
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An Experiment in Interoperable Cryptographic Protocol Implementation Using Automatic Code Generation / Pironti,
Alfredo; Sisto, Riccardo. - STAMPA. - (2007), pp. 839-844. (Intervento presentato al convegno IEEE Symposium on
Computers and Communications (ISCC 07) tenutosi a Aveiro, Portugal nel 1-4 July 2007)
[10.1109/ISCC.2007.4381508].

Original

An Experiment in Interoperable Cryptographic Protocol Implementation Using Automatic Code
Generation

Publisher:

Published
DOI:10.1109/ISCC.2007.4381508

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1659069 since:

IEEE Computer Society

An Experiment in Interoperable Cryptographic Protocol Implementation Using
Automatic Code Generation

Alfredo Pironti, Riccardo Sisto
Politecnico di Torino

Dip. di Automatica e Informatica
c.so Duca degli Abruzzi 24, I-10129 Torino (Italy)
e-mail:{alfredo.pironti, riccardo.sisto}@polito.it

phone: +390115647073 fax: +390115647099

Abstract

Spi2Java is a tool that enables semi-automatic gener-
ation of cryptographic protocol implementations, starting
from verified formal models. This paper shows how the last
version of spi2Java has been enhanced in order to enable
interoperability of the generated implementations. The new
features that have been added to spi2Java are reported here.
A case study on the SSH Transport Layer Protocol, along
with some experiments and measures on the generated code,
is also provided. The case study shows, with facts, that re-
liable and interoperable implementations of standard secu-
rity protocols can indeed be obtained by using a code gen-
eration tool like spi2Java.

1 Introduction

Given a security protocol specification, it is unsafe to
manually write the code that implements the given speci-
fication, because there is no assurance that the written code
correctly adheres to the specification, which can lead to
the introduction of severe security flaws, not present in the
specification, but added by wrong coding.

By using techniques such as testing or code reviews, it
can be assured that the program is correctly working only
for a limited number of scenarios, but it cannot be verified
that it will behave as specified under all circumstances.

Formal methods can help to tackle the above problem.
However, while a lot of progress has been made on the
use of formal methods to verify the correctness of crypto-
graphic protocol specifications, only a few research works
have addressed the problem of ensuring that the protocol
implementation, written in a programming language, cor-
rectly implements the protocol specification. This paper fo-
cuses on methods based on automatic code generation from

formal specifications. All such methods start from a high-
level, formally verified, specification of the protocol, which
abstracts away from details about how cryptographic and
communication operations actually take place, and fill the
semantic gap between formal specification and implemen-
tation without losing the verified protocol properties.

One of the limitations that still affects the methods of this
kind proposed so far [11, 12] is that they do not allow the
development of interoperable implementations of standard
security protocols. This limitation is due to the inability of
the proposed methods to set specific algorithm parameters
for each cryptographic operation, and to handle arbitrary
encoding/decoding schemes. In order to make such meth-
ods applicable to real protocols, the above limitations must
be eliminated.

This paper shows, using a case study, how the technique
originally presented in [11] has been improved in this di-
rection. The specific approach considered starts from a
spi calculus [1] specification of the security protocol, which
can be manually derived from the protocol informal speci-
fication. The use of the spi calculus allows two important
steps to be performed:

1. Verify that the formal specification is correct (i.e. it sat-
isfies the intended security requirements), and thus that
it does not contain any flaw itself;

2. Automatically generate the Java code that correctly
implements the security protocol.

Step one, i.e. verification of the spi calculus protocol, can
be achieved using one of the available verification tools,
such as S3A [4] or ProVerif [3]. Step two, i.e. automatic
Java code generation, can be achieved using the code gen-
eration tool spi2Java [11], and, specifically, the new version
of the tool that enables the development of interoperable
protocol implementations.

user
©2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. This is the author's postprint version (i.e. as edited by the author after refereeing but without copy-editing, proofreading and formatting added by IEEE). The final version of this paper can be accessed at http://dx.doi.org/10.1109/ISCC.2007.4381508

The case study that is presented in order to illustrate the
potentiality of the proposed approach, is the development
of a client for the SSH Transport Layer Protocol [14]. The
main goal is to show how this approach helps a program-
mer to write interoperable and secure implementations of
standard cryptographic protocols quickly.

The remainder of this paper is organized as follows. Sec-
tion 2 compares the approach presented here to other exist-
ing approaches. Section 3 introduces the last version of the
spi2Java tool. Section 4 describes the steps needed to im-
plement the client side of the SSH Transport Layer Protocol
in Java using the methodology implied by the spi2Java tool.
Section 5 illustrates the experiments that have been carried
out to test the interoperability of the client with third party
server implementations. Moreover, some measures on the
generated code and their interpretation are given. Finally,
section 6 concludes with an overview of the achievements
that have been reached with the new version of spi2Java.

2 Related Work

Some work has recently been done aimed at ensuring
correctness of security protocol implementations.

The approaches proposed in [2] and in [10] are the dual
of the approach presented here. They extract a verifiable
formal model from an interoperable implementation of a
security protocol. The model extraction approach has the
advantage of allowing existing implementations to be ver-
ified without changing the way applications are currently
written. However, these methods either put constraints on
the syntax of the accepted source code, indeed not allowing
to verify existing software, or they extract an approximate
model where over approximations can cause false alarms.
Low level issues, like for example buffer or integer over-
flows, are not checked, because abstracted away. Moreover,
these approaches expose the programmer, all at once, to
the whole protocol logic and implementation complexity,
because a complete protocol implementation must be pro-
vided, before it can be verified.

An approach very close to the one presented in the pre-
vious version of spi2Java is described in [12]. However,
neither the generated code is interoperable, nor algorithms
and parameters can be selected at runtime or for a specific
cryptographic operation.

ACG-C# [8] is a tool that automatically generates C#
code from a verified Casper script. This tool does not
deal with the interoperability of the generated code. More-
over, the workflow is error prone, because it is necessary to
manually modify the verified Casper script in order to let
ACG-C# generate the code. It is also worth to note that
the Casper scripting language is not as expressive as the
spi calculus language. Because of this, with ACG-C# it is

difficult to exactly model the behaviour of actors, as pre-
scribed by the informal protocol specification.

The work presented in [5] illustrates another approach
useful to translate formal specifications into Java code. In
particular, the problem of mapping abstract data types into
implemented Java classes is addressed in [6]. However, this
work does not take interoperability into account, because it
does not deal with the different encodings (different byte
array representations) that can be assumed by the same ab-
stract data item, when it is sent to, or received from other
actors.

In [7], a formal model of a security protocol used by
smart cards is manually derived and refined from informal
specifications, then a manual Java implementation of the re-
fined model is provided. Finally, JML properties are manu-
ally added to the Java source. No automatic tools are used
to refine the model, nor to generate the Java implementa-
tion and the JML properties. This approach is error prone,
because it requires manual work in all development stages.
However, this solution is still interesting, because it leads to
Java code that can be directly verified.

3 The new spi2Java tool features

The spi2Java tool is a software that translates a
spi calculus definition of a security protocol into a Java pro-
gram that implements it.

In order to create an interoperable Java application
from the Spi Calculus source, spi2Java needs to fill all
the implementation details that are abstracted away by the
spi calculus language. These implementation details can be
grouped into two main categories:

1. Cryptographic and Configuration parameters

2. Encoding/decoding functions

The first group of details specifies parameters such as
“what algorithm must be used for a particular encryption
operation” or “what network interface must be used by a
particular channel”. In order to make the generated code
compliant with the implemented protocol, it is necessary
that these parameters can be set independently, at compile
time or at run time, for each data item.

The second group of details deals with the transforma-
tion from the internal representation of messages into their
external representation, and vice versa. The internal repre-
sentation is the one used to perform all the operations pre-
scribed by the protocol logic on the data; the external repre-
sentation is the stream of bytes that must be exchanged with
the other parties. Decoupling internal and external repre-
sentations is also necessary in order to obtain interoperabil-
ity, because the external representation allows the user to

exactly specify, byte per byte, how data are exchanged with
other actors.

The last version of spi2Java improves the one described
in [11] by adding the two requested features:

1. Specific implementation details can be set for each
spi calculus term that is declared in the specification;

2. An encoding/decoding layer tailored for the protocol
that is being implemented can be specified.

Another task that spi2Java carries out is to statically as-
sign a type to each spi calculus term. This is necessary
because spi calculus is an untyped language, while Java is
statically typed. Details about the typing algorithm can be
found in [11]; basically, the type of a term can be automati-
cally inferred looking at how it is used.

In order to set the specific implementation details and the
statically assigned type for each spi calculus term, the last
version of spi2Java uses an eSpi (extended Spi) document,
which is coupled with the original spi calculus source.
Spi2Java automatically generates the eSpi document and
fills all needed data with default values. The user can later
change the proposed values to accommodate needs; after
editing, spi2Java checks the user-given values for correct-
ness and coherence with the spi calculus specification and
the eSpi document format.

Moreover, with the new spi2Java version, cryptographic
and configuration parameters can both be specified stati-
cally at compile time, or can be dynamically resolved at
run time. The latter behaviour allows the implementation
of protocols, like the SSH Transport Layer Protocol, that
prescribe cryptographic algorithm negotiation at run time;
the negotiated algorithm is stored into a spi calculus term
whose value will be used as parameter for a cryptographic
operation.

In order to create the encoding/decoding layer, four Java
methods must be implemented by the programmer for each
type of encoding/decoding that is required by the specifi-
cation. They are: encodePayload(); serialize();
decodePayload(); deSerialize().

The first method is responsible for translating the inter-
nal representation of a term into the payload, encoded as re-
quested by the informal protocol specification. The second
method is used to add the necessary headers and trailers to
the payload. This approach gives high flexibility by allow-
ing different and independent encodings for cryptographic
and network operations. The third and fourth methods are
dual with respect to the first and second methods.

For convenience and agile prototyping, a default encod-
ing/decoding layer, which uses the Java serialization, is pro-
vided; however, in real environments, this default encod-
ing/decoding layer has to be substituted with a user given
one in order to implement the desired protocol.

Figure 1. SSH Transport Layer Protocol typi-
cal scenario.

When the spi calculus specification, the coupled eSpi
document, and the encoding/decoding layer are done,
spi2Java has all the information required to generate the
Java code. The Java generator engine navigates all the
expressions listed in the spi calculus source and translates
each of them into a list of semantically equivalent Java state-
ments. The mapping between a Spi Calculus expression and
its corresponding list of Java statements is called a transla-
tion rule.

In order to get high confidence about the correctness of
the translation rules, spi2Java comes with a Java library, spi-
Wrapper (previously called secureClasses), that allows to
map one to one spi calculus processes onto Java statements.

4 Using spi2Java to Implement the SSH
Transport Layer Protocol

This section shows how a Java client for the SSH Trans-
port Layer Protocol (SSH-TRANS) can be implemented
with the help of spi2Java.

In the design phase, the spi calculus model of the client
side of SSH-TRANS is derived from its informal spec-
ifications [13, 14]. For the sake of clearness a typical
SSH-TRANS scenario is provided in figure 1.

A spi calculus specification1 of an SSH-TRANS client
in the syntax accepted by spi2Java is:

1With syntactic sugar: tuples will be reduced to nested pairs by the
spi calculus compiler.

1 sshClient(ID_C, c_algorithms) :=
2 c<ID_C>.
3 c(ID_S).
4 (@c_cookie)
5 c<c_cookie, c_algorithms>.
6 c(KEX_S).
7 let (s_cookie, s_algorithms) = KEX_S in
8 let (g, p, q, DHHash, SignHash, SignKeyType,
9 SignMode, SignPadding) = s_algorithms in
10 (@x)
11 c<EXP(g,x,p)>.
12 c(PubKey_s, f, sshash).
13 case sshash of [{shash}]PubKey_s in
14 [shash is H(H(ID_C, ID_S, (c_cookie, c_algorithms),
15 KEX_S, PubKey_s, EXP(g,x,p), f, EXP(f,x,p)))]
16 0

At line 1 the spi calculus process sshClient is de-
clared with two formal parameters. ID_C represents the
client identification string and c_algorithms represents
the list of algorithms supported by the client, ordered by
preference. At line 2 the client sends ID_C to the server
on channel c, and at line 3 it receives the server identifi-
cation string ID_S from the same channel. At lines 4-5
the client sends, on channel c, the KEX_C message, that
is a fresh cookie (c_cookie, generated at line 4), fol-
lowed by its list of supported algorithms. Note that the mes-
sage tag SSH_MSG_KEXINIT is not explicitly reported
in spi calculus, because it is considered an encoding fea-
ture. At lines 6-7, the client receives the KEX_S mes-
sage, that contains the server cookie s_cookie and its
list of supported algorithms s_algorithms. Note that
let constructs split messages into their constituent parts.
At lines 8-9, the client parses the server supported algo-
rithms list, obtaining the negotiated algorithms that will
be used later. In order to keep the specification sim-
ple, this operation is simply modeled as a tuple splitting,
as though s_algorithms was the list of negotiated al-
gorithms. Indeed, s_algorithms contains the list of
all the algorithms supported by the server, and the list
of negotiated algorithms is obtained composing the list
in s_algorithms with the one in c_algorithms.
The actual computation will be implemented in the en-
coding/decoding layer. At line 10 the client generates
its Diffie-Hellman (DH) private key in variable x, and at
line 11 it sends out its DH public key, obtained as gx mod p.
The latter is modeled by the EXP() function, which ex-
tends the classical spi calculus with modular exponentia-
tion. Then at line 12 the client receives the server public
key PubKey_s, the server DH public key f and the server
signed final hash sshash. At lines 13-15 the client checks
that the server signed final hash is valid against the locally
computed final hash. If the server signature is valid the pro-
tocol ends well, and the session key, obtained as fx mod p
is established.

In order to fully understand the meaning of lines 13-15, it
must be pointed out that, for asymmetric key encryption, the
spi calculus language only offers cryptographic primitives
to cipher/decipher payloads. In particular, the spi calculus

signature check process (line 13), despite of its name, does
not check that a signature is valid, rather it is a mere deci-
pher operation. Since the SSH-TRANS protocol prescribes
to use RSA with SHA-1 [9] as signature algorithm, the
server sends to the client the final hash, hashed with SHA-1,
then ciphered with its private key. At line 13 the client de-
ciphers the server signature and obtains its SHA-1-hashed
final hash (shash), then at lines 14-15 it compares the lo-
cally generated final hash, hashed with SHA-1, with the re-
ceived one.

Another thing to note is that terms DHHash,
SignHash, SignKeyType, SignMode and
SignPadding at lines 8-9 are not explicitly refer-
enced anymore in the spi calculus source code. However,
they are needed. These terms will be referenced in the eSpi
document as the value of variable (run time) parameters of
other terms, like the abstract hash operations denoted by
H().

This SSH-TRANS client only supports the RSA signa-
ture algorithm. The support of both RSA and DSA algo-
rithms would increase the complexity of the spi calculus
code, without adding value to the case study. Indeed, the
negotiation algorithm is client driven, that is, the server will
agree on the signature algorithm suggested by the client. It
follows that as long as the client will require the RSA algo-
rithm, this algorithm will always be used.

In order to formally verify the secrecy of the established
session key and a server authentication property, the given
specification has been translated into the slightly different
spi calculus syntax that is accepted by ProVerif [3]. More
precisely, the server authentication property that has been
proved ensures that if the server public key received by the
client is authentic (this assumption is also required by the
informal SSH-TRANS specification [14]), then the correct
termination of a client session implies that the server has
participated in the session and agrees on the same final hash,
which is computed on all the relevant data of the protocol
session, specifically including the established session key.

When the spi calculus specification is done and verified,
spi2Java is used to automatically generate the coupled eSpi
document, which comes filled with default values. Term
types, and cryptographic and configuration parameters, are
then modified to suite the protocol specification; by now the
default encoding/decoding layer is used. Two significant
changes to the default values are needed for this protocol:
the term DHHashmust be referenced as the variable param-
eter that contains the hash algorithm name for the final hash;
the terms SignHash, SignKeyType, SignMode and
SignPadding must be referenced as the variable param-
eters that contain the algorithm parameters for the server
signature check, which is composed of the decryption at
line 13, followed by the most external hash at lines 14-15.

When all the required changes are performed, spi2Java is

run again in order to check that the custom eSpi document
is valid and coherent.

The last step that must be accomplished before the au-
tomatic generation of the Java code, is to write an en-
coding/decoding layer for the SSH-TRANS. This encod-
ing/decoding layer consists of a set of Java classes that im-
plement the four required methods and comply with the
SSH binary protocol, described in [13]. The Java class
that decodes the s_algorithms term must be described
separately, because it is responsible for both parsing the
server algorithms list and also negotiating which algorithms
will be used between client and server. The algorithm de-
scribed in [14] is followed, and the server algorithms list
s_algorithms is matched against the client algorithms
list c_algorithms, and only the agreed algorithms are
stored into the internal representation for later use.

When the encoding/decoding layer is done, the eSpi doc-
ument is updated to use it, and spi2Java is used to validate
the final version of the eSpi document and to generate the
Java code that implements the SSH-TRANS client.

Before running the client, the spi calculus process input
arguments must be initialized, since their value cannot be
automatically inferred. It is worth noting that the input pa-
rameter c_algorithms, that is the client list of supported
algorithms which drives the negotiation, can be modified
in the Java source code, without the need to modify the
spi calculus specification.

5 Experimental results

The generated SSH-TRANS client has been tested
against six third party server implementations; five kinds
of experiments have been executed with each server, total-
izing thirty experiments. Since the negotiated algorithms
depend on client preferences, the client lists of preferred al-
gorithms have been properly configured, such that, for each
kind of experiment, different algorithms would have been
negotiated.

Table 1 shows, for each kind of experiment, the lists of
preferred algorithms that the client sends to the server.

Kind of Signature DH group Final Hash
Exp.
1 RSA; DSA 1; 14 SHA-1
2 RSA; DSA 14; 1 SHA-1
3 DSA; RSA 1; 14 SHA-1
4 RSA; DSA 1 SHA-1
5 RSA; DSA 14 SHA-1

Table 1. Lists of preferred algorithms

In experiments of kind 1, 2, and 3, the client sends to the
server a list with all the algorithms that the SSH-TRANS

requires to be supported by the actors. If the server sup-
ports at least one of the algorithms proposed by the client,
then the negotiation algorithm is expected to terminate with
success, and experiments of kind 1 and 2 must end well.
Instead, experiments of kind 3 are expected to correctly ne-
gotiate the algorithms, but then the client is expected to fail,
due to unsupported signature algorithm.

In experiments of kind 4 and 5, for “DH group”, the
client sends to the server a list with only one group. The
negotiation algorithm is expected to fail if the server does
not exactly support the client requested group, otherwise
the experiment must end well.

The third party servers used for testing are reported, with
some comments, in table 2.

Server Comments
OpenSSH 4.2p1 All correct
PragmaFortress 4.0 All correct
cryptlib (KpyM 1.13) No DH group 14
lshd-2.0.2 All correct
dropbear 0.48 No DH group 14
3.2.9.1 SSH Secure Shell No DH group 14

Table 2. Tested servers

Servers with comment “All correct” support all required
algorithms, and all kinds of experiments end as expected.
In particular, the negotiated algorithms are always the pre-
ferred client algorithms. Servers with comment “No DH
group 14” only support one of the two requested DH groups,
that is group 1. With these servers, experiments of kind 1, 3
and 4 end as expected. Experiments of kind 2 end correctly,
but the DH group 1 is agreed. Experiments of kind 5 cor-
rectly fail, because it is impossible to agree on a DH group.

The experiments illustrated here show the fact that the
generated client can execute in real environments, because
it is able to correctly interoperate with third party imple-
mentation servers.

Moreover, the client has been tested against the SSHred-
der2 suite, composed of more than 650 incorrect protocol
sessions. Each incorrect session has been correctly rejected
by the client, which confirms the reliability of the code de-
veloped with the proposed method.

Finally, some measures of the client code are reported in
table 3.

The three Java packages are organized as follows: spi-
Wrapper contains the spiWrapper library, which is used to
implement the operations prescribed by the protocol logic.
The code inside this package is shipped with the spi2Java
tool. spiWrapperSSH contains the encoding/decoding layer
for the SSH protocol. The code inside this package is man-
ually written. sshClient contains the protocol logic. All

2http://www.rapid7.com/securitycenter/sshredder.jsp

Package TLOCa MLOCb

spiWrapper 2064 1267
spiWrapperSSH 1557 733
sshClient 218 169

aTotal Lines of Code: non-blank and non-comment lines in a class.
bMethod Lines of Code: non-blank and non-comment lines inside

method bodies of a class

Table 3. Measures of the generated code

the code inside this package is automatically generated by
spi2Java, the only exceptions are the protocol parameters,
which have to be manually set by the programmer.

It can be argued that TLOC and MLOC metrics highly
depend on coding style. This is true; however, both spi-
Wrapper and spiWrapperSSH packages have been written
with the same coding style and rules. Because of this, it can
be assumed that, in this particular environment, both TLOC
and MLOC are significant.

As it can be clearly noticed from the TLOC and MLOC
metrics, the code that must be manually written, that is the
code inside the spiWrapperSSH package, is less than half of
the whole code required by the entire application. This mea-
sure allows to state that the spi2Java tool helps to make ap-
plication development quicker and safer, because less code
must be manually written.

6 Conclusions

The original work presented in this paper shows how the
last version of the spi2Java tool overcomes previous issues,
allowing, for the first time, to semi-automatically generate,
from a formal specification of a security protocol, interoper-
able Java code, with a high confidence about its correctness.

By providing a consistent development framework,
spi2Java enables other developers to reproduce the innova-
tive results obtained here, and to achieve new ones.

The proposed case study on the SSH-TRANS client is
also original work. At the same time it shows the new fea-
tures of the last version of the spi2Java tool, and, up to our
knowledge, it is the first semi-automatically generated inter-
operable Java software that is developed with the proposed
framework, and that works in real environments.

In order to achieve these results, spi2Java has been re-
vised, and new features have been added. However, future
work is still possible. In particular, automatic generation
of the encoding/decoding layer would speed up the devel-
opment process, and would further improve the assurance
level about the correctness of the implementation.

Although it is likely that some parts of spi2Java can still
be improved, the achievements showed in this paper repre-
sent innovative results, that allow programmers to develop,

in less time, better interoperable security software, by using
the reliability given by formal methods, the speed up given
by automatic code generation, and the flexibility offered by
the last version of spi2Java.

References

[1] M. Abadi and A. D. Gordon. A calculus for cryptographic
protocols: The spi calculus. In ACM Conference on Com-
puter and Communications Security, pages 36–47, 1997.

[2] K. Bhargavan, C. Fournet, A. D. Gordon, and S. Tse. Veri-
fied interoperable implementations of security protocols. In
Computer Security Foundations Workshop, pages 139–152,
2006.

[3] B. Blanchet. An efficient cryptographic protocol verifier
based on prolog rules. In Computer Security Foundations
Workshop, pages 82–96, 2001.

[4] L. Durante, R. Sisto, and A. Valenzano. Automatic testing
equivalence verification of spi calculus specifications. ACM
Trans. Softw. Eng. Methodol, 12(2):222–284, 2003.

[5] H. Grandy, D. Haneberg, W. Reif, and K. Stenzel. Develop-
ing provable secure M-commerce applications. In Emerging
Trends in Information and Communication Security, volume
3995 of Lecture Notes in Computer Science, pages 115–129,
2006.

[6] H. Grandy, K. Stenzel, and W. Reif. Refinement of security
protocol data types to java. In Proceedings of Password ’06,
Program Analysis for Security and Safety Workshop Discus-
sion, Nantes, France, 2006.

[7] E. Hubbers, M. Oostdijk, and E. Poll. Implementing a for-
mally verifiable security protocol in java card. In Security
in Pervasive Computing, volume 2802 of Lecture Notes in
Computer Science, pages 213–226, 2003.

[8] C.-W. Jeon, I.-G. Kim, and J.-Y. Choi. Automatic gen-
eration of the C# code for security protocols verified with
casper/FDR. In International Conference on Advanced In-
formation Networking and Applications, pages 507–510,
2005.

[9] J. Jonsson and B. Kaliski. Public-Key Cryptography Stan-
dards (PKCS) #1: RSA Cryptography Specifications Ver-
sion 2.1. RFC 3447 (Informational), Feb. 2003.

[10] J. Jürjens. Verification of low-level crypto-protocol imple-
mentations using automated theorem proving. In Interna-
tional Conference on Formal Methods and Models for Co-
Design, pages 89–98, 2005.

[11] D. Pozza, R. Sisto, and L. Durante. Spi2java: Automatic
cryptographic protocol java code generation from spi calcu-
lus. In International Conference on Advanced Information
Networking and Applications, pages 400–405, 2004.

[12] B. Tobler and A. Hutchison. Generating network secu-
rity protocol implementations from formal specifications.
In Certification and Security in Inter-Organizational E-
Services, Toulouse, France, 2004.

[13] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol
Architecture. RFC 4251 (Proposed Standard), Jan. 2006.

[14] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Trans-
port Layer Protocol. RFC 4253 (Proposed Standard), Jan.
2006.

