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Abstract

Locating sensors in 2D can be often modelled asAenGallery problem. Tasks such as surveillanceuras
observing or “covering” the interior of a polygonith a minimum number of sensors or “guards”. Obsegvthe
boundaries of a polygonal environment is sufficfenttasks such as inspection and image based ranglé\s interior
covering, also Edge Covering (EC) is NP-hard, amdfinite algorithm is known for its exact solutioh.number of
heuristics have been proposed for the approximatatien of this important problem, but their penfioances with
respect to optimality is unknown. Therefore, a goly specific tight lower bound for the number aises is very
useful for assessing the performances of theseitligss. In this paper, we propose a new lower botordthe EC
problem. It can be computed in reasonable timeeforironments with up to a few hundreds of edge®vBtuate its
closeness to optimality, we compare it with a prasly developed lower bound and with the solutimvided by a
recent incremental EC algorithm. Tests over hundrefipolygons with different number of edges shwt the new
lower bound is tight and outperforms the previons.o

1. Introduction

Several computer vision and robotics tasks, asedlamce, inspection, image based rendering, cocisig
environment models, require multiple sensor locetjor the displacement of a sensor in multipldatipos for fully
exploring an environment or an object.

Sensor placement, or planning, or location, ismaportant area of research. A recent sensor pladesnevey [15]
refers to tasks as reconstruction and inspectievei@l other tasks and techniques were considerdd] and [16].

Sensor location problems require considering a rurob constraints, such as image resolution, fidldiew of the
sensors, feature visibility, lighting, etc. Visibjl is clearly the fundamental constraint. An ordirectional or rotating
sensor is usually modeled as a point. A featur@nabbject is visible from the sensor if any segnjeining a point of
the feature and the viewpoint does not intersexetivironment or the object itself.

Although the general problem is three-dimensioimaseveral cases it can be restricted to 2D. Ehieriinstance the
case of buildings, which can be modeled as obduizined by extrusion. The 2D visibility constraismimodeled by the



classic Art Gallery problem, which asks to posit@mminimum set of “guards” able to see, or “covarpolygonal
environment. Tight upper bounds for the cardinaditythe set of guards have been found in sevessdscal he famous
Art Gallery Theorem by Chvatal states that at o | guards are required for covering any simple patygdth n
edges, metaphorically the interior of an art gglléthe upper tight bounidn+h)/3] holds for polygons witm edges
and h polygonal holes. Many variations of the problem éndbeen considered, as for instance particular kihd
polygons, restricted positions for the guards, toltkl constraints. For further details, the reaereferred to the
monograph by O’'Rourke [12] and to the surveys bgr8ter [14] and Urrutia [17].

Unfortunately, the practical problems, that is fimgithe cardinality of the minimum set of guardsl émcating these
guards in a given polygon, are NP-hard, and naefiakact algorithm, not even exponential, is kndamlocating a
minimum cover. In addition, approximate algorithpmdynomial in the worst case and with guaranteatopmance are
unlikely to exist [5].

Observe that, for tasks as surveillance, sens@rseauired to observe, or cover, tinéerior of a polygon. Other
tasks, such as inspection, a main application of@e planning according to the survey [16], and gendased
rendering, only require observing theundary In this paper, we will deal with observing thdgesof a polygonal
environment. We call this tHedge Covering (ECproblem, while the classic problem will be referte as thénterior
Covering (IC)problem. The EC problem and its relations withhi&e been analyzed in [21]. The Chvatal bound als
holds for EC, but, although any interior cover lisoaan edge cover, in general an optimum set afu@rds is not an
optimum set of EC guards and vice-versa. Examgiesvshat the number of interior guards may be tinmes, for
simple polygons, or @y times, for polygons with holes, the edge guardihen the EC problem is different from IC,
but not easier. Actually, also EC is NP-hard [2&]d no finite exact algorithm is known for locatiagninimum set of
EC guards in a given polygon

Even if they are NP-hard, the IC and the EC probklemre important in practice, and many approximatesaer
positioning algorithms have been proposed. Someoappate polynomial algorithms for IC are reportegd Shermer
in [14]. Others worst-case polynomial algorithmasvé been presented later, for instance by Bjoi8aghs and
Souvaine [3] and Elnagar and Lulu [6], [7]. As fitwe EC problem, some attempt has been made fatroeoting
practical sensor positioning algorithms. Kazakakis and Aeogyf10] have proposed and implemented a polynomial
heuristic that also takes into account the vidipiionstraint. The randomized approach (Danner l&adaki [4],
Gonzales-Banos and Latombe [8], [9]) attempts far@gch the optimal solution by locating at randoemgnsensors.
Only a few of these algorithms have been implententand in any case no experimental results compatie
cardinalities of the solution provided by theseoaiifpms with the optimal solution have been presént

Recently, an EC incremental sensor location algorihas been presented [22]. This algorithm coregetgward
the optimal solution in an undefined number of stepnd makes use of a lower bousggcific of the polygon
considered for the minimum, or optimum, number of guardsheTlower bound allows evaluating the quality of the
solution obtained at each step, and halting therdlgn if the solution is satisfactory. Experimantesults, showing
that on the average the algorithm supplies solstaose to the lower bound, are presented in [22].

Clearly, since no known algorithm is able to coneptite cardinality of a minimum set of EC guardsight lower
bound is of great importance for evaluating theliuaf sensor positioning algorithm. In this papere present and
discuss a new, polygon specific, lower bound athori The lower bound computed with this algoritleequal or
larger than that computed with the algorithm ddeatiin [22]. The algorithm for computing the lowmrund has been
implemented and tested for many random polygordiffirent categories and different number of edgel compared
with the results supplied by the previous lower fmbalgorithm described in [22]. The tests showt tha new lower
bound is significantly larger, and thus better,nthihat provided by the previous algorithm. Theoalhm is not
polynomial, but its running time allows dealing lvftolygons with up to a few hundred of edges.

The paper is organized as follows. In Section 2describe the new lower bound algorithm. Sectigmdides the
experimental results and comparisons. Concludintarks are reported in Section 4.

2. The Lower Bound Algorithm for EC

2.1.The previous Lower Bound and its shortcomings

Let us first recall the lower bound algorithm délsed in [22]. It is based on the conceptwaak visibility polygon
of an edge.Two points of a polygoR are visible, or see each other, if the segmentrjgithe points lies completely in
P. According to the definition given by Avis and Ussaint [2], a polygoiV is weakly visible from an edgeif for
each pointw [0 W there exists at least a poinf] e such thatv is visible fromz. In other words, the weak visibility
polygonW(e) of an edges is the polygon whose points see at least a pdiat oObserve that points seeing only one
vertex ofe do not belong t&W(g). Examples of weak visibility polygons are shownFig.1. Polynomial algorithms



for computing weak visibility polygons of an edges alescribed in the literature [13]. In our casewever, weak
visibility polygons are computed as a by-producthaf sensor location algorithm described in [22].

Figure 1. Two weak visibility polygons. Each of these polygons must contain at least one guard.

Weak visibility polygons allow us to determine avkr bound for the number of sensors needed. Iifas clear
that each weak visibility polygon must contain eadt one sensor, otherwise no points of the edgeeen by any
sensor. Therefore, a lower boubBy(P) for a polygonP is obtained by computinthe cardinality of the maximal
subset of disjoint (not intersecting) weak vistpifjolygons W(gof P.

A simple example is shown in Fig.1. It is easyéoify by inspection that no more than two disjoigak visibility
polygons can be found, for instance \W@nd W(g), and thus LB,(P)=2.

Computing LBy requires solving thenaximum independent set problémn a graphG where each node represents
the weak visibility polygon of an edge Bf and each edge @ connects nodes corresponding to intersecting weak
visibility polygons. The problem is equivalentttee maximum clique problefior thecomplemengraphG’. Although
this is an NP-complete problemaxact branch-and-bound algorithms for these problemshasen presented and
extensively tested ([17], [18], [19]), showing mdhan acceptable performances for graphs with ladsdof nodes.

The tests reported in [22] also show that on threrage the difference between they(B) and the cardinality of the
solution provided by the sensor location algoritisnsmall, and both are close to the optimum calitynthat lies in
between.

However, the algorithm for computing lBfails to produce good results in some simple cas€snsider for
example the case in Fig.2, showing a comb polydanfamily used for showing that the Chvatal uppeund is tight
for both IC and EC. Only two not intersecting weadibility polygons can be found, for instance $bshown in Fig.2
(a), and then LR(P)=2. However, three EC guards are clearly requiome for each spike. The reason of the bad
behavior of the algorithm in this case can be apated from Fig.2 (b), where the weak visibilitylypgon W(e) of one
of the edges forming the central spike is showneJ\itersects W(g, and likewise W(g intersects W(g.

Let us observe that similar arguments show thatdiver bound LB, is 2 forall polygonsof the comb family: as
the number of spikes and gualidsreases, the gap between the lower bound andatttkénality of the minimum set
increases as well.




Figure 2. LB4(P) is two, but EC requires three guards

2.2.The new Lower Bound Algorithm

The previous example suggests considering vigilgidlygons of parts of the boundary smaller thardge. Given
a polygonP and recalling the definition given by O'Rourke JJithe point visibility polygon VP(x) of a pointig the set
of points [P visible from x.In particular, we focus our attention on convertiges of the polygon and thus consider
VP(v) of all convex verticesy; of P. We only consider vertices at convex angles berdusy are able to produce
visibility polygons smaller than those of their #enging edges.

Consider the cardinality of the maximal subset of imtersecting VPs of convex vertices. It is clé@at this
cardinality is another lower bound, since each MBtneontain at least one guard. If we use this logwer bound, the
problem with the comb polygon family is solved,sh®wn in Fig. 3.
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Figure 3. The non intersecting VP(v) are as many as the guards.

However, choosing as lower bound the cardinalitythed larger set of VPs of convex vertices could nog
satisfactory even in relatively simple cases. @marsfor instance the polygon in Fig.4. It candassily verified that no
more than four VPs of convex vertices exist, arecigely those of the vertices, W», Vs, V4 (Fig.4(a)). However, five
EC sensors are required, located for instance@srsin Fig. 4(b).

The examples discussed suggest to take into acdmthtweak visibility polygons of edges and poiigibility
polygons of convex vertices.

Then we assume the following new definition of loweund:

The lower bound LRkyp(P) is the cardinality of the maximal subset (obsets) of not intersecting weak visibility
polygons W(¢ of edges;eof P, and visibility polygons VRJwf convex vertices of P.

Using this definition, the lower bound for comb ygdns is the same as that shown in Fig.3. Foptiggon of
Fig.4, the new definition supplies five and not f@as lower bound. A maximum set of non intersectusibility
polygons is shown in Fig.5. One of them is the kvewibility polygon of the edges; the other polygons can be
interpreted either as visibility polygons of conwesttices, or as weak visibility polygons of edgesiverging in these
vertices. Combining polygons as those shown inZa&nd 4, we can easily produce examples where g¢helower
bound is better then those provided by weak visitglolygons and convex vertex visibility polygoseparately.
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Figure 4. At most, four non intersecting VP of convex vertices can be found (a), but five guards
are required (b).

Figure 5. Five non intersecting visibility polygons are found.

In general, it is clear that Li&yve(P)> LB\ (P) for any P, and then L/RByp(P) is a better or equal lower bound.

Polynomial algorithms for computing point visibylipolygons of polygons with and without holes canfbund in
O'Rourke [12]. In addition, for polygons withoutlés it is possible to compute the point visibiltglygon of a convex
vertexv; as the intersection of the weak visibility polygoofsthe edges converging int@ In our case, visibility
polygons are computed, again, as a by-producteo$éimsor location algorithm described in [22].

At a first glance, we could expect a heavier corapaomal burden for the non polynomial part of thgoaithm, that
is the selection of the maximum independent seteofices in the associated graph. However, as Weshow in the
following, this is not the case since an importautuction of the number of nodes of the graph eapdrformed, since
the weak visibility polygons of the edges conveggith the convex vertices should not be considered.

3. Experimental results

In this section, we present experimental resultsavafg that, on the average, the new lower boundifsgintly
outperforms the previous.

In order to evaluate the performance ofy8> compared to LR, we implemented it within the EC algorithm
described in [22]. Thus, two versions of the E@oathm are considered: one is the original vergaescribed in [22])
computing the lower bound LB while the second computes the \fp proposed in this article. In the following,
results from the original version of the EC aldumit are subscripted witW/, while results from the new version are
subscripted withtW&VP. Comparing the old and the new LB is not suffitifor a full evaluation. A better insight is
provided by theeduction of the gapetween the lower bound and the final solutionyeal as by theroportional gap
that is the gap divided by the lower bound, reprisg the percentage of total guards exceedind.Biestimation. It
is also interesting to compare computational tisfasew and old lower bounds.

Both versions of the EC algorithm were tested @mareral hundreds of polygons belonging to the Valg five
categories:

(A) generic random polygons, with edges oriented iregerirections;
(B) generic random polygons with one to three holes;

(C) orthogonal random polygons with no holes;

(D) orthogonal random polygons with one to three holes;

(E) generic random polygons with more than a hundreg®d

Four different sets of polygons, with 30, 40, 5@ &0 edges, were constructed for each of theffitgt categories.
For the last category, three sets of polygons wit@, 150 and 200 edges were used. Test resuleafir category are
illustrated through Table 3 to Table 7.

Each record of these tables refers to a setoofpolygons withnedgsedges used for tests. Data reported in these
tables provide the following information averageiothe total number of polygoffer each set:

e LB, the lower bound computed;

e C,the cardinality of the final EC solution. For pgbns of the categories (A)-(D) the cardinality igegp by
the solution of the EC algorithm presented in [2&h four iterations without improvements and i
limit for the execution of 2400s. For polygons aftegory (E), the cardinality is given by the greedy
solution of the EC algorithm;



gap (G) the absolute distance between the lower boundlandardinality of the EC solution. Precisely,
Gw=Cw-LBy is the gap estimated for each polygon tested uti@epriginal version of the EC algorithm
and Gyevp=Cwevr-Lwevp is the gap estimated under the new version oftperithm. The smaller is the

gap, the better a solution is. Clearly, in theropt case, the gap is null

e G/C, the gap per total number of guarder proportional gap;that is, respectively, &Cy and
Gwevr/Cwevp. Relating the gap to the cardinality of a given &flution is another way of estimating the

quality of the lower bound;

e LBtime the total time, in seconds, spent to computeldher bound computation (see below for further

details);

e G reduction the percentage of gap reduction when usingdB instead of LB,; gap reduction is defined

as 1- Guevp/Gy;

e G/C reductionthe reduction of the proportional gap given by tliew lower bound;

e LBtime reductionthe percentage of time saved computing the Idveemd as LBgvp instead of LB,

(negative values stand for extra time spent).

The experiments show that the new lower bound itheraverage higher than the old one. It is ingurto notice
that the final solutions of the two implementaticare almost identical, as it can be seen from @iecolumn. The
difference is due to a single case (in Table 4e8@es’ set) where a different number of completedhiions, before

reaching the time bound, produces solutions wittedint cardinalities.

Equal solutions, combined with an improvement &f ldwer bound, lead to a sensible reduction ofgéye between
LB and the final EC solution and, consequentlythe proportional gap. These improvements are suimeathper
polygon category in Table 1, where we can see thatgap reduction ranges between 27% and 42% and th

proportional gap reduction ranges between 28% aptl. 4

As a whole, considering all the experiments, theamgap reduction is 33.57% and the mean propottigag
reduction is 34.29%. These results assert, betlomadhadow of a doubt, that the new lower boundgimed in this

article provides a tighter approximation of theiopim.

Regarding the processing time, the total time meguio compute the lower bound includes:

< the data structure timethat isthe time spent to construct the required data &trac(weak visibility
polygons in the case of LB weak and point visibility polygons in the case &ysvp)
« themax clique timgwhich is the time taken to construct the duappr&com the set of visibility polygons

and to solve the max clique problem

Polygon category G reduction  G/C reduction
Random 42.59% 41.30%
Random with holes 27.85% 29.40%
Orthogonal 46.43% 47.84%
Orthogonal with holes 28.93% 28.47%
Random high 29.17% 29.43%
Total 33.57% 34.29%

Table 1. Total gap and proportional gap reduction per polygon category

Table 2. Lower bound reduction times Average reduction times
. . ) ) Polygon categories| Data struct Max clique Total
Processing times required for computing the datactire
and solving the max clique problem were individgalRandom -1.24% 31.40%  10.70%
recorded for each polygon tested and then averpgeéach Random with holes -3.19% 30.69% 10.72%
olygon category. Time reductions for: 1) conding the
Sat};gstructurg, 32/) solving the max cquue) problgl?:ui 38) Orthogonal -1.21% 21.39% 5.96%
computing the lower bound as a whole are summarizedOrthog. with holes -15.46% 24.27% -0.15%
Table 2. Random high -51.82% 87.72%  83.76%
The time reduction of a specific task (e.g. corddtng the
lower bound data structure) is the percentagentd 8aved by Total -29.42% 86.83% 80.90%

LBwsve in performing that task. Thus, positive valuemsitfor time savings while negative values stamdektra time
consumed. Table 2 reports some interesting infooma first, as expected, the time spent in creathe data structure



increases; second, the time spent in evaluatingndpeclique decreases. The first behaviour istdube computation
of the PVPs required for Likve. The second is due to the fact that the graph @unt non intersecting weak
visibility polygons and point visibility polygon®mds to have fewer nodes compared to the one ugag visibility
polygons only. Therefore the maximum independemtpseblem is easier, and therefore faster, to soM@s is
particularly evident for polygons with a very higilumber of edges. The result of this time savinghat, on the
average LBtimggyp < LBtimey.
Summarizing, the experiments show that:
e the new lower bound is tighter and, therefore,alds the optimum;
< the computational burden of the evaluation of thvedr bound has markedly reduced.
Therefore, the new LB definitely outperforms theous one.

4. Conclusions

We have studied, implemented and experimented dawer bound for the minimum number of guards resplifor
solving the edge covering problem, a variationhef art gallery problem.

In order to evaluate its performance, we compatedith a previously proposed lower bound and witle t
cardinality of the coverage provided by an EC atbar.

The results collected from a wide range of polygamvish and without holes, show that the new loweurd is on
the average higher/tighter than the previous owuktlam relative gap per total number of guardsdsiced on average of
almost 34.29% than the respective gap computed Matfp Furthermore, despite the additional computatamuired,
the current lower bounds requires less time foevisuation.

Concluding, the new lower bound is a significarttamcement of the previous one.
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nedgs| no. LB C G G/C LBtime . G dG/C_ LdBtime
W&VP W W&VP W W&VP W W&VP W W&VP W reduction freduction|reduction
30| 20 3,95 3,80 4,30 4,30 035] 0,50 0,078] 0,208 0,319] 0,292 30,00%| 27,91%| -9,09%
40| 20 5,20 4,90 5,40 540/ 0,20] 0,50 0,035] 0,087 0,643] 0,598 60,00%| 59,84%| -7,58%
50[ 20 6,25 5,90 6,70 6,70 0,45| 0,80] 0,066] 0,214] 1,561| 1,731] 43,75%| 41,88% 9,83%
60| 20 7,75 7,40 8,30 8,30] 055] 0,90 0,063] 0,202] 2,687 3,212 38,89%| 38,92%| 16,37%
Table 3. Random polygons - (A)
nedgs| no. LB C G GIC LBtime g G dG/C_ LdBtime
W&VP W W&VP W W&VP W W&VP W W&VP W reduction reduction| reduction
30| 20 4,90 4,60 5,20 520 0,30] 0,60 0,046] 0,099] 0,460 0,448] 50,00%| 52,90%| -2,83%
40 20 5,70 5,40 6,45 6,45 0,75] 1,05 0,115 0,159| 1,674| 1,728| 28,57%| 27,85% 3,12%
50| 20 6,75 6,40 7,55 7,45 0,80] 1,05 0,206] 0,137| 2,106 2,345 23,81%| 22,92%| 10,19%
60| 20 7,40 7,15 8,40 8,40 1,00] 1,25 0,115 0,146] 2,982| 3,569] 20,00%| 21,30%| 16,44%
Table 4. Random polygons with 1-3 holes - (B)
nedgs| no. LB C G G/C LBtime . G _ dG/C‘ LdBtlme
W&VP W W&VP W W&VP W W&VP W W&VP W reduction| reduction reduction
30| 20 4,25 3,95 4,50 4,50 0,25] 0,55 0,053] 0,128 0,195 0,173 54,55%| 58,17%| -13,06%
40 20 5,70 5,35 6,15 6,15 0,45| 0,80] 0,073] 0,227| 0,333 0,329] 43,75%| 42,02%| -1,16%
50| 20 6,60 6,15 7,30 7,30] 0,70] 1,15] 0,095] 0,159] 2,236] 1,055 39,13%| 40,12%| -111,85%
60| 20 8,00 7,15 8,85 8,85 085] 1,70 0,091 0,187| 1,814| 3,311] 50,00%| 51,29%| 45,22%
Table 5. Orthogonal polygons - (C)
nedgs| no. LB C G G/C LBtime . G dG/C_ LdBt|me
W&VP W W&VP W W&VP W W&VP W W&VP W reduction reduction|reduction
30| 20 5,45 5,25 6,00 6,00 055| 0,75 0,464| 0,647 0,202 0,170 26,67%| 28,33%| -18,85%
40 20 7,70 7,55 8,30 8,30 0,60] 0,75 0,069] 0,086] 0,248 0,182] 20,00%| 19,62%| -36,38%
50| 20 7,85 7,40 9,10 9,10 1,25] 1,70] 0,142 0,298] 0,707| 0,733 26,47%| 28,22% 3,53%
60| 20 9,45 850 11,35 1135[ 1,90 2,85 0,165 0,243[ 1,402| 1,471 33,33%| 32,15% 4,67%
Table 6. Orthogonal polygons with 1-3 holes - (D)
nedgs| no. LB C G GIC LBtime g G dG/C_ LdBtime
W&VP W W&VP W W&VP W WE&VP W W&VP W reduction| reduction reduction
100 15[ 11,87] 11,00 13,73 13,73] 1,87 2,73] 0,132] 0,194] 7,637] 7,868] 31,71%| 32,28% 2,93%
150 15| 17,07] 16,23] 19,80] 19,80] 2,73[ 3,67] 0,136 0,183] 32,270 36,090] 25,45%| 25,65%| 10,59%
200] 15| 21,93] 2047 2527] 2527 3,33] 4,80] 0,131] 0,188| 116,41| 918,72 30,56%| 30,16%| 87,33%




Table 7. Random polygons with a high number of edges - (E)



