2

Flächenrichtungen
gegeben wird, so werden daraus die Massverhältnisse der Mannigfaltigkeit sich
bestimmen lassen, wofern nur zwischen diesen Werthen keine identischen Re-
lationen stattfinden, was in der That, allgemein zu reden, nicht der Fall ist.”
“... es reicht aber nach der frühern Untersuchung, um die Massverhältnisse zu
bestimmen, hin zu wissen, dass es in jedem Punkte in nn−1

2
Flächenrichtungen,

deren Krümmungsmasse von einander unabhängig sind, Null sei. ”
We remark that this text is omitted by Hermann Weyl in his discussion of Rie-

mann’s ideas. Relating the curvature tensor to the metric is a very classical subject
and we refer to [Ku, Ya, B] for further details.

In this note, we construct several families of counter-examples to Assertion 1.1.
In §2, we discuss the space of algebraic curvature tensors and construct an algebraic
curvature tensor in dimension 3 which has vanishing sectional curvature on 3 in-
dependent 2 planes; this shows that Assertion 1.1 is not an algebraic consequence
of the identities of the curvature tensor. Let H2, S2 and T k denote the hyperbolic
plane, the sphere and the torus with the metrics of constant curvature −1, 1, and
0. Give M = S2 ×H2 × T k the product metric; this manifold is not flat. In §3, we
construct local orthonormal frames {ei} and local coordinate frames ∂i for the tan-
gent bundle so that the sectional curvatures Q(ei, ej) and Q(∂i, ∂j) vanish for i 6= j.
Again, this shows Assertion 1.1 is false. Finally, in §4, we use warped products
to construct still other examples of non-flat metrics which are counter-examples to
Assertion 1.1. It is a pleasant task to thank Professors V. Cortez and P. Gilkey for
helpful discussions concerning these matters.

2 An algebraic example

Let V be an n-dimensional real vector space and let 〈, 〉 be a positive definite inner
product defined on V . A bilinear R : V × V → End(V ) is called an algebraic
curvature tensor if it has the following three properties:

〈R(x, y)z, w〉 = −〈R(y, x)z, w〉 (1)

〈R(x, y)z, w〉 = −〈R(x, y)w, z〉 (2)

〈R(x, y)z, w〉+ 〈R(y, z)x,w〉+ 〈R(z, x)y, w〉 = 0 (3)

These three properties then imply the following symmetry property

〈R(x, y)z, w〉 = 〈R(z, w)x, y〉

see [KN, pp. 198] or [Sp1, pp. 4D-17]) for details. We can also identify the space of
algebraic curvature tensors with the space K of symmetric endomorphisms of the
second exterior product Λ2(V ) such that:

〈K(x ∧ y), z ∧ w〉+ 〈K(y ∧ z), x ∧ w〉+ 〈K(z ∧ x), y ∧ w〉 = 0 (4)
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Here the inner product on Λ2(V ) is induced from the inner product on V . We say
that a collection of 2-dimensional subspaces are linearly independent if the associated
elements of Λ2(V ) are linearly independent in Λ2(V ). For example, let {e1, ..., en}
be a basis of V . Then the 2-subspaces spanned by {ei, ej}i 6=j are independent. The
bi-quadratic tensor 〈R(x, y)y, x〉 determines R, we refer to [KN, pp. 198] for the
proof of the following result:

Proposition 2.1 Let R an algebraic curvature tensor such that 〈R(x, y)y, x〉 = 0
for all x, y. Then R = 0.

The space of curvature tensors has dimension n2(n2−1)
12

, see for example M. Berger
[B, pp. 63]. Thus if n = 3, then equations (3) and (4) follow from equations (1)
and (2). Let {e1, e2, e3} be an orthonormal basis for V . We define a symmetric
endomorphism K of Λ2(V ) by:

K(e1 ∧ e2) = e3 ∧ e1, K(e2 ∧ e3) = 0, K(e3 ∧ e1) = e1 ∧ e2

Note that K is a non-trivial algebraic curvature tensor with the following three
vanishing sectional curvatures:

QK(e1 ∧ e2) = QK(e2 ∧ e3) = QK(e3 ∧ e1) = 0.

More generally let n ≥ 3 and let {e1, ..., en} be an orthonormal basis for V . If
we impose the condition that QK(ei ∧ ej) = 0 with i < j, then we have imposed
n(n−1)

2
conditions. Since the dimension of the space of algebraic curvature tensors

is n2(n2−1)
12

> n(n−1)
2

, then a simple counting argument shows there are non-trivial
algebraic curvatures with QK(ei ∧ ej) = 0 for i < j; thus Assertion 1.1 fails in the
algebraic setting.

3 Curvature zero 2 planes in Sa ×Ha × T b

In this section we discuss two examples showing Assertion 1.1 is false. Let Ha, Sa,
and T b be spaces of constant sectional curvature −1, +1, and 0 where a ≥ 2. We
begin by studying orthonormal frame fields.

Proposition 3.1 Let M(a, b) := Sa×Ha×T b with the product metric where a ≥ 2.
There exists a local orthonormal frame {ei} for the tangent bundle of M(a, b) so that
Q(ei ∧ ej) = 0 for 1 ≤ i < j ≤ 2a+ b.

Proof. Let {ui} and {vi} be local orthonormal frames for the tangent bundles
of Sa and Ha for 1 ≤ i ≤ a. Let {wj} be a local orthonormal frame for the tangent
bundle of T b for 1 ≤ j ≤ b. Define

e2i−1 := ui+vi√
2

for 1 ≤ i ≤ a, e2i := ui−vi√
2

for 1 ≤ i ≤ a,

e2a+j := wj for 1 ≤ j ≤ b.

3



The {ek} for 1 ≤ k ≤ 2a + b is a local orthonormal frame for the tangent space of
M(a, b) := Sa ×Ha × T b. We have 〈R(ui, wj)wj, ui〉 = 0, 〈R(vi, wj)wj, vi〉 = 0, and
〈R(vi, wj)wj, vi〉 = 0. Thus Q(ei ∧ ej) = 0 if either i > 2a or j > 2a. We also have
〈R(ui1 , ui2)ui2 , ui1〉 = +1 and 〈R(vi1 , vi2)vi1 , vi2〉 = −1 for i1 < i2. We can show that
Q(ei ∧ ej) = 0 for i ≤ 2a and j ≤ 2a by computing:

〈R(e1, e2)e2, e1〉 = 0

〈R(e1, e3)e3, e1〉 = 1
4
{〈R(u1, u2)u2, u1〉+ 〈R(v1, v2)v2, v1〉} = 0

〈R(e1, e4)e4, e1〉 = 1
4
{〈R(u1, u2)u2, u1〉+ (−1)2〈R(v1, v2)v2, v1〉} = 0 etc. ut

Proposition 3.1 deals with orthonormal frames. We now turn to coordinate
frames. If (x1, ..., xn) is a system of local coordinates, set ∂x

i := ∂
∂xj

.

Proposition 3.2 Let M(2, b) := S2 × H2 × T b. There exist local coordinates
(u1, ..., u4+b) on M(2, b) so that Q(∂u

i ∧ ∂u
j ) = 0 for 1 ≤ i < j ≤ 4 + b.

Let ω be the volume form. Before beginning the proof of Proposition 3.2, we
recall the following technical result and refer to see [K, pp. 6] for details:

Lemma 3.3 Let Mn be an orientable Riemannian manifold. Then around each
point there exists a coordinate system {x1, ..., xn} such that ω(∂x

1 , ..., ∂
x
n) = 1.

Proof of Proposition 3.2. We use lemma 3.3 to find local coordinates (x1, x2)
and (y1, y2) on S2 and H2 so that ω(∂x

1 , ∂
x
2 ) = 1 and ω(∂y

1 , ∂
y
2 ) = 1. Let (z1, ..., zb)

be the usual flat coordinates on T b. Define local coordinates on S2 ×H2 × T b by:

u1 := x1 + y1, u2 := x1 − y1, u3 := x2 + y2, u4 := x2 − y2,

and uk+4 = wk for 1 ≤ k ≤ b. We then have

∂u
1 = ∂x

1 + ∂y
1 , ∂u

2 = ∂x
1 − ∂

y
1 , ∂u

3 = ∂x
2 + ∂y

2 , ∂
u
4 = ∂x

2 + ∂y
2 ,

and ∂u
4+k = ∂w

k for k > 0. IfN is a Riemann surface with constant sectional curvature
ε, then 〈R(x, y)y, x〉 = εω(x, y). Thus, the calculations performed in the proof of
Proposition 3.1 show Q(∂u

i ∧ ∂v
i ) = 0. ut

4 Curvature zero 2 planes in warped products

We can use warped products to construct additional examples where Assertion 1.1
fails. We adopt the notation of [O, pp. 210].

Proposition 4.1 Let M = B ×f F be a warped product, where B is a small open
ball around (0, 0) in IR2, where f(x, y) = x + y + xy + 1, is positive and where
F = IR. Then M is not flat. Furthermore Q(∂x ∧ ∂y) = 0, Q(∂x ∧ ∂z) = 0, and
Q(∂y ∧ ∂z) = 0.
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Proof. We use [O, pp. 210, Proposition 42], to compute:

〈R(∂x, ∂y)∂x, ∂z〉 = 0, 〈R(∂x, ∂z)∂x, ∂z〉 = 0,

〈R(∂y, ∂z)∂y, ∂z〉 = 0, 〈R(∂x, ∂z)∂z, ∂y〉 = f. ut

Proposition 4.1 generalizes to higher dimensions by taking products with flat
tori.

5 Concluding comments

In order to solve the local equivalence problem (i.e. when two metrics g1,g2 on a
differentiable manifold Mn differ (locally) by a diffeomorphism.) Riemann tried to
compute nn−1

2
Diff(Mn)-equivariant functions (i.e. K(g2)(p) = K(g1)(f(p)) for all

f ∈ Diff(Mn), p ∈Mn, g2 = f ∗g1). The Gaussian curvature K is such a function
when n = 2. To do this, Riemann expanded the metric in normal coordinates and
defined a mapQ fromMn, the space of Riemannian metrics onMn, to C∞(G2(Mn)),
where G2(Mn) is the two Grassmannian bundle over Mn. In other words, Q(g)(πp)
is the sectional curvature of the 2-plane πp at p ∈ Mn with respect to the metric
g. Then, he said that “... if the curvature is given in nn−1

2
surface directions

at every point, then the metric relations of the manifold may be determined ...”
[Sp2, pp. 144]. More precisely, Riemann took nn−1

2
independent sections πij of

the bundle G2(Mn) and he defined the nn−1
2

functions by composing with Q (i.e.

a map from Mn to {C∞(Mn)}n n−1
2 ). Perhaps the expression of Q in coordinates,

the two dimensional flat case and the counting argument led Riemann to the wrong
conclusion that Q can be recovered from evaluation in nn−1

2
independent 2-planes. It

is hard to believe that he did not observe that this map is not actually a Diff(Mn)-
equivariant morphism, as follows from the fact that a generic diffeomorphism does
not preserve the πij (i.e. f ∗πij 6= πij) when n > 2.

Remark 5.1 A way of defining nn−1
2
Diff(Mn)-equivariant functions fromMn to

C∞(Mn) such that:

(i) If n = 2 then the function is the Gauss curvature K.

(ii) If the nn−1
2

functions vanish identically then the metric g is flat.

is as follows. Regarding the curvature tensor R as a symmetric endomorphism of the
second exterior product bundle Λ2(Mn) one can take the characteristic polynomial
χR(X) of R. Then, the coefficients of χR(X) are the required nn−1

2
functions.
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