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SUMMARY. Many materials exhibit microstructure on more than one length scale. In the present 

paper we face the problem of hierarchical materials and structures by means of a fractal approach. 

We firstly propose a mathematical model to design nano-inspired hierarchical materials. Simple 

formulas describing the dependence of strength, toughness and stiffness are derived. The problem 

of hierarchical beam-framed structures is then considered. Basic energy considerations seem to 

suggest peculiar scaling laws for the geometric and mechanical features of the structure. 

 

1 INTRODUCTION 

 

The hierarchical order of a material (or a structure) can be viewed as the number n=N of scale 

levels with recognized structure. For n=0 the material is viewed as homogeneous.  

Biological materials exhibit several levels of hierarchy, from the micro- to the macro-scale. For 

instance, sea shells have 2 or 3 orders of lamellar structures, as well as bone, similarly to dentin, 

has 7 orders of hierarchy [Currey, 1977,1984]. These materials are composed by hard and strong 

mineral structures embedded in a soft and tough protein matrix. In bone and dentin, the mineral 

platelets are ∼3nm thick, whereas in shells their thickness is of ∼300nm, with very high 

slenderness. With this hard/soft hierarchical texture, Nature seems to suggest us the key for 

optimizing materials with respect to both strength and toughness, without losing stiffness. Even if 

hierarchical materials are recognized to possess a fractal-like topology [Lakes, 1993], only few 

engineering models explicitly considering their complex structure are present in the literature (see 

[Gao, 2006] and related references). In the next section alternative and concise mathematical 

models will be presented, based on our previous experience on fractal geometry [Carpinteri and 

Pugno, 2005,2007]. 

The attention is then turned to the mechanical behaviour of hierarchical beam-framed structures. 

The structural response of a von Koch cantilever beam, an archetype of self-similar structures, is 

analyzed under different loading conditions in the small-deformation regime. Simple recursive 

formulas on the strain energy are derived, which show us the rate at which structural features 

should scale in order to prevent compliance divergence.  
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2 HIERARCHICAL MATERIALS 

 

Let us consider a tensile test on a hierarchically fibre-reinforced bar. Its cross-section, 

composed by hard inclusions embedded in a soft matrix, is schematized in Figure 1.  
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Figure 1. The cross-section of a hierarchical bar. 

       

 

Each inclusion at the level 1−k contains 
kn  smaller ones, each of them with cross-sectional area 

kA . Thus, the total number of inclusions at the level k is ∏
=

=
k

j

jk nN
1

. The smallest units, at the 

level N, are considered scale-invariant. Finally, let us denote with 
k

kk

k
A

An 11 ++=ϕ  the cross-

sectional fraction of the inclusions at the level k+1 inside the inclusion at the level k.  

Natural optimization suggests self-similar structures [Brown and West, 2000], for which nnk =  

and ϕϕ =k , and thus k-independent numbers and fractions. Accordingly, k

k nN = . 

The equilibrium equation is: 

 

( ) ( ) kANAANANAANFFAF sNNNhNNNskkkhkkkshC ∀−+=−+=+=≡ ,σσσσσ  

 

where F is the critical applied force and 
sh FF ,  are the forces carried by the hard and soft phases 

respectively; 0AA ≡  is the cross-section area of the bar, Cσ  is its strength; hhN σσ ≡ , ssk σσ ≡  

( k∀ ),
hσ , 

sσ , are the material strengths of the hard and soft phases, respectively; the subscript k 

simply refers to the quantities at the level k. 

Since the inclusions present a fractal distribution [Carpinteri and Pugno, 2005], we expect 
D

h RF ∝  where AR =  is a characteristic size and D is a constant, the so-called “fractal 

exponent”. The constant of proportionality can be deduced noting that ( ) hNNNh AAAF σ== , and 

thus DD

NhNh RRF
−= 2σ . Accordingly, from 22

N

N

hN

DD

NhNh RnRRF σσ == − , we derive:  



 3 

 

n

RR
DN N

ln

ln
= , (1) 

 

which defines the number of hierarchical levels that we need to design an object of characteristic 

size R. Eqn.(1) shows that only few hierarchical levels are required for spanning several orders of 

magnitude in size.  

The scaling exponent D can be determined noting that ( )φ−=− 1AANA NN , where Nϕφ =  

represents the macroscopic (at level 0) cross-sectional fraction of the hard inclusions. Thus, we 

derive ( ) 2N

N nRR ϕ= . Introducing this result into eqn.(1) provides the fractal exponent, as a 

function of well-defined physical quantities: 
 

ϕlnln

ln2

−
=

n

n
D . (2) 

 

Noting that 1>n  and 1<ϕ , we deduce 0<D<2. D represents the fractal dimension of the 

inclusions, i.e., of a lacunar two-dimensional domain in which the soft matrix is considered as 

empty [Carpinteri 1994, 1994b]. For example, the dimension of the well-known Sierpinski carpet 

(Figure 2), is D=1.89. 

  

 

 
 

Figure 2. The Sierpinski carpet (D=1.89) at different levels of observation; it corresponds to a 

deterministic hierarchical bar in which the empty space is the soft matrix, and the complementary 

zones are the hard inclusions. 

 
 

By substituting 

 

( ) 2−
==

D

N

N
RRϕφ  (3) 

 

into eqn.(1), it yields:  

 

( ) ( ) ( )( )22
11

−−
−+=−+=

D

Ns

D

Nh

N

s

N

hC RRRR σσϕσϕσσ . (4) 

 

Eqn.(4) represents a scaling law for strength; taking into account that usually sh σσ >> , eqn.(4) 

predicts that strength decreases as the size increases (Figure 3). 

 



 4 

 
 

Figure 3. Strength σC scaling law (dimensionless quantities) for σh/σs=10 and D=1.89. 

 

 

On the other hand, the energy balance and the compatibility equation provide the scaling 
equations of the unit fracture energy GC and of the Young’s modulus E of the bar. In formulae: 

 

( ) ( ) ( )( )22
11

−−
−+=−+=

D

Ns

D

Nh

N

s

N

hC RRGRRGGGG ϕϕ , (5) 

 

( ) ( ) ( )( )22
11

−−
−+=−+=

D

Ns

D

Nh

N

s

N

h RRERREEEE ϕϕ , (6) 

 

where sh GG ,  and sh EE ,  are the unit fracture energies and Young’s moduli of the bar, hard and 

soft phases, respectively. Since usually 
sh GG <<  and 

sh EE >> , eqns. (5-6) state that, as the size 

increases, the fracture energy increases (Figure 4) and the stiffness decreases. 

The scaling laws predicted by eqns.(4-6) show two asymptotic behaviours, for macro and micro 

size-scales; note that they all present the same self-consistent form: 

 

( )N

s

N

h XXXX ϕϕ −+=≡ 10 , (7) 

 

where X is the generic property.  

The model could be easily extended to a three-dimensional architecture. 

 Furthermore, for quasi-fractal hierarchy, described by ( )Rn  and ( )Rϕ  weakly varying with the 

size R, function D(R) should be considered in eqns.(4-6), as deducible from eqn.(2). 
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Figure 4. Fracture energy GC scaling law (dimensionless quantities) for Gs/Gh=10 and D=1.89. 

 

 
3 HIERARCHICAL BEAM-FRAMED STRUCTURES 

 
In order to understand the behaviour of hierarchical beam-framed structures, we will refer to 

the classical Von Koch curve, whose features are briefly described in the following section.  

 

3.1 TRIADIC VON KOCH BEAM 

 

Let us recall the properties of the triadic von Koch curve [Feder, 1988]. The construction of 

the von Koch curve starts with a line segment of length l. At the first generation the set consists of 

the four segments of length l/3, obtained removing the middle third of the generator and replacing 

it by the other two sides of the equilateral triangle based on the removed segment. This procedure 

is iterated ad infinitum: at each stage the middle third of each interval is replaced by the other two 

sides of an equilateral triangle. At the n-th step, the number of segments is 4
n
 with length ln=1/3

n
; 

thus the total length Ln is (4/3)
n
l. As n tends to infinity the sequence of the polygonal curves 

obtained iteration by iteration approaches a limiting curve, called the von Koch curve. This is 

clearly a self-similar set: it is made of four “quarters”, each similar to the whole, but scaled by a 

factor 1/3. Its fractal dimension can be determined, by exploiting the property of self-similarity, as 

the ratio of the logarithm of the number of copies to the logarithm of the scaling factor. Thus, the 

fractal dimension of the triadic von Koch curve is D=ln4/ln3.  

 

3.2  VON KOCH CANTILEVER BEAM SUBJECTED TO A COUPLE AT THE FREE 

END 

 

Let us now consider a rectilinear cantilever beam subjected to a couple m at the free end. The 

beam is placed in a Cartesian (x,y) coordinate system in such a way that the left clamped end of the 

beam is at the origin and the right end, where the couple m is applied, at the point with coordinates 

(l,0) (Figure 5). 
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The moment M diagram is constant and equal to m, while the shear stress T is identically equal to 

zero. Focussing our attention to a small deformation regime and assuming a linear elastic isotropic 

response, the strain energy Φ0 related to such a structure could be easily evaluated as [Carpinteri 

1992]: 

 

EI

lm
dx

EI

m
dx

EI

M
l

S
22

1

2

1 2

0

22

0 ===Φ ∫∫ , (8) 

 

where S is the structure, E is the Young’s modulus and I is the moment of inertia.  

By applying Castigliano’s Theorem, it is then possible to calculate the displacements at the free 

end; for example, as regards the rotation φ0, it is easy to obtain: 

 

( )
EI

ml

m
lx =

∂

Φ∂
== 0

0ϕ . (9) 

 

The vertical displacement v0(x=l) could then be obtained from eqn.(9), by means of a simple 

integration procedure. 

On the other hand, if the beam has a self-similar structure, much more can be said about the strain 

energy and new physical considerations rise up. Henceforth, we will refer to the product k=EI as 

the beam rigidity. Moreover, the rotation ( )lx =ϕ  at the free end (and the displacement v(x=l)) 

will be denoted merely by φ (and v). 

As already said, at the generation step the von Koch curve can be seen as the disjoint union of four 

identical parts, each of which reduced by a factor 3 from the original. In the case of the free-end 

couple, each part is subjected to the same moment m (Figure 5); hence, it is not difficult to obtain a 

recursive formula for the strain energy at each stage: 

 

1. 0

23/

0

2

1
3

4

6

4

2

1
4 Φ==










=Φ ∫

EI

lm
dx

EI

M
l

 

2. 0

229/

0

2

2
3

4

18

16

2

1
16 Φ








==










=Φ ∫

EI

lm
dx

EI

M
l

 

                           

                           M  

                              

n.  0

3/

0

2

3

4

2

1
4 Φ








=














=Φ ∫

nl
n

n

n

dx
EI

M
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where Φ0 is provided by eqn.(8). Eqn.(10) shows that, if the rigidity k=EI (implicitly embedded in 

the function Φ0) keeps constant, the strain energy Φn increases at each iteration step of the von 

Koch curve. More in detail, it is evident that the strain energy Φn scales exactly as the length Ln 

does. For n tending to infinity, the structural stiffness tends to zero and the beam becomes 

infinitely compliant. As deducible from eqn.(9): 
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0

3
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n
n

n
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Figure 5. Diagram of the bending moment for a von Koch cantilever beam (step 2) subjected to a 

couple m at the free end.  

 

On the other hand, if we suppose that the strain energy must be preserved, the rigidity k must 

increase and scale as: 

 
n

EIk 







∝=

3

4
. (12) 

 

Since the generation number n may be written in the form: 

 

3lnln nln −= , (13) 

 

we have: 

 
D

nlEIk −∝= 1 , (14) 
 

where D=ln 4\ln3 is the fractal dimension of the von Koch curve. 

This is a simple, yet interesting, result: the rigidity k must increase if the strain energy Φn has to be 

conserved, due to the increased length Ln. Furthermore, it must scale exactly as D

nl
−1 : in all the 

other cases, either the strain energy diverges or it converges to zero. The same occurs for the 

compliance. 

If eqn.(14) keeps true, displacements at the free end clearly keep constant; for example, to what 

concerns rotation, we have (eqn.(9)): 

 

nn ∀= ,0ϕϕ . (15) 

 

m m 

m 
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3.3 VON KOCH CANTILEVER BEAM SUBJECTED TO A TRANSVERSAL FORCE AT 

THE FREE END 

 

If the couple m is replaced by a transversal force F, the situation becomes a little more 

complex. In a generic section of the rectilinear cantilever beam the bending moment varies 

linearly: 

 

)()( xlFxM −= , (16) 

 

whereas the shear force is constant and equal, in modulus, to F. 

The related strain energy Φ0 is: 

 

EI

lF
dx

EI

M
dx

EI

M
l

S
62

1

2

1 32

0

22

0 ===Φ ∫∫ . (17) 

 

In this case, the Castigliano’s Theorem provides immediately the value of the deflection v0 at the 

free end: 

 

( )
EI

Fl

F
lxv

3

3
0

0 =
∂

Φ∂
== . (18) 

 

If a von Koch cantilever beam is now considered, it is necessary, for a structural analysis, to 

evaluate the strain energy related to the next iterations. An analytical expression is not so direct as 

in the previous case, since the bending moment M is not constant any more, but it varies linearly 

on each segment constituting the iterative structure (Figure 6). 

 
Figure 6. Diagram of the bending moment for a von Koch cantilever beam (step 2) subjected to a 

transversal force F at the free end. 

 

In order to find a recursive relationship, we compute the strain energy for the first three iterations: 

 

F Fl 

Fl/2 
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where B0=1 from eqn.(17). Thus, for n tending to infinity, the first term in the expression (19) 

dominates and all the other terms become negligible. The asymptotic result, for a sufficiently large 

n, is identical to that obtained in the previous case (i.e. applied couple): the strain energy Φn scales 

as the total length Ln. As a consequence, in order to preserve it, the rigidity k must scale as in 

eqn.(14). As n increases, the results converge, in this case, to those of the rectilinear cantilever 

beam (n=0): 

 

0lim vvn
n

=
∞→

. (20) 

 

 

3.4 NUMERICAL SIMULATIONS 

 

In order to check the validity of the results obtained in the previous section, a FEA is 

performed by using the LUSAS ® code. Both the cases of the applied couple and force are 

considered.  

The starting beam dimensions (i.e. the generator dimensions) are selected as follows: length l=1 m; 

area of the cross section A=0.4 10
-3

 m
2
; moment of inertia I = 1.33 10

-8
 m

4
. The material 

considered in the FEA is steel: the Young’s modulus and Poisson’s ratio are taken equal to E=2.09 

1011 Pa and υ=0.3, respectively. A couple m equal to 100 Nm and a force F equal to 100 N are 

applied for the two contemplated cases. 

Rotations and vertical displacements at the free end for the first four iterations of the von Koch 

cantilever beam are evaluated; according to eqn.(14), at each stage the beam rigidity k=EI is 

increased by a factor 4/3. The results are presented in Table 1. 

 

 

 

 

Iteration 0 1 2 3 4 5 

                    Rotation, φ(m) 0.03589 0.03589 0.03588 0.03586 0.03586 0.03586 

Deflection, v(F) 0.01196 0.01130 0.01133 0.01135 0.01136 0.01137 

Table 1. Rotation φ and deflection v [m] at the free end of a von Koch cantilever beam, due to a 

couple m=100 N m and to a force F=100 N, respectively. 
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Figure 7. Elastic deformation and rotation at the free end of a von Koch cantilever beam (step 4) 

subjected to a couple m=100 N m. 

 
Figure 8. Elastic deformation and deflection [m] at the free end of a von Koch cantilever beam 

(step 4) subjected to a concentrated force F=100 N. 

 

 

Therefore, as it can be seen, if the rigidity k scales as in eqn.(14), the results concerning the 

applied couple m are very close to those of a rectilinear cantilever beam, as deducible from 

eqn.(15) (Figure 7). On the other hand, displacements related to the force F converge, in the last 

case, to those of the generator as n increases, like expected from eqn.(20) (Figure 8). 

 

 

 

F 

m 
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4  CONCLUSIONS 

 

In this paper a mathematical model to preliminary design nano-bio-inspired hierarchical 

materials, by following a bottom-up procedure, has been firstly proposed. The complexity of the 

problem has imposed a simplified treatment with associated limitations. The behaviour of 

hierarchical beam-framed structures, under different loading conditions, has also been analyzed. 

As an example of self-similar structure, the von Koch cantilever beam has been considered. Basic 

considerations on the strain energy conservation allow us to govern the structural response by 

scaling the geometric and mechanical features according to the length and the fractal dimension of 

the structure. Further studies are in progress. 
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