

DEVELOPING AND TESTING OF A NEW BALANCE FOR MONITORING LYOPHILISATION IN VIALS

Alberto Vallan, Marco Parvis, Antonello A. Barresi, Valeria Rasetto

Dipartimento di Scienza dei Materiali e Ingegneria Chimica, Multiphase Systems and Reactors group Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino (Italy)

Monitoring the lyophilisation process and promptly detect the end point of the primary drying phase is an important issue in order to preserve the product quality avoiding thermal damages. In this work we present an innovative balance able to weigh in line a group of vials having the same features of those of the batch. This is possible because the balance can be directly used in the vacuum chamber of the freeze-dryer without extracting samples from the drying chamber. The balance has been tested using it in a small production unit (Lyobeta, IMA-TELSTR) and comparing results with those obtained using other monitoring devices: thermocouples and DPE (non invasive monitoring method based on pressure rise tests).

Balance features

Design specifications

The balance prototype is composed of two measurement systems: one for the mass detection and one for the temperature measurement.

The mass system includes a load cell, a moving plate and a lifting system. During the mass measurement the lifting system rises the load cell, afterwards the vials are released over the shelf.

The temperature of the vials is measured by means of a Wireless Temperature Measurement System (WTMS). The WTMS circuit is located over the moving plate of the load cell. This prototype can measure up to three vials temperature by means of commercial thermocouples sensors.

The balance can measure the mass in a range between 100 - 200 g and can works inside the vacuum chamber where typically the temperature is set in a range between -40°C and +30°C.

It can tranfer data to a PC using a standard RS 232 interface. A special micro-controller system performs the acquisition of data and the control of the mechanical system

Figure 1. Balance equipment



Figure 3. Lifting system

Figure 4. Lifting system and load cell

Figure 2. Load cell and wireless thermometer

Figure 5. Balance positioned on a try in a batch

Figure 6. Balance positioned inside the vacuum

Advantages of using this balance

- It is possible to measure the mass of a set of vials without extract any samples from the drying chamber
- The vials are monitored in line during the process and are exactly the same of the rest of the batch.
- The vials are almost always in contact with the heating shelf and they are lifted just during the mass measurement, therefore, the thermal exchange between glass vials and heating surface is not significantly modified
- The monitoring system based on the mass measurement is not invasive for the product and can be considered representative of the whole batch

Freeze-drying experiments

Experimental cycle

The experimental data have been obtained operating with Lyobeta (TELSTAR) freeze-drier. Samples were arranged on the shelf, surrounded by voids vials in order to minimise the effect of radiation. The vials of the batch were filled in with 1 ml of a 10% sucrose solution and partially sealed. The experiment showed in the following is carried out with a batch of 43 vials whereof 15 are on the balance brace. Product temperature has been monitored using both thermocouple sensors placed in contact with the bottom of the glass vials and DPE method. The recipe of freeze drying cycle is given in Table 1.

Figure 7. The pilot freeze-drye used for experiments

- Table 11 Recipe of the experimental cycle			
Phase	Duration	Temperature, K	Pressure, Pa
Freezing	2 h	-45	
Freezing	30 min	-45	
Vacuum			5
Primary Drying	2 h	-15	5
Primary Drying		-15	5

Table 1. Recipe of the experimental cycle

Results

The results showed in Figure 8 evidence a good agreement between the time evolution of the values of mass and of temperature. When the product temperature strongly increase, i.e. at the end of the primary drying, the monitored mass of the vials becomes almost constant. Therefore the end point of the primary drying phase can be detected by means of this balance

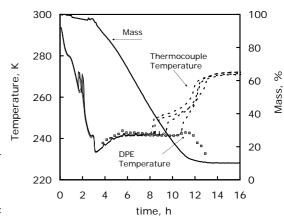


Figure 8. Time evolution of the temperature and of the mass values during the experimental cycle.

<u>Acknowledments</u>

E.U. is gratefully acknowledged for financial support in the framework of the research project LYO-PRO: Optimisation and control of the freeze-drying of pharmaceutical proteins (GROWTH Project GRD1-2001-40259-RTD).