POLITECNICO DI TORINO
Repository ISTITUZIONALE

Evaluating car-sharing switching rates from traditional transport means through logit models and
Random Forest classifiers

Original

Evaluating car-sharing switching rates from traditional transport means through logit models and Random Forest
classifiers / Ceccato, R.; Chicco, A.; Diana, M.. - In: TRANSPORTATION PLANNING AND TECHNOLOGY. - ISSN
0308-1060. - STAMPA. - 44:2(2021), pp. 160-175. [10.1080/03081060.2020.1868084]

Availability:
This version is available at: 11583/2892768 since: 2021-04-14T10:58:56Z

Publisher:
Routledge

Published
DOI:10.1080/03081060.2020.1868084

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

20 March 2024

INTEGRATING PERFORMANCE ANALYSIS IN THE
CONTEXT OF LOTOS-BASED DESIGN

M. Ajmone Marsan' A. Bianco!

L. Ciminiera*

A. Valenzano*

R. Sisto*

t Dipartimento di Elettronica
* CENS and Dipartimento di Automatica e Informatica

Politecnico di Torino

Abstract

Performance analysis and formal correciness veri-
fication of computer communication protocols and dis-
tributed sysiems have traditionally been considered as
two separate fields. However, their integration can
be achieved by using formal description techniques as
paradigms for performance modeling. This paper in-
vestigates the possibility of using LOTOS, one of the
two formal specification languages that have been stan-
dardized by ISO, as the formal basis for performance
modeling. A LOTOS eztension which encompasses
both timing and probabilistic aspects is proposed, and
a general performance model derivable from eziended
LOTOS specifications is identified. The performance
model is open to different evaluation techniques. A
simple ezample, a stop-and-wail protocol, is used io
concretely demonstrate the new approach.

keywords: Specification languages, LOTOS, per-
formance evaluation.

1 Introduction

Traditionally, formal correctness verification and
performance analysis of communication protocols have
been two separate fields. Whereas the validation and
verification processes are based on formal techniques,
the classical approach to performance analysis is based
on human ingenuity and experience, and consists in
devising specific abstract models which can be ana-
lyzed by simulation or by applying stochastic process
theory. A key problem of the traditional performance
evaluation approach lies in the credibility of the model:
the functional equivalence of the performance model
and the actual protocol is almost impossible to prove.
This consideration suggests that formal description
techniques should be used for performance analysis,
besides formal verification. Such an integration brings
along many other advantages. Among them, it makes
performance prediction possible in the early design
phases, thus avoiding costly redesign, and it facilitates
the automation of the performance analysis process.

FDTs were originally conceived to describe the
protocol behavior and functionalities in a time-
independent fashion. However, the use of a formal
description language as a paradigm for performance
modeling requires the extension of the language with
probabilistic and temporal specifications. The proba-

0-8186-5292-6/94 $3.00 © 1994 IEEE

Corso Duca degli Abruzzi, 24

10129 Torino ITALY

bilistic specifications are necessary to describe the se-
lection among different possible events, and the tem-
poral specifications are necessary to describe the time
lapse between consecutive events.

Many researchers have considered the two types of
extension separately, the timing extension being inter-
esting in itself for formal verification of time-critical
systems, and the probabilistic extension being inter-
esting for probabilistic verification when exhaustive
verification is impossible. Their work gives a reason-
able insight into the related problems, but merging
probabilistic and timing information for performance
modeling involves new aspects.

Pioneering work in this respect was done in the area
of Petri Nets, with the formulation of some well known
timed and probabilistic extensions such as Stochas-
tic Petri Nets (SPN) [2, 3, 4] and their offsprings
[5, 6, 7], or Timed Petri Nets [8, 9]. Other inter-
esting proposals for integrating performance analy-
sis within the framework of formal specification tech-
niques have been made using state machine models or
formal grammar models [10, 11].

In this paper we focus our attention on the FDT
LOTOS [1], which is one of the two specification lan-
guages standardized by ISO. In this context, Rico and
Von Bochmann proposed a method for introducing de-
terministic times and probabilities in LOTOS, so as to
obtain a corresponding semi-Markov model which can
be used for performance analysis [12]. Their timing
model however is not able to describe global timing
constraints properly.

In this paper we describe a more general extension
of LOTOS that is suitable for the construction of per-
formance models of communication protocols, and dis-
tributed systems. The proposed version of extended
LOTOS is derived from a previous timed extension
proposal by Bolognesi et al. [13], but it considers some
new features, such as the introduction of random vari-
ables for the probabilistic specification of timing, and
the use of priorities and weights for the resolution of
conflicts.

The reader is assumed to be familiar with LOTOS.
A comprehensive tutorial can be found in [14].

2 The LOTOS Extension

T-LOTOS [13] is a timed LOTOS extension which
mainly provides LOTOS with a new operator called
timer. In order to define the semantics of such op-
erator, the age of an action prefix is defined as the
cumulative amount of time during which the action
prefix event has been continuously enabled. The ex-
pression

timer g<ti,t2> in B

indicates that in expression B the time interval
[t1,t2] is assigned to gate g. The process described
by B may execute an action at g only when the age
of such action lies in the time interval [t1,t2]. Note
that g may be a gate at which several subprocesses of B
synchronige, in which case the temporal specification
assumes a global significance over all the subprocesses
in B (aging starts when the last subprocess gets ready

at g.

6ur extension, that we call Extended Timed LO-
TOS (ET-LOTOS), is based on T-LOTOS, but we
admit the use of timer operators (including the ex-
tensions that will be introduced) only with a global
scope, and we forbid the use of cascaded timer op-
erators. The effect of such requirements is that each
timed event is controlled by a single timer operator,
and the assignment of timings is clear and easy to un-
derstand.

Let us now describe the extensions of our proposal
with respect to T-LOTOS.

2.1 Pre-synchronization timer

The definition of T-LOTOS enables the specifier to
directly express situations in which the processes in-
teracting at a gate, after reaching a consensus on the
synchronization, must wait for a given time before ac-
tually being committed to the synchronization. Dur-
ing this time interval, it is possible for each one of the
processes involved in the synchronization to execute
another action, thus aborting the synchronization.

In some cases, instead, it may be useful to be able
to express situations in which the commitment is in-
stantaneous, but a certain time is necessary to perform
common operations. Only after this time has elapsed,
the involved processes are free to execute other ac-
tions. This different kind of timed synchronization
can simply be expressed in terms of the basic syn-
chronization introduced in [13]. In order to do this, it
is necessary to split the synchronization into a pre-
synchronization event, which is an interaction with
null delay, followed by the timed synchronization. For
example, if we want to give this new meaning to the
synchronization expressed by the following expression

timer g<2,3> in (a; g; stop |[gll| g; b; stop)
we can write

hide h in timer h<0,0>, g<2,3> in
(a; h; g; stop |[h,gll h; g; b; stop)

where
timer X,Y in B = timer X in timer Y in B

293

Since the modifications necessary to implement this
new kind of synchronization may be extensive, and
may complicate the specification significantly, result-
ing in reduced readability, it seems useful to intro-
duce a new timer operator, whose semantics can be
expressed in terms of the original timer operator se-
mantics. We chose to define the new operator as a
macro expansion operator, which will be indicated by
the new keyword p_timer, and will be assigned the
same syntax as the timer operator. The macro ex-
pansion rule therefore is:

p-timer g<t1,t2> in B =
hide g’ in timer g’<0,0>, g<t1,t2> in B’

where g’ is a new unique identifier and B’ is the same
as B with all occurrencies of action prefix g; replaced
by g’; g;, and all occurrencies of g in synchroniza-
tion operators replaced by g’ , g, the same replacement
being recursively applied to all the processes directly
or indirectly instantiated in B.

2.2 Probabilistic extension

In T-LOTOS, the temporal properties of a system
are described using the timer construct which assigns
to a gate g a time interval within which any action on
g must be executed.

We introduce random variables to describe the time
lapse according to the same temporal specification,
but in a probabilistic way. For each random variable
it is necessary to define a time interval, which is the
domain of the random variable, and a probability den-
sity function of the random variable. The first item
is the time interval associated with the corresponding
gate as in T-LOTOS, while the second item is an ad-
ditional information which should be assigned to each
time interval. Whenever an action becomes enabled, a
random variable instance is extracted from the prob-
ability density function, and its value represents the
actual delay of the action; the instance value lies in
the domain of the random variable, as required by T-
LOTOS semantics.

This temporal specification describes time lapse in
an explicit way, and probabilistic selection in an im-
plicit way, because, according to T-LOTOS seman-
tics, the action whose associated delay is shortest, is
actually selected for execution when several actions
are competing. Nevertheless, the explicit definition of
a selection criterion is sometimes mandatory, e.g., to
solve a conflict between enabled events with the same
deterministic delay, or a conflict between events with
associated delays described as random variables when
the instances of the random variables are identical. We
introduce a priority (ranging from pmin t0 Pmaz) and a
weight (ranging from Wmin t0 Wmas) associated with
each event. When a choice between enabled events
with the same delay must be made, the priority and
the weight are orderly used to solve the conflict: first
of all, the priorities are examined, and a deterministic
decision is taken; if the conflict is not solved (i.e., two
or more enabled events have the same priority level),
the enabled events are assigned probabilities propor-
tional to their weight, and a random choice is made
according to this probability assignment.

Priorities and weights can be assigned to gates just
as time intervals are assigned to gates in [13]. The
resulting syntactic extension to the timer operator is
the following:

timer a<t1,t2,pdf(),priority,weight> in B

where a is a gate, t1,t2 (t2 > t1) describe the
domain of the random variable representing the de-
lay associated with the gate, pdf() is a function
[t1,2] — [0,00] that describes the characteristic of
the pdf (f:: pdf(z)dz = 1) of the same random vari-
able, priority is the priority used to solve conflicts
in a deterministic way, weight is the weight used to
solve in a probabilistic way the conflicts not solved by
priorities, and B is a behavior expression.

A default time interval <0,0> (deterministic null
Pmaz + Pmin
2
are assigned to a gate when they are

time), a default priority and weight

Wmaz + Wmin

2
not explicitly defined.

The extensions with respect to the T-LOTOS pro-
posal do not alter the possible behaviors of the speci-
fication, but only make it possible to specify that cer-
tain behaviors are more likely to occur than others.
The semantics expressed in [13] are therefore still valid
for the purpose of verification and, in general, when
the probabilistic aspect is not of interest.

2.3 Memory timer

When modeling communication protocols and dis-
tributed systems, it is important to be able to describe
different typical scenarios.

In general, a system in a given state can be con-
sidered as a set of parallel activities requiring some
(residual) time to complete. In T-LOTOS, each ac-
tivity is a gate interaction, and a timer operator is
used to express the time it takes from the instant it
is enabled until the instant it completes. The age as-
sociated with actions and interactions represents the
amount of time the activity has already spent, i.e., the
amount of work already performed by the activity.

The simplest scenario 1s a memoryless one, in which
the occurrence of any event has the effect of restarting
all the parallel activities in the system. In practice, if
more than one event is enabled, the one which takes
place first causes the work performed by the other ac-
tivities up to that instant to be lost. This scenario
corresponds to rather uncommon situations, since nor-
mally in distributed systems each process keeps its
memory when events occur in other concurrent pro-
cesses.

The timer operator introduced in [13] enables the
user to model a more realistic scenario, i.e., one in
which the occurrence of an event does not restart all
the activities: concurrent activities not synchronized
with the one(s) having produced the event remain en-
abled after the state change and are not restarted,
which means that the work they have already per-
formed (i.e. their age) is not lost. Only the work
performed by the other activities is lost: they will be
restarted when they become enabled again.

294

Even if this kind of behavior is useful in modeling a
great variety of real systems, there is however another
typical scenario in distributed systems, which is not
included in the timed model proposed in [13], but it is
equally important. This scenario is one in which the
occurrence of an event does not restart any activity,
except the one associated with the event which has
just taken place. Moreover, even if an activity which
was enabled is no longer enabled in the new system
state, the work it has previously performed is not lost:
when the activity is enabled again later, it will resume
its work from the point at which it was interrupted.

In order to model this different kind of situations
within the framework of timed LOTOS, it is necessary
for the timed model proposed in [13] to be enhanced,
and this can be done by introducing a new timer op-
erator, whose semantics is defined according to the
new timed behavior. We shall call this new operator
a memory timer operator, and we shall assign it a
syntax similar to the one used for the timer operator
in [13], incorporating the extensions introduced in the
previous section:
m_timer a<t1,t2,pdf(),priority,weight> in B

The introduction of this new operator modifies the
semantics of the LOTOS extension that we have con-
sidered up to now. The new semantics are not re-
ported here for lack of space.

2.4 Time-independent probabilistic choice

Expressing the probabilistic characterization of a
nondeterministic choice by assigning specific time dis-
tributions to the various alternatives is satisfactory in
some situations, but it may lead to difficulties in other
contexts, such as when the timing information is nat-
urally independent of the selection criterion. For ex-
ample, suppose that we must model a communication
channel with a certain failure rate and with a certain
distribution of transmission time. A proper time dis-
tribution must be assigned to the message loss event
in such a way that the failure rate takes the desired
value, but this is not straightforward, and forces the
specifier to introduce a fictitious delay in the message
loss event.

The introduction of pre-synchronization (the
p-timer operator) helps in solving this difficulty: if the
initial events representing the various alternatives are
subject to p_timer operators (or if they are character-
ized by identical deterministic times), their priorities
and weights determine a choice which is independent
of the delay assignments.

3 A General Framework for Perfor-

mance Modeling
In this section we describe a general environment
for the construction of performance evaluation mod-
els onto which ET-LOTOS specifications can be easily
mapped.
The model is based on a state machine, and is com-
posed of the following entities:

e aset S={s;]|1< 1< M} of states.

e aset T = {t; | 1 < j < N} of transitions, divided
into two classes: transitions without memory
(U C T) and transitions with memory (V C T);

e a mapping E : § — P(T) (P denoting the power
set operation), which defines, for each state s;,
the set of transitions enabled in that state, E(s;);

e a new-state partial function N : § x T — S, such
that N(s;,t;) is the state reached by firing tran-
sition t; when in state s;. The function is defined
only for (s;,t;) pairs such that t; € E(s;);

e a mapping Q : S x T — P(T) which defines,
for each pair s;,t; such that t; € E(s;), the
set Q(s;,1:) of transitions whose associated de-
lay must be resampled as a consequence of firing
t: in state s;;

e a set D of random variables, D = {d; | 1 <
J < N}, d; representing the delay associated with
transition t;;

e aset Rof variables, R={r;; |1<i< M,1<j<
N}, rij representing the residual delay associated
with transition ¢; in state s;;

e a set P of priorities P = {p; | 1 < j < N}, pj
being the priority assigned to transition t;;

o aset W of weights W = {w; | 1 < j < N}, w;
being the weight assigned to transition t;.

The evolution of the system consists in state
changes and in the elapsing of time. Each state change
corresponds to a transition and is instantaneous.

When the system is in state s;, each transition t;
has an associated residual delay r;;. If there exists
a transition t; enabled in state s; (i.e., tx € E(3;))
whose residual delay in state %, r;x, is such that

Vilt; € E(s:), j#k (1)

then ¢; occurs when its associated delay r;; has
elapsed and its occurrence determines the next sys-
tem state | = N (s, t;).

If two or more residual delays in the set of enabled
transitions assume the same minimum value, priori-
ties and weights are used to establish which transition
occurs, exactly as priorities and weights are used in
ET-LOTOS to determine the next event when two or
more events are ready to occur. More precisely, first
priorities are used, and transitions t; such that

Tik < Tij

ri; >0Vj|t; € E(si), pj >pr, J#

(2)

are selected. Finally, if more transitions satisfy equa-

tion (2), transition t; is chosen with a probability
P= > ex; W=

with X; = {z | t; € E(s;)}.
The residual delays ri; of the new set of enabled
transitions in state [are computed as follows:

(3)

295

o for all transitions t; without memory (t; € U)

— rij —Tir, if t; (j # k) was enabled in state s;,
is still enabled in state s, and t; & Q(s;, 1),
gi.e. its delay must not be restarted when 2

res;

- d;, if t; was disabled in state s; and is en-

abled in state s;, or if j = k and transition ¢;
is enabled in state s;, or if the transition was
enabled in state s;, is still enabled in state
s, and t; € Q(si,tx) (d] represents a new
instance of the random variable d;).

— —o00, if ¢; is not enabled in state s;.
o for all transitions t; with memory (t; € V)

— rij — T, if t; (5 # k) was enabled in state
35

— if t; was disabled in state s; it keeps its as-
sociated residual delay value.

— d}, if tj = t; (d; represents a new instance
of the random variable dy).

In order to map an ET-LOTOS specification onto a
performance model of the kind just described, a finite
state machine model equivalent to the specification
must be built. Of course this is not always possible,
as a LOTOS specification can be characterized by an
infinite number of states, but, given such a state ma-
chine, the mapping is straightforward, as ET-LOTOS
events correspond to the performance model transi-
tions, and, since a timer operator (possibly the default
one) is assigned to each event, all the other timing
and probabistic parameters are consequently defined.
An algorithm for generating a state machine from a
LOTOS specification, along with sufficient conditions
assuring that the state machine is finite can be found
for example in [15].

4 Performance model evaluation

The description of the dynamic behavior of the per-
formance model into which a timed LOTOS specifi-
cation can be mapped provides sufficient details for
the implementation of a simulator that can be instru-
mental for the computation of the performance indices
of interest. Of course, the extensions to the original
timer constructs are such that the performance anal-
ysis can be obtained independently of any restriction
on the probabilistic characterization of the temporal
specification. It may however be interesting to dis-
cuss under what conditions an analytical approach to
performance evaluation is possible and convenient.

First of all, it is important to note that by an ana-
lytical approach we mean the study of the stochastic
model generated from the timed LOTOS specification
by numerical methods, since the complexity of even
the simplest toy examples immediately rules out the
possibility of any closed-form solution.

Obviously, the use of exponential distributions for
the characterization of the random variables associ-
ated with the action timers allows the mapping of the

timed LOTOS specification onto a continuous-time
Markov chain. This opens the possibility of using the
numerical tools developed in many years of lively re-
search in the field of efficient numerical techniques for
the steady-state solution of Markovian models. The
present state of the art in this field is such that mod-
els comprising few hundred thousand states can be
analyzed with acceptable time and space complexity.

The adoption of probability distributions formed
by adequately combining exponential stages also leads
to Markovian models, but in this case the number of
states of the Markov chain is much larger than the
number of states of the timed LOTOS specification.
Similarly, by introducing some (tight) restrictions on
the use of general distributions in combination with
a majority of exponentially distributed timers would
lead to semi-Markov models, that in principle can be
analyzed, but at very high cost.

In summary, this means that a numerical approach
to the analysis of the performance model derived from
a timed LOTOS specification seems feasible only in
the case of exponential timing and “reasonable” state
space siges. In all other instances, simulation is prob-
ably more convenient. This statement should not
be interpreted as a claim that the simulation of ex-
traordinarily large models is simple, regardless of the
timing specifications; on the contrary, the model size
makes obtaining reliable performance estimates ex-
tremely difficult, but no simple alternative is known.

5 Example: a stop and wait protocol

In this section we present a model of the stop-
and-wait protocol (the example that is always used in
the literature), which provides an application exam-
ple of the performance evaluation approach based on
a continuous-time Markov chain and makes a model
validation possible (by comparison with results found
in the literature).

We consider a stop-and-wait protocol with one bit
frame numbering, and the timeout mechanism at the
tranfmitter. The ET-LOTOS specification of the pro-
tocol is:

Specification stopwait[tfO,tf1,ra0,ral,rfOta0,rfital,
timeout] :noexit

Behaviour

timer tfO <0,infty,exp(13.47)> in

timer tf1 <0,infty,exp(13.47)> in

timer timeout <0,infty, exp(1000)> in
timer rfOta0 <0,infty, exp(120.14)> in
timer rfital <0,infty, exp(120.14)> in

p-timer ra0 <0,infty, exp(106.7)> in
timer ral <0,infty, exp(106.7)> in

TX[t£0,tf1,ra0,ral,timeocut]
| [t£0,tf1,ra0,ral,timeout] |
(TIMER[t£0,tf1,timeout]

| [t£0,t£1]| CH[tfO0,tf1,rfOta0,rfital,ra0,ra1])

where

process TI[tf0,tfi,ra0,ral,timeout] :noexit :=

t£0; WA[tf0,tf1,ra0,ral,timeocut]
endproc

process WA[tfO,tf1,ra0,ral,timeout] :noexit :=
timeout; TX[tf0,tf1,ra0,rat,timeout]

[] ra0; TX[tf1,tf0,ral,ra0,timeout]

[J rai; WA[tfO,tf1,ra0,rat,timeout]

endproc

process TIMER[startO,startl,timeout] :noexit :=
startO; SET_TIMER[startO,start1,timeout]

[] starti; SET_TIMER[startO,startl,timeout]

endproc

process SET_TIMER[startO,startl,timeout] :noexit :=
startO; SET_TIMER[startO,startl,timeout]

[1 starti; SET_TIMER[startO,startl,timeout]

[] timeout; TIMER[startO,startl,timeout]

endproc

process CH[t£fO,tf1,rfOta0,rfital,ra0,ral1) :noexit :=
CH1[t£0,tf1,rfOta0,rfitall

| (xfOta0,rfita1]| CHi[rfotaO,rfital,ra0,rat]
endproc

process CH1[t0,t1,r0,r1]) :noexit :=
hide ok, err in
timer ok <O, 0,,, 95>, err <0, 0,,, 5> in
t0; (ok; r0; CH1[t0,t1,r0,r1]
[err; CH1[t0,t1,r0,r1])
[1 t1; (ok; ri; CH1[t0,t1,r0,r1]
[] err; CH1[t0,t1,r0,r1])
endproc

endspec

where exp(x) indicates an exponential pdf with
mean value x.

The protocol behavior is modeled by three parallel
processes: a transmitter TX, a communication channel
CH, which acts both as channel and receiver, and a
TIMER, which models the timeout mechanism.

Gates t£0 and tf1 represent the transmission of
a frame with sequence number 0 and 1 respectively;
gates rfOta0 and rfitai represent the propagation
and the reception of a frame, and the corresponding
acknowledgment transmission at the receiver; gates
ra0 and ral represent the acknowledgment propaga-
tion and reception; gate timeout represents the time-
out expiration at the transmitter.

After the frame transmission, TX instantiates the WA

Wait for Acknowledgment) process, which discards
the ACKs referring to out of order frames (i.e. interac-
tions offered at gate ra0 while waiting for an acknowl-
edgment at gate ral or vice versa), until a correct
ACK is received or the timeout occurs. If a correct
ACK is received, process TX is restarted, but now gate
tf1 takes the place of gate t£0 (and vice versa), and
the same holds for gates ra0 and rai, so as to ob-
tain the correct frame numbering. If a timeout occurs
Si.e. an interaction at gate timeout takes place) be-
ore the correct acknowledgment is received, process
TX is restarted without inverting the gates, since the
same frame will be transmitted again.

Process TIMER models a timer which is set whenever

296

Figure 1: The performance model state machine for
the stop-and-wait protocol example

a frame is transmitted (an interaction at gate t£0 or
gate tf1 takes place), and expires after an exponen-
tially distributed time, if not reset by a new frame
transmission. The choice of an exponential distribu-
tion comes only from the desire to make a Marko-
vian analysis possible. Should performance analysis be
done by simulation, more realistic distributions could
be used.

Process CH is composed of two parallel processes,
each one representing a unidirectional channel: one
conveys frames, while the other conveys acknowledg-
ments. After a frame or ACK transmission (t0 or
t1), the channel can lose a frame with probability 0.05
(event err) or successfully propagate it (event ok) and
offer it at the corresponding gate (r0 or r1). The use
of our extension allows a direct specification of the
5% channel error probability, simply using appropri-
ate weights for gates err and ok. If an error occurs
on the channel, the timeout event takes place at the
transmitter because no other interaction can occur.

Note the use of a pre-synchronized timer on gates
ra0 and ral to prevent the fact that action timeout
can take place before the incorrect pending acknowl-
edgment is discarded. This behavior must be excluded
in order to avoid a possible deadlock.

Note that, due to the exponential pdf on gates
rfaOta0 and ra0, a timeout can occur also if the frame
and ACK transmissions take place without channel er-
ror but the process is so slow that the timeout expires.
This is a realistic scenario that we can describe using
ET-LOTOS. Moreover, the use of global timers greatly
improves the readability of the specification.

The performance model is composed of 48 states
and 68 transitions. The corresponding state machine

297

Figure 2: The continuous-time Markov chain transi-
tion rate diagram for the stop-and-wait protocol

is shown in Fig. 1. Transitions are labeled with the
corresponding gates, while states are numbered start-
ing from 1, which indicates the inital state. As each
possible event is mapped onto a performance model
transition, and several conceptually different events
can correspond to a single gate, integer indexes have
been added in order to distinguish among different
instances of an event at a given gate (for instance,
££0(1) and ££0(2)).

Since all the probability density functions of the
random times are exponential a markovian analysis
is possible, based on a continuous-time Markov chain
whose state transition rate diagram is shown in Fig.
2. It can be observed that the graph is similar to the
one given in Fig. 1: the same state numbers used for
the state machine are also used here, but zero-delay
transitions and vanishing states do not appear in the
transition rate diagram. Transitions are labelled with
transition rates, whose values are expressed in s~ !.

In [4], a model of the stop-and-wait protocol with
exponentially distributed times is analyzed. In order
to compare the results obtained with our approach
with the ones reported in [4], the same numerical val-
ues for the protocol parameters must be used. How-
ever, as the two models are slightly different, our
model parameters do not map one to one onto cor-
responding parameters used in [4], and this difference
must be taken into account. In [4] one transition is
used to describe the frame transmission and propaga-
tion times, and a separate transition is used for the
frame reception time (the same is true for the ACK);
in our model, instead, we describe as three separate
actions the frame transmission, the frame propaga-
tion, reception and ACK transmission, and the ACK
propagation and reception.

A proper interpretation of the values used in [4]
gives for our model the following corresponding val-
ues, used in the ET-LOTOS specification: a frame
transmission time (gates tf0 and tf£1) with mean
value equal to 13.47 ms; a frame propagation, recep-
tion, and ACK transmission time (gates r£0ta0 and

rfital) with mean value 120.14 ms; an ACK prop-
agation and reception time (gates ra0 and ra1) with
mean 106.7 ms; a timeout with mean 1000 ms. The
error probability on the channel is 0.05 in both models.

The Markovian analysis with numerical techniques
gives a protocol throughput equal to 2.7532 mes-
sages/s, quite close to the value 2.75 reported in [4].
The difference in the numerical values is due to the
different ways in which the error probability on the
channel is described: in [4], an exponential distribu-
tion is used to induce the error probability, while we
describe it explicitly via a probabilistic choice. More-
over, in [4] a timeout is set only if an error occurs on
the channel, while in our model we describe a more
realistic timeout mechanism.

6 Conclusions

“Extended timed LOTOS” (ET-LOTOS) is a new
extension of LOTOS which incorporates both timing
and probabilistic specifications. Extended timed LO-
TOS maintains the same formal structure of LOTOS,
and can therefore be similarly used to formally verify
distributed systems, including those with time-critical
features. The extension is downward compatible, in
the sense that by neglecting extensions one gets a stan-
dard LOTOS specification describing the system fea-
tures not related to time or probability.

ET-LOTOS can be mapped onto a performance
model which is open to direct application of different
performance evaluation techniques. The choice about
which specific technique it is possible and convenient
to use depends on the kind of timing and probabilistic
characterizations used in the specification.

The extensions introduced in the language enable
the user to properly and easily specify the most com-
mon scenarios in distributed systems, including some
which were not provided for in previous timed exten-
sions of LOTOS.

References
[1] IS 8807: Information Processing Systems, Open
Systems Interconnection, LOTOS - A Formal De-
scription Technique Based on the Temporal Or-
dering of Observational Behaviour, ISO, 1989.
[2] F.J.W. Symons, Introduction to Numerical Petri
Nets, a General Graphical Model of Concurrent
Processing Systems”, Ausiralian Telecommunica-
tions Research, Vol. 14, n. 1, pp. 28-33, January
1980.
[3] G. Florin, and S. Natkin, "Les Reseaux de Petri
Stochastiques”, Tecknique et Science Informa-
tiques, Vol. 4, n. 1, February 1985.

[4

—_—

M. K. Molloy, "Performance Analysis using
Stochastic Petri Nets”, IEEE Trans. on Comput-
ers, Vol. 31, n. 9, pp. 913-917, September 1982.

[5] M. Ajmone Marsan, G. Balbo, and G. Conte,
” A Class of Generalized Stochastic Petri Nets for

298

[é]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

the Performance Analysis of Multiprocessor Sys-
tems”, ACM Transactions on Computer Systems,
Vol. 2, n. 1, May 1984.

J.B. Dugan, K.S. Trivedi, R.M. Geist, and V.F.
Nicola, ”Extended Stochastic Petri Nets: Appli-
cations and Analysis”, Proc. PERFORMANCE
’84, Paris, France, December 1984.

J. F. Meyer, A. Movaghar, and W. H. Sanders,
?Stochastic Activity Networks: Structure, Be-
havior, and Application”, Proc. Int. Workshop on
Timed Petri Nets, IEEE-CS Press, Torino, Italy,
July, 1985.

R.R. Razouk, and C.V. Phelps, ”Performance
Analysis using Timed Petri Nets”, Proc. Int.
Conf. on Parallel Processing, pp. 126-129, Au-
gust 1984,

M.A. Holliday, and M.K. Vernon, ” A Generalized
Timed Petri Net Model for Performance Analy-
sis”, Proc. Int. Workshop on Timed Peiri Nets,
IEEE-CS Press, Torino, Italy, July, 1985.

H. Rudin, “An Improved Algorithm for Esti-
mating Protocol Performance” in Y. Yemini, R.
Storm, and S. Yemini (Eds.) Protocol Specifica-
tion, Testing and Verification IV, Elsevier Sci-
ence, 1985.

F. J. Lin, and M. T. Liu, “An Integrated Ap-
proach to Verification and Performance Analy-
sis of Communication Protocols”, in S. Aggar-
wal and K. Sabnani (Eds.) Protocol Specification,
Testing and Verification VIII, Elsevier Science,
1988.

N. Rico, and G. Von Bochmann, “Performance
Description and Analysis for Distributed Systems
Using a Variant of LOTOS”, in B. Jonsson, J.
Parrow and B. Pehrson (Eds.), Protocol Specifi-
cation, Testing and Verification XI, Elsevier Sci-
ence, 1991.

T. Bolognesi, and F. Lucidi, “LOTOS-like process
algebras with urgent or timed interactions”, in K.
Parker and G. Rose (Eds.) Proc. of FORTE’91:
4th Int. Conf. on Formal Dscription Techniques,
Elsevier Science, 1992.

T. Bolognesi, and E. Brinksma, “Introduction to
the ISO Specification Language LOTOS”, Com-
puter Networks and ISDN Systems, Vol.14 (1987),
pp- 25-59.

A. Valenzano, R. Sisto and L. Ciminiera, “An Ab-
stract Execution Model for Basic LOTOS”, IEE
Software Engineering Journal, Vol. 5 (1990) No.
6, pp. 311-318.

