
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Thermal diffusivity measurements of metastable austenite during continuous cooling / Matteis, Paolo; Campagnoli,
Elena; Firrao, Donato; G., Ruscica. - In: INTERNATIONAL JOURNAL OF THERMAL SCIENCES. - ISSN 1290-0729. -
47(6):(2008), pp. 695-708. [10.1016/j.ijthermalsci.2007.06.014]

Original

Thermal diffusivity measurements of metastable austenite during continuous cooling

Publisher:

Published
DOI:10.1016/j.ijthermalsci.2007.06.014

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1654617 since:

Elsevier



Thermal diffusivity measurements of metastable 

austenite during continuous cooling. 

 

P. Matteis
1*

, E. Campagnoli
2
, D. Firrao

1
, G. Ruscica

2 

 

 

 

1
Dip. di Scienza dei Materiali ed Ingegneria Chimica, Politecnico di Torino, Italy. 

2
Dip. di Energetica, Politecnico di Torino, Italy. 

 

                                                 

*
 Corresponding author. Address: DISMIC, Politecnico di Torino, Corso Duca degli Abruzzi, 24 , 10129 

Torino, Italy. E-mail: paolo.matteis@polito.it. Tel.: +390115644711. Fax.: +390115644699. 

This is the author post-print version of an article published on International 

Journal of Thermal Sciences, Vol. 47(6), pp. 695-708, 2008 (ISSN 1290-

0729). 

The final publication is available at  

http://dx.doi.org/10.1016/j.ijthermalsci.2007.06.014 

This version does not contain journal formatting and may contain minor 

changes with respect to the published edition. 

The present version is accessible on PORTO, the Open Access Repository of 

the Politecnico of Torino, in compliance with the publisher’s copyright policy. 

Copyright owner: Elsevier. 

 

mailto:paolo.matteis@polito.it


Abstract 

The thermal diffusivity of the metastable undercooled austenite is relevant for the 

quantitative analysis of the carbon and low-alloy steel quench. The standard laser-flash 

method requires prior thermal equilibrium between the sample and the furnace, which 

may not be possible to achieve without allowing the metastable phase to transform. 

Nevertheless, depending upon the steel’s hardenability, the thermal transient due to a 

laser pulse may be much shorter than a cooling transient sufficiently steep to prevent the 

transformation of the austenite. In one such case, flash measurements were performed 

during continuous sample cooling and the thermal diffusivity of the metastable austenite 

was determined by using an extension of the standard analytical model. The adopted 

analytical model and data reduction procedure are described and the limitations and 

uncertainties of this method are discussed, also with the aid of a non-linear numerical 

simulation. The measured thermal diffusivity of the undercooled low-alloy austenite 

decreases linearly from 5.4∙10
-6

 m
2
 s

-1
 at 1133 K to 4.3∙10

-6
 m

2
 s

-1
 at 755 K; this trend is 

in broad agreement with one previous set of measurements upon a low-alloy 

undercooled austenite and with a large number of previous standard measurements upon 

stable (high-alloy) austenitic stainless steels. 

Keywords 

Metastable phase; low-alloy austenite; thermal diffusivity; flash method; analytical 

model; continuous cooling; steel quenching; theoretical; experimental. 

Nomenclature 

A constant temperature term defined in equation (10) K 



B cooling rate defined in equation (5) K s
-1 

C heat capacity  J K
-1 

cp specific heat capacity J K
-1

 kg
-1 

D heat loss variation parameter defined in equation (20)  

E surface heat flux (emissive power) W m
-2 

Erf error function  

f(…) dimensionless analytic function  

k thermal conductivity W m
-1

 K
-1 

L sample thickness m 

Lu unilateral Laplace transform operator  

q absorbed pulse energy per surface unit J m
-2 

Qa absorbed pulse energy  J 

Qi incident pulse energy  J 

R interpolation root mean square residual K 

S section area m
2 

s complex Laplace variable s
-1 

SN partial sum (until the N-th term of a series)  

T temperature K 

T  spatial average temperature K 

T  spatial and temporal average temperature K 

t time s 

T0 initial temperature K 

t0 pulse time s 

tc characteristic time defined in equation (5) s 



Tf furnace temperature K 

tp laser pulse duration  

u(…)  unitary step function  

x position inside the sample m 

Z cooling-related spatial temperature difference z(½L)-z(0) K 

z cooling-related spatial temperature term defined in equation (5) K 

 

Greek symbols 

α thermal diffusivity m
2
 s

-1 

δ thin layer thickness m 

δ(…)  Dirac δ distribution  

δE small variation of E W m
-2 

δt small variation of t s 

ΔT pulse-related temperature increment, defined in equation (7) K 

Δt duration of relevant pulse-related effects s 

ε emissivity  

εt total linear thermal and volumic expansion  

θ Laplace transform of T K 

Π(…) rectangle function (equal to 1 in [-½, ½], to 0 elsewhere)  

ρ density  kg m
-3 

σ Stefan-Boltzmann constant W m
-2

 K
-4 

τ dimensionless time t/tc  

~  dimensionless time (t-t0)/tc  

χ dimensionless position x/L  

 



Subscripts 

II solution of equation (2)  

III solution of equation (3)  

VI solution of equation (6)  

in input to the numerical simulation  

out output from the numerical simulation  

 

Superscripts 

˚ derivative in respect to t  

' derivative in respect to x  

 

Introduction 

The pointwise microstructure and the subsequent in-service mechanical properties of a 

steel component depend primarily upon its heat treatment. Among the steel heat 

treatments, the quench, being a transient process, is most sensitive to the cooling rate, 

and consequently to the surface heat transfer phenomena, to the component size and 

shape, and to the steel’s thermal diffusivity
*
 and specific heat capacity [1].  

The early quantitative methods to estimate quench results [2,3], that are still employed 

in the industry for a first estimate, were based upon analytical solutions of the heat flux 

inside geometrically simple bodies. The steel’s thermophysical properties and the 

surface heat-transfer coefficient were considered constant and the pointwise as-

quenched hardness was assumed to depend solely upon a parameter (a cooling rate or an 

                                                 

*
 Defined as α=k/(ρ∙cp), being k the thermal conductivity, ρ the density and cp the heat capacity. 



half-cooling time) obtained from each cooling curve. In these methods only a rough 

(effective) approximation of the steel’s thermophysical properties could be introduced, 

because their dependence upon the temperature and upon the phase transformations had 

to be neglected; therefore, accurate and specific measurements were needless. 

On the contrary, present thermo-metallurgical, non-linear, transient, finite-elements 

models allow to perform coupled simulations of the heat conduction and of the 

metallurgical phase transformations [4,5]; therefore precise temperature- and phase-

dependent thermophysical properties can be employed in order to seek more accurate 

results
*
.  

Because these data are seldom available for a specific steel grade, it is useful to evaluate 

which property is more influent upon the quench process, and therefore is worth to be 

more accurately assessed. If the Biot number
†
 of the quench process is small (lower than 

0.1), the temperature differences inside the steel component are negligible and the 

cooling curve depends mainly upon the boundary conditions and the specific heat 

capacity. On the contrary, if the same number is large, relevant temperature differences 

occur inside the component and the heat flux is mainly determined by the steel’s 

thermal diffusivity [6][7]. A problem characterized by a small Biot number may not 

actually require a finite-elements model, because it can be satisfyingly analyzed by a 

simple lumped capacitance model and it can be controlled by measuring the surface 

temperature, the as-quenched microstructure being sensibly homogeneous in the 

                                                 

*
 Whereas only the thermophysical properties are discussed here, the kinetic model of the metallurgical 

transformations may have an even deeper influence upon the precision of a thermo-metallurgical 

simulation. 

†
 Defined as Bi = h∙L / k, being h the surface heat transfer coefficient, k the thermal conductivity, and L a 

representative linear dimension of the body. 



volume. The opposite considerations can hold if the Biot number is large. Therefore, the 

thermal diffusivity is usually the more influent thermophysical property in those quench 

processes that can most usefully be analyzed by finite-element thermo-metallurgical 

models. 

Moreover, in any effective steel quenching process a large fraction of the component’s 

volume necessarily consists of metastable undercooled austenite during most of the 

process duration. Thus, the thermal diffusivity of the metastable (undercooled) austenite 

is particularly relevant for the numerical simulation of the steel quench. 

Yet, the standard thermal diffusivity measurement methods, and particularly the flash 

method [8], require the specimen to be initially held at constant temperature and in 

thermal equilibrium with the specimen holder and the testing ambient (furnace). 

As it regards the measurement of undercooled austenite, depending upon the kinetic of 

the phase transformation (i.e. upon the steel’s hardenability [1]), upon the furnace’s 

control systems and upon the desired measurement temperature, it can be possible to 

austenitize a steel specimen in the measurement furnace itself and then to quench it to 

the measurement temperature, but it may be very difficult or impossible to achieve the 

required initial equilibrium condition while avoiding transformation.  

Therefore, the thermal diffusivity of the undercooled austenite has been measured by a 

non-standard laser-flash method, which was derived by the standard one by dropping 

the prior equilibrium requirement. 



Experimental 

The alloyed, medium-carbon, ISO 1.2738 steel grade
*
 [9] was chosen because it is 

usually employed for the production of very large pre-hardened blooms [10][11]. The 

heat treatment of these blooms is characterized by a large Biot number and is relevant to 

control mechanical properties; thus, finite-element analyses need to be performed for 

die design purposes. Moreover, this steel shows a very high hardenability, that allowed 

to effectively quench the samples by cooling them inside the measurement furnace, and 

a large separation between the pearlitic and bainitic transformation temperature ranges, 

that allows to retain a fully austenitic structure for more than one day at temperatures 

between about 720 and 770 K (Fig. 1, [12][13][14][15]). 

A steel sample disk, having a diameter of  9.9∙10
-3 

±10
-5

 m and a thickness L of 2.47∙10
-

3 
±10

-5
 m, was obtained from a commercial bloom (Tab. 1) and austenitized at 1133 K 

for ½ hour.
†
 Thereafter, the disk was allowed to cool to 755 K, held at this temperature 

for about one hour, and finally allowed to cool to room temperature (Fig. 1). Flash 

measurements were performed at the austenitizing temperature (after the completion of 

the austenitization), during the cooling stage between 1133 and 755 K, and during the 

755 K holding stage (after the end of the furnace transient).  

The thermal cycle and the flash measurements were performed inside a vacuum furnace; 

during the constant-temperature stages the sample-holder’s temperature was closed-loop 

controlled, whereas during the cooling stages the sample was cooled by the natural 

                                                 

*
 Similar to the AISI P20 grade, with a 1 wt.% nickel addition. 

†
 The sample’s metallurgical condition prior to the austenitization, some standard flash measurements 

performed before the austenitization, and other standard and non-standard measurements performed upon 

other samples of the same steel, were previously reported [16]. 



irradiation, i.e. the heat from the sample itself, from the sample-holder and from other 

furnace parts was dissipated to the water-cooled external furnace walls (trough 

intermediate thin metal screens). 

The flash measurements were performed by laser pulses, whose duration was 600 µs. 

The pulse instant was accurately recorded by a photodiode. The time-temperature 

curves (thermographs) were acquired at 400 Hz from a thermocouple welded to the 

sample, with the recording beginning 0.5 s before the laser pulse and lasting 2.5 s. A 

digital filter was employed to remove from the thermographs some disturbances. During 

the holding stages, measurements were performed both by keeping the heating system 

on, or by switching it off about 1 s before the laser pulse and for the duration of the 

measurement (in order to reduce the intensity of the disturbances). 

The precision of the measurement apparatus was verified by performing two successive 

series of standard flash measurements [8] on an Armco iron sample, with the same data 

acquisition and filtering procedures. The difference between the measured diffusivity 

values and the literature data [17] in the temperature range from 297 to 1004 K is lower 

than 5%, that is the repeatability of standard laser flash measurements [8]; at higher 

temperatures the same difference is larger, and therefore the experimental apparatus is 

probably less precise, although the comparison is less certain due to the proximity of the 

magnetic and phase transitions (Fig. 2). 

The sample’s post-cooling microstructure,, assessed by optical metallography after a 

Nital etch [17], was martensite. Moreover, the previous austenitic grain boundaries were 

evidenced by the Bechet-Beaujard etch [19][20]; the mean austenitic grain size, 

measured by using the three-circle intersection procedure [21], was 12 µm. 

Whereas in the reported sample, and in other ones tested with similar schedules, the 

pearlitic and bainitic transformations were avoided, one attempt to perform standard 



flash measurements while holding another sample at 923 K resulted in a partially 

pearlitic final microstructure, implying that this sample was transforming before and 

during these measurements; therefore they were discarded. 

Analytical model 

Typical thermographs obtained from standard and non-standard measurements are 

compared in Fig. 3. Whereas the former (Fig. 3a) is close to the standard analytical 

model originally introduced by Parker et al. [22], the latter (Fig. 3b) is significantly 

different and may be described qualitatively as the superposition of a contribution due 

to the energy pulse upon a base curve pertaining to the sample cooling process. 

Although both these contributions arise from transient phenomena, the radiative heat 

exchange between the sample and the furnace leads to a comparatively slow cooling of 

the sample (e. g.: on a time scale of the order of 10
3
 - 10

4
 s in the present experiment, 

mainly determined by the furnace), whereas the observable effects of the laser pulse 

vanish in a comparatively very short time interval (e. g.: of the order of 1 s in the 

present experiment). Moreover, because the purpose of the measurements is to 

determine the sample’s diffusivity from the effects of the laser pulse, the radiative heat 

exchange can be regarded essentially as a disturbance. Therefore, it is sufficient to adopt 

a model of the radiative heat exchange that can satisfyingly fit the radiative cooling 

curve for a time interval safely longer than the duration of the relevant laser pulse 

effects, but still very short in respect to the time scale of the sample cooling process. 

One such model is chosen by assuming constant diffusivity and conductivity and by 

using a constant-heat-flux boundary condition. The experiments and the non-linear 

numerical simulations described in the following chapters show that this approximation 

is sufficient for the above mentioned purpose. Moreover, this choice does not require 



any knowledge of the furnace characteristics, and it allows a closed form analytical 

solution, that is derived hereafter. 

It is assumed that the sample is a slab of thickness L, thermal diffusivity α and thermal 

conductivity k, and that it is cooling from an initial temperature T0 due to a constant 

outgoing surface heat flux E at both its surfaces, both before and after an ideal pulse of 

surface energy q is absorbed upon the first surface. This one-dimensional model is 

described by the following partial differential equation and boundary conditions:  

 
 

0t

0t

0t

TT

LxETk

0xEttδqTk

L0,xTαT

0

0



























, (1) 

where T is the temperature, t is the time, x is the position inside the sample (comprised 

between 0 and L), a superscript dot and an apex indicate the derivation in respect to t 

and x respectively, δ(t) is the Dirac distribution, and t0 is the (positive) instant when the 

energy pulse is absorbed.  

It can be demonstrated that, if the functions TII and TIII satisfy the following sets of 

equations: 

 





















0tTT

LxETk

0xETk

L0,xTαT

0II

II

II

IIII


, (2) 

 
 





















0t0T

Lx0Tk

0xtδqTk

L0,xTαT

III

III

III

IIIIII


, (3) 

then, the function T defined by: 



     tx,Tttx,Ttx,T II0III   (4) 

satisfies equation (1). Thus, the thermal transient TII satisfying equation (2) can be 

regarded as the abovementioned slow cooling contribution to the sample thermal history 

T(x,t), whereas the thermal transient TIII (satisfying equation (3) and translated in time) 

can be regarded as the abovementioned pulse-related contribution.
*
 

The solution TII of equation (2), re-arranged from the literature [23], is: 

   

 

 
      













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






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















































1n

2

2

n

II

2

2

c

2

c

2

c

IIc0II

1χ2πncosnτ4exp
n

1

2

1
χτ,f

απ

L
t

Lk

αE2
B

8πtBZ

1
L

x2

3

1
Zxz

:with

L

x
,

t

t
ftBtBxzTxt,T

 (5) 

where tc is the sample’s characteristic time. After a brief transient described by the 

vanishing term fII, this solution predicts a constant cooling rate B 
†
 and a constant 

parabolic temperature gradient inside the sample, whose total magnitude is z(b/2)-z(0) = 

Z. 

The pulse transient described by equation (3) is physically similar to the original Parker 

et al. model: 

                                                 

*
 It can be demonstrated that if the sample cooling was modeled by a radiative or convective boundary 

condition the two contributions would not results rigorously additive 

†
 Because of this result, and because it is intended to describe only a relatively short time interval, the 

present model can also be regarded as a local linearization of the overall cooling curve. 



 

   
  








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


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
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



0t
Lδ,x0

δ0,xδcρq/
T

Lx0Tk

0x0Tk

L0,xTαT

p

IV

VI

VI

VIVI

0δ
lim



, (6) 

provided that this latter model is arbitrarily extended by the constant temperature T0 

when t<0. Nevertheless, whereas in the proposed model, and therefore in equation (3), 

the pulse surface energy q appears in a boundary condition, in the Parker et al. model 

(equation (6)) it appears in the initial condition. Therefore, contrary to the solution of 

equation (3), the original Parker et al. solution cannot be rigorously translated in time 

and added to the solution of equation (2).  

A closed-form solution TIII of equation (3) is derived in the appendix and, in the point 

x=L, it is: 
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L

x
,

t

t
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0n

22

III

III

c

IIIIII

 (7) 

where ΔT is the asymptotic temperature increase due to the pulse energy and can also be 

expressed by using the sample’s total heat capacity C and section area S. 

For comparison, the extended Parker et al. solution, in the same point, is:  
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 (8) 

Although it has not been demonstrated whether equations (3) and (6) are rigorously 

equivalent for t>0, their respective solutions TIII and TVI (equations (7) and (8)) are 

numerically equal in the point x=L and in the time interval relevant to the present work
*
; 

therefore they will be used indifferently in these limits. 

By introducing equations (5) and (7) (or (8)) into equation (4), the complete solution of 

the proposed analytical model (described by equation (1)) is: 

    





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







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 
 

L

x
,

t
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L

x
,

t
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c

IIc

c

0

VIIII0 . (9) 

If the initial cooling transient term fII can be neglected, the initial condition T=T0 can be 

imposed at, and the time t can be measured from, any arbitrary starting instant, e.g.: 

shortly before the laser pulse instant; if moreover only the point x=L is of interest, the 

solution reduces to the sum of a linear cooling term and of the standard Parker et al. 

curve, i.e.: 

 

 LzTA:with

1,
t

tt
fΔTtBALt,T

0

c

0
VIIII













 
 

 (10) 

Furthermore, by integrating equation (9) in respect to x, it can be demonstrated 

(appendix) that the spatial average sample temperature T is rigorously equal to:  

                                                 

*
 Upon calculating the two function with a 64 bit precision, for τ comprised in the 0 to 10 range, the 

maximum absolute difference is lower than 5∙10
-16

. 



   00

L

0

ttuΔTtBTdxxt,T
L

1
(t)T   , (11) 

where u(t) is the unitary step function. The relevant measurement temperature T can be 

defined as the average sample temperature in a relevant time interval Δt during which 

the pulse transient sensibly affects the sample temperature and is actually measured; 

i.e.: 

    ΔT2ΔttBTdttT
Δt

1
T 00

Δtt

t

0

0

 


. (12) 

By calculating z(L) from the definition of z(x) given in equation (5) and by introducing 

A as defined in equation (10), it results: 

  ΔT2ΔttBtB
12

π
AT 0c

2

 . (13) 

Therefore, if the laser pulse instant t0 and the sample thickness L are known, the 

quantities A, B, ΔT and tc can be obtained by fitting the experimental data upon the 

curve given in equation (10) in a time interval conveniently extended before and after 

the pulse instant (although necessarily short in respect to the overall radiative cooling 

process), and the thermal diffusivity α and the corresponding relevant sample 

temperature T can be calculated, by using the definition of tc (given in equation (5)), 

and equation (13), respectively, and by choosing a relevant Δt value. 

Experimental data reduction 

Each thermograph was fitted with equation (10), using the minimum least square 

method and considering all the measured data (Fig. 3). The minimum searching 

procedure of Lagarias et al. [24], as implemented in a general-purpose computation 



code [25], was employed to find the minimum of the least-square residual as a function 

of the fitting parameters A, B, ΔT and tc. 

This procedure requires a first estimation of the minimum, that, for each thermograph, 

was calculated as follows. First estimates of A and B were obtained from the linear 

least-square interpolation of the initial part of the thermograph, prior to the laser pulse. 

First estimates of ΔT and tc were obtained by applying the standard half-time method [7] 

upon the difference between the actual thermograph and the first estimate A-B∙t of the 

linear cooling contribution. 

For the sake of homogeneity, this data reduction procedure was applied also to the 

standard flash measurements; in these cases it yields a cooling rate B close to zero and 

therefore becomes almost equivalent to fitting the curve with the standard Parker et al. 

function. Moreover, the cooling rate B can be assumed as an index of how much a 

specific measurement deviates from the standard model.  

The measurement temperatures T were calculated by choosing Δt=5∙tc, which 

corresponds to an almost 99% rise of the Parker et al. curve (Fig. 4a). 

The calculated thermal diffusivities α and measurement temperatures T are reported in 

Tab. 2, with the respective cooling rates B. 

Moreover, the ratio of the sample’s emissivity ε and total heat capacity C was estimated, 

for each laser flash measurement, by comparing the absorbed pulse energy Qa (equal to 

the product of q and S) with the nominal incident pulse energy Qi (known from the laser 

apparatus) and by recalling from equation (7) that ΔT=q∙S/C, i.e. by using the following 

equation: 

iii

a

Q

ΔTC

Q

Sq

Q

Q
ε





 . (14) 



These ε/C ratios are also reported in Tab. 2, as well as other validity or precision 

parameters discussed thereafter. 

 

Numerical verifications 

A numerical simulations of a whole sample time-temperature history was performed as 

an aid to evaluate the uncertainties deriving from some simplifying hypotheses 

employed in the above described analytical model. Therefore, in the numerical model, 

the diffusivity and the specific heat capacity are considered functions of the 

temperature, the laser pulses are modeled with rectangle functions, and the radiative 

heat exchange between the sample and the furnace is modeled with the Stefan-

Boltzmann law by considering the sample as a graybody and the furnace interior as a 

blackbody, and by noting that the view factor is 1. The resulting one-dimensional model 

is: 
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 , 
(15) 

where σ is the Stefan-Boltzmann constant
*
, P is the instantaneous adsorbed surface 

power due to the laser pulses, Π is the rectangle function, tp is the duration of each laser 

                                                 

*
Equal to 5.6704∙10

-8
 W m

-2
 K

-4
. 

 



pulse (equal to 0.6 ms), t0n is the n-th laser pulse instant, and Tf(t) is the furnace cooling 

curve between 1133 and 755 K
*
. 

The specific heat capacity was obtained from the literature, by considering unalloyed 

austenite [26]. Because the simulation does not take account of the thermal expansion, 

the density was considered constant and equal to 7800 kg/m
3
. The diffusivity was 

obtained from the overall result of the present experiments (equation (25) below). The 

emissivity was estimated as the average (equal to 0.100) of the values calculated from 

each laser flash experiment; these values were obtained from the abovementioned ε/C 

ratios (Tab. 2) by neglecting the wavelength dependency and by using the sample 

dimensions and the abovementioned density and specific heat capacity to calculate C. 

The model was solved by using a numerical method [27] implemented in a general-

purpose computation code [25]. The sample thickness was discretized into 50 equal 

elements. The simulation time steps were smaller than 0.12 ms during each laser pulse 

and smaller than 1.25 ms for a duration of 2 s after each laser pulse. A simulated 

thermograph, with the same sampling period and duration (before and after the laser 

pulse instant) employed in the actual measurements, was calculated for each simulated 

measurement. The pulse instants t0n were chosen to perform 3 simulated (standard) 

measurements at the initial temperature, a series of 8 simulated measurements during 

the cooling process, and 3 simulated measurements at the end of the same process. 

One standard and one non-standard simulated thermographs are reported in Fig. 3c and 

Fig. 3d, respectively. 

                                                 

*
 Measured while performing a thermal cycle similar to the experimental one, with a thermocouple 

instead of the sample. 



Limitations and uncertainties  

Limitations to the validity of the proposed data reduction method arise from the 

differences between the experiment and the proposed analytical model. 

This model, as the original Parker et al. model, assumes an ideal (instantaneous and 

uniform) energy pulse and disregards the eventual heat flux from the sample’s side 

(cylindrical) surface, even if these two assumptions were later dropped in more refined 

models [28][29][30]. Therefore, the same limitations and uncertainties of the original 

Parker et al. model, deriving from these two assumptions, apply also to the present 

model. 

The contribution due to the initial transient of the continuous cooling process, 

represented by the term B∙tc∙fII in equation (9), can be estimated from the calculated 

cooling rate B and characteristic time tc and from the numerical values of the function 

fII. In the reported flash measurements, the B∙tc temperature coefficient was always 

lower than 0.1 K (Tab. 2). Furthermore, fII(2,1) is lower than 10
-3

 and fII(5,1) is lower 

than 10
-8

 (Fig. 4b). Therefore, if a time interval only a few times longer than tc is 

allowed between the start of the overall sample cooling process and the flash 

measurement(s), no significant error arises from having neglected this contribution in 

the numerical interpolation. This condition is safely achieved.  

Both standard and non-standard flash measurements must be referred to an averaged 

sample temperature, because necessarily different temperatures occur inside the sample 

at different times and positions. Whereas in the standard measurements these 

temperature differences arise from the pulse transient only, in the proposed non-

standard measurements they arise also from the overall sample cooling process, both in 

time, i.e. B∙Δt, and in space, i.e. Z. In the present non standard measurements, the 

former were lower or comparable (at the highest temperatures), and the latter always 



much lower, than the temperature increase ΔT due to the energy pulse (Tab. 2). 

Moreover, the temperature differences arising from the cooling process are mostly 

opposite to those due to the pulse transient and thus the former ones partially cancel the 

latter. Therefore the temperature-related uncertainty wasn’t significantly increased in 

the non-standard measurements, in respect to standard ones. 

A more important uncertainty arises in the proposed model from the constant surface 

heat flux boundary condition adopted in equation (1). Because the sample’s cooling 

physically arises from a radiative heat transfer process, such a boundary condition is 

acceptable only if the surface heat flux variation δE, occurring during a time interval δt 

comparable to the duration of a flash measure, is small in respect to the surface heat flux 

E itself. Indicative values of  |δE|, |E| and |δE/E| calculated from the results of the 

numerical simulation are reported in Tab. 3: |E| was calculated as the integral mean heat 

flux in each data acquisition period, and |δE| as the difference between the maximum 

and minimum instantaneous heat flux values in the same periods. In the simulated 

standard measurements |δE/E| is large, because |E| is initially zero (in the first simulated 

measurement) or low and then increases due to the pulse-related temperature rise, but in 

these cases |E| itself does not significantly influence the test because it is always low in 

respect to the sample’s thermal capacity and to the duration of the measurement. On the 

contrary, in the simulated measurements performed during the cooling process, |E| is 

sufficiently large to yield a clear cooling contribution in the thermograph, but |δE/E| is 

small (of the order of 1% in most cases), because the mean sample temperature is 

substantially higher than the mean furnace temperature, and thus the temperature 

variations are comparatively low. Therefore, the constant heat flux boundary condition 

is a fair approximation in most cases. 



Furthermore, it may be possible to estimate |δE /E| during the cooling stage without 

performing a numerical simulation, by considering the overall (experimental) sample 

cooling curve only, even if the temperature of the furnace components in view of the 

sample is not known. To this purpose, if the Biot number associated with the overall 

cooling process is small (e.g. smaller than 0.1), as a first approximation and as it regards 

this overall cooling process only, a lumped capacitance model can be used [7]. For 

example, in the present experiment, by modeling the radiative heat transfer with 

effective surface heat transfer coefficients [7], and by using the abovementioned 

estimates of the sample’s thermophysical properties, this Biot number results always 

smaller than 2∙10
-3

. From the lumped capacitance model, it can be obtained: 

S2

TC
E







 (16) 

and, by a further time derivative, 

S2

TC
E







  (17) 

where C is the sample’s heat capacity and the heat flux from the sample’s side surface is 

neglected. Therefore, if the sample temperature T is observed during the whole cooling 

process and if (excluding the isolated pulse effects) T  is always negative and T  is 

always positive, as it usually happens in radiative cooling processes (and actually 

happened in the reported experiment), it can be concluded that the emissive power E is 

always positive and its time derivative E  is always negative.  

Moreover, as noted above, the surface heat flux (i.e., the emissive power) can be 

described as: 

 4

f

4 TTσεE  . (18) 



By recalling that E  is negative, by differentiating equation (18), and because the 

temperature rate fT  of the furnace components in view of the sample is obviously 

negative, it results that: 

TTσε4TTσε4TTσε4EE 3

f

3

f

3   , (19) 

and finally, by recalling that E is positive and by combining equations (16) and (19), it 

results: 
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Therefore, the smaller is the parameter D defined in equation (20), the more precise is 

the adopted analytical model, at least as it regards the constant surface heat flux 

hypothesis.  

Finally, by substituting the ε/C ratio, as defined in equation (14), into equation (20), it 

results: 

i

3

Q

δtTSσΔT8
D

E

δE 
 . (21) 

Therefore, the D parameter can be calculated for each non-standard flash measurement 

performed during the sample’s cooling, by using the average measurement temperature 

T  (as T), the employed laser pulse energy Qi, the calculated ΔT value, and a relevant 

duration δt. 

Physically, D depends mainly upon the sample’s temperature and is a dimensionless 

measure of how much the emissive power E would change in time if the sample would 

be cooling by irradiation at the specified temperature, versus a zero absolute 

temperature ambient (this latter specification is the physical correspondent of the 

approximation in equation (19)). D does not actually depend upon if and how a flash 



measurement is performed, because the ΔT/Qi ratio is introduced in equation (21) only 

as a mean to measure the ε/C ratio, which is a sample’s own constant. For these reasons, 

D cannot be employed to estimate |δE /E| in the case of standard measurement. Values 

of D obtained at most investigated temperatures during the cooling stage (Tab. 2) are 

lower than 2.5% at the maximum temperature, and steeply decrease while the 

temperature is decreased. In these calculations, the duration of the data acquisition (2.5 

s) was chosen as δt. Notwithstanding the rough approximations employed, these values 

(Tab. 2) are of the same order of magnitude of the abovementioned |δE /E| values 

obtained from the numerical simulation during the cooling stage (Tab. 3).  

Moreover, for a chosen material and temperature, and by introducing the material’s 

density ρ and specific heat capacity cp, equation (20) can be restated as follows: 

L

δt

LScρ

δtTSσε8
D
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3


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
 . (22) 

Because the relevant duration δt of an experiment should be proportionate to the 

specimen’s characteristic time tc, and by using the definition tc=L
2
/(π

2
∙α), from equation 

(22) it follows that: 

L
L

t

L

δt
D c   (23) 

from which it is apparent that, for a given material and temperature, D scales with the 

sample’s thickness. Therefore the same model may not be acceptable for samples much 

thicker than those employed in this work. 

The variation of the sample thickness L, due to the sample’s thermal expansion and 

volumic contraction in respect to its initial (measured) condition, was neglected in the 

reported calculations. The thermal diffusivity α is proportional to L
2
 and the maximum 



total linear variation εt is lower than 0.01 [16], thus the relative error due to the 

thickness variation is lower than 2%: 

02.0t 





2
L

L
2

α

α
. (24) 

Although the calculated thermal diffusivity could be easily corrected for the thickness 

variation, the reported (uncorrected) values are more consistent with most finite element 

thermo-metallurgical models, because these models usually neglect volume variations.  

The root mean square residual R of the interpolation theoretically depends upon both the 

model’s likelihood and the noise of the acquired signal. In the present set of 

experimental measurements, R apparently depends upon the temperature and is 

insensitive to whether a measurement was performed during a holding or cooling stage 

(Tab. 2 and Fig. 5).  

The overall likelihood of the proposed analytical model, and particularly the 

acceptability of the main approximations included in this model (constant 

thermophysical properties, constant-heat-flux boundary condition, ideal pulse), can also 

be evaluated by applying the above described data reduction method to the result of the 

numerical simulations, that were performed without using such approximations (Tab. 3 

and Fig. 6). The root mean square residual Rout obtained by fitting the simulated 

thermographs (of both standard and non-standard measurements) with the proposed 

analytical model is lower than 10
-3

 K, slightly increasing with the temperature. 

Moreover, the difference between the diffusivity values obtained from the simulated 

thermographs and the corresponding input values (values of the diffusivity-vs.-

temperature curve employed in the simulation, at the same temperatures) is less than 

0.01 mm
2
/s or 0.2 %, (slightly increasing with the temperature in the non-standard 

cases). Thus, the adopted analytical model is overall satisfying. Nevertheless, the first 



simulated measurement showed a slightly larger error (R = 1.9∙10
-3

 K, thermal 

diffusivity difference 0.035 mm
2
/s or 0.65 %), and the error was always larger in the 

standard simulated measurement than in those performed during the cooling process. 

These latter facts can be correlated to the abovementioned large δE /E ratios that occur 

in the standard measurements (and particularly in the first one), and to the fact that, in 

the standard measurements, a slow temperature decrease occurs after the pulse instant, 

but not before. For these reasons, in the standard measurement cases the present model 

may be slightly inferior in likelihood in respect of, for example, the Cape and Lehman 

model [28], but still substantially equivalent to the Parker et al. one [22]. 

By summarizing and comparing the results of the actual and simulated measurements, it 

can be stated that the adopted analytical model is coherent with both the standard and 

the non-standard flash measurements, at least in respect to the precision of the 

employed measurement apparatus, and that in the experimental cases the residual R is 

essentially determined by the instrumental noise, rather than by the model’s likelihood, 

because it is always two orders of magnitude larger than the values obtained in the 

simulated experiments (that depend on the model’s likelihood only). Therefore, a more 

refined model (e.g. a finite elements one) would not yield a significant advantage in the 

interpolation of thermographs obtained with the present apparatus. 

Moreover, because the temperature increase ΔT is the relevant temperature signal, in the 

experimental measurements the ΔT/R ratio can be regarded as a signal-to-noise ratio 

(this ratio is higher than 10
3
 in the simulated measurements, Tab. 3). 

Experimental Results 

During the austenitizing and cooling stages, the measurements performed at the higher 

temperatures generally showed a larger dispersion (Fig. 7), probably because they 



presented a worse ΔT/R signal-to-noise ratio (Tab. 2) due to an higher noise (R 

increased approximately from 0.05 to 0.1 K while increasing the temperature from 755 

to 1133 K). The measurements performed during the 755 K holding stage showed a 

much smaller dispersion, because ΔT/R ratios of the order of 60 were obtained by using 

higher absorbed pulse energies and thus higher ΔT temperature increases. 

During the 1133 K holding stage, the measurements performed by keeping the heating 

system working showed negligible cooling rates B, thus can be regarded as standard 

measurements, whereas those performed by switching off the same system just before 

the measurement showed significant cooling rates, thus should be regarded as non-

standard measurements. Nevertheless, the difference between the mean thermal 

diffusivity values obtained in these two groups of measurements was comparable to the 

standard deviation observed inside each group. During the 755 K holding stage the 

differences between the measurements performed with or without the heating system 

were less evident (Tab. 2).  

The thermal diffusivity of the austenite monotonically decreases from about 5.4∙10
-6

 m
2
 

s
-1

 at 1133 K to about 4.3∙10
-6

 m
2
 s

-1
 at 755 K (Fig. 7). The overall trend of the austenite 

thermal diffusivity in the investigated temperature range (722 to 1135 K) can be 

described by the following linear interpolating formula: 

α = 1.896 + 3.129 x 10
-3

 T (25) 

where α and T are expressed in mm
2
/s and K, respectively. This formula (that presents 

an overall root mean square residual in respect to the measured points equal to about 

0.2∙mm
2
 s

-1
) is more precise at the lower end of the investigated temperature range, 

because both the uncertainty associated with each single measurement and the 

dispersion of the measured points around the interpolating line increase with the 



temperature, and because the tests performed on the Armco iron have shown that the 

instrumental apparatus is less precise at the higher investigated temperatures. 

Discussion and conclusions 

The proposed data-reduction method was used to calculate the thermal diffusivity from 

the thermographs of flash experiments performed upon undercooled austenite samples 

without prior thermal equilibrium. The results are in reasonable agreement with the 

standard measurements (at the temperatures at which the latter could be performed) and 

the same calculations, as well as the results of the numerical simulations, prove that the 

assumptions used to formulate the underlying analytical model are acceptable in the 

examined cases. 

The thermal diffusivity of the undercooled austenite, as obtained in carbon or low-alloy 

steels, was previously measured by Solter [31] in the 32NiCrMoV12-3 low-alloy 

grade
*
. These measurements were performed by using the laser flash method while 

cooling the specimen from 1273 K to room temperature, whereas the phase 

transformation was detected only below 715 K, but the employed experimental and data 

reduction procedures were not reported, and, therefore, it is unclear how the prior 

thermal equilibrium condition (required by the standard method) was dealt with. 

Furthermore, in the examined temperature range, some stainless steels present a stable 

austenitic phase, due to their high alloy (and particularly Nickel) content, and their 

thermal diffusivity have been extensively studied by standard methods. In Fig. 7 the 

present results are compared with those reported by Solter and with the previously 

reported thermal diffusivity of three austenitic stainless steels with different chromium 

and nickel content: ISO 1.4970 (or X10NiCrMoTiB15-15), containing 15 wt.% Cr and 

                                                 

*
 With the following composition (weigth %):  C 0.32, Si 0.14, Mn 0.61, Cr 0.93, Mo 0.46, Ni 2.5. 



15 wt.% Ni [32], AISI 310, containing 25 wt.% Cr and 20 wt.% Ni [33], and AISI 304, 

nominally containing 19 wt.% Cr and 9 wt.% Ni [34].  

The present results are overall consistent with those reported by Solter. Moreover, the 

trend of the thermal diffusivity in respect to the temperature is substantially similar in 

the low-alloy undercooled austenite and in the three abovementioned austenitic stainless 

steels, and the thermal diffusivity values of the low-alloy undercooled austenite are 

close to those of the less alloyed austenitic stainless steels. 

Particularly at the lower investigated temperatures, the thermal diffusivity of the 

examined undercooled austenite is significantly lower than that of the ferritic 

constituents (i.e. pearlite, bainite, or martensite) of the same steel [16] and of similar 

medium-carbon steels [31][26] at the same temperatures. Therefore, a model of a steel’s 

thermal diffusivity, to be employed in a steel quench simulation, should consider the 

phase dependence of this property. 
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Appendixes 

Analytical solution of equation (3) 

The analytical solution of equation (1) is described hereafter.  

The solution for t>0 can be obtained by using the Laplace transform method [6,25], 

whereas the solution for t≤0 is obviously zero. By applying the unilateral Laplace 

transform (Lu ) in respect to the variable t, the given equations become: 
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where s is the complex Laplace variable and θ(s,x) is the Laplace transform of TIII(t,x).  

The solution of equation (26) in the Laplace domain is: 
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By using the well-known result: 
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and for suitable s values, equation (27) can be restated in the following form: 
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Being known [23] that: 
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where β is a real positive number, the inverse Laplace transform of equation (29) is: 
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Finally, by substituting tc=L
2
/(π

2
∙α) and reordering, it results: 
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for t>0, from which equation (7) can readily be obtained by choosing x=L and extending 

fIII as zero when τ≤0. 

Verification of equation (11) 

The integration of T(t,x), as defined in equation (9), in respect to x, leads to:  
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where 
~

=(t-t0)/tc and τ=t/tc. 

The function z(x) is a polynomial and therefore its integral is easily calculated; it is: 

  0dxxz
L

1
L

0

  . (34) 

Moreover, as it regards the integral of fII, by exchanging the summation and the integral, 

and calculating the latter, it is obtained: 

 
      
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

. (35) 

by considering that n is an integer and therefore sin(n∙π) is always zero. 

The function fIII was assumed to be zero when 
~

 is negative or zero, therefore: 



   0τif0dχχ,τf

1

0

III 
~~

. (36) 

In the opposite case (positive
~

), by exchanging the summation and the integral, 

calculating the integrals of the two Gaussian curves and simplifying, the following 

series is obtained: 
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 (37) 

Every partial sum SN of this latter series can be calculated by splitting the summation
*
, 

renumbering a dummy index and simplifying, i.e.: 

     

   

        

  τπ1NErf

τπnErfτπ0Erfτπ1NErfτπmErf

τπnErfτπmErf

τπnErfτπ1nErfS

N

1n

N

1m

N

0n

1N

1m

N

0n

N

~

~~~~

~~

~~

























 (38) 

Therefore, the sum of the series can be readily obtained as the limit of the sequence of 

its own partial sums, i.e.: 

      0~1~1limlim,~
1

0


  ifNErfSdf

N
N

N
III . (39) 

By unifying equations (36) and (39), it results that the spatial average of fIII is the 

unitary step function: 

                                                 

*
 The series itself cannot be split because the two resulting series would diverge. 



    ~,~
1

0

udf III  , (40) 

and finally, equation (11) is readily obtained by substituting equations (34), (35) and 

(40) into equation (33). 

The same result (equation (11)) can be obtained by integrating equation (1) in respect to 

x. Moreover, equation (11) is confirmed by physical considerations. The spatial average 

temperature is directly related to the sample’s internal energy (trough the sample’s heat 

capacity) and the latter is the sum of an initial value and of the time integral of the heat 

fluxes, therefore the linear term in equation (11) derives from the time integral of the 

constant cooling heat flux E, whereas the step term derives from the time integral of the 

energy pulse q∙δ(t-t0). 
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Figure  

Fig. 1. Approximate sketch of the sample’s actual cooling curve and of the 

corresponding curve obtained by neglecting the 755 K holding stage (dashed), 

superimposed to the steel’s CCT (Continuous Cooling Transformation) diagram. 
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Fig. 2. Thermal diffusivity of Armco iron. Literature values and standard laser flash 

measurements performed with the present apparatus. 
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Fig. 3. Time-temperature thermographs. Standard flash measurement (a). Non-standard 

flash measurement performed during an uninterrupted sample cooling process (b). 

Simulated standard (c) and non-standard (d) flash measurements. Acquired or simulated 

time-temperature points and interpolating curves. 
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Fig. 4. The non-dimensional functions fIII-VI(τ,1) and fII(τ,1) employed in the analytical 

model (a and b). 
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Fig. 5. Mean square residual of the numerical interpolation of the experimental laser 

flash thermographs, as a function of the temperature. Measurements performed during 

the cooling or holding stages. 
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Fig. 6. Thermal diffusivity as a function of the temperature. Input curve employed in the 

numerical simulation, and output values obtained by interpolating the simulated 

thermographs with the proposed analytical model. 
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Fig. 7. Thermal diffusivity as a function of the temperature. Measurements performed 

during the cooling or holding stages and linear interpolation. Previous measurements on 

a low-alloy austenite [31]. Thermal diffusivity of three austenitic stainless steels with 

different alloy content. 
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Tables 

 

Tab. 1 – Chemical composition of the employed alloy steel. 

C Cr Mn Ni Mo Si P S 

0.388 2.132 1.492 0.969 0.192 0.214 0.009 0.007 

 



Tab. 2 –Experimental laser flash measurements. Holding or cooling stage, furnace 

heating system status, average temperature T , thermal diffusivity α, cooling rate B, 

temperature coefficient of the cooling process initial transient B∙tc, temporal and spatial 

temperature differences B∙Δt and Z, pulse-related temperature increase ΔT, estimated 

ratio of emissivity and total heat capacity ε/C, heat flux variation parameter D, 

thermograph interpolation root mean square residual R, effective signal-to-noise ratio 

ΔT/R. 

S
ta

g
e 

H
ea

ti
n
g

 

T  α B B∙tc B∙Δt Z ΔT ε/C D R ΔT/R 

K 10
-6

 m
2
 s

-1 
K s

-1
 K K K K K/J % K - 

1
1
3
3
 K

 h
o
ld

in
g

 

off 
1131 5.67 0.50 0.05 0.27 0.07 1.02 0.10 - 0.10 11 

1130 5.44 0.50 0.06 0.28 0.07 1.05 0.11 - 0.09 11 

on 

1135 5.41 0.02 0.00 0.01 0.00 0.95 0.09 - 0.11 8 

1133 5.29 -0.07 -0.01 -0.04 -0.01 0.86 0.09 - 0.11 8 

1135 5.39 0.11 0.01 0.06 0.02 1.10 0.11 - 0.10 11 

C
o
n
ti

n
u
o
u
s 

co
o
li

n
g
 

off 

1121 5.36 0.67 0.08 0.39 0.10 1.00 0.10 2.42 0.08 13 

1075 5.40 0.76 0.09 0.43 0.11 1.02 0.10 2.22 0.06 17 

1026 5.01 0.66 0.08 0.41 0.10 1.07 0.11 2.09 0.08 14 

977 4.97 0.56 0.07 0.35 0.09 1.11 0.11 1.94 0.09 12 

923 4.77 0.44 0.06 0.29 0.07 1.15 0.12 1.75 0.10 12 

886 4.67 0.39 0.05 0.26 0.06 1.21 0.12 1.68 0.08 15 

834 4.47 0.31 0.04 0.21 0.05 1.26 0.13 1.52 0.05 23 

768 4.39 0.25 0.04 0.18 0.04 1.35 0.14 1.36 0.06 24 

754 4.25 0.22 0.03 0.16 0.04 1.37 0.14 1.33 0.03 41 

722 4.15 0.20 0.03 0.15 0.04 1.42 0.14 1.25 0.06 25 

7
5
5
 K

 h
o
ld

in
g

 

off 

757 4.27 0.20 0.03 0.15 0.04 3.12 n.a. - 0.04 73 

756 4.23 0.24 0.04 0.18 0.04 3.15 n.a. - 0.05 67 

750 4.24 0.23 0.03 0.17 0.04 3.17 n.a. - 0.04 76 

on 

754 4.31 0.12 0.02 0.09 0.02 2.97 n.a. - 0.05 55 

755 4.19 0.16 0.02 0.12 0.03 3.02 n.a. - 0.05 63 

757 4.27 0.16 0.02 0.12 0.03 3.08 n.a. - 0.06 55 



 

Tab. 3 - Simulated laser flash measurements. Input values (in) and values calculated 

from the simulated thermographs (out). Holding or cooling stage, average temperature 

outT , output thermal diffusivities αout and differences between input and output values αin 

and αout, mean heat flux Eout (in the data acquisition period), heat flux variation δEout (in 

the same period), heat flux variation ratio δEout/Eout, cooling rate Bout, pulse-related 

temperature increase ΔTout, thermograph interpolation root mean square residual Rout, 

effective signal-to-noise ratio ΔTout/Rout. 

S
ta

g
e 

outT  αout |αin-αout| |(αout/αin)-1| dE E dE/E Bout ΔTout Rout ΔTout/Rout 

K mm
2
/s mm

2
/s % W/m

2
 W/m

2
 - K/s K mK - 

H
o
ld

in
g

 1134 5.47 0.0287 0.527 34 24 1.452 0.00 1.06 1.87 568 

1135 5.45 0.0019 0.034 36 45 0.787 0.01 1.07 0.72 1489 

1135 5.45 0.0024 0.043 35 58 0.601 0.01 1.07 0.71 1497 

C
o
n
ti

n
u
o
u
s 

co
o
li

n
g
 

1122 5.40 0.0015 0.029 59 1330 0.044 0.23 1.07 0.79 1358 

1075 5.26 0.0003 0.005 32 2101 0.015 0.36 1.08 0.68 1592 

1024 5.10 0.0002 0.004 25 2048 0.012 0.35 1.10 0.59 1856 

972 4.93 0.0018 0.037 21 1794 0.012 0.31 1.11 0.57 1967 

917 4.76 0.0021 0.044 18 1482 0.012 0.26 1.13 0.54 2073 

878 4.64 0.0025 0.054 16 1271 0.013 0.23 1.14 0.51 2240 

830 4.49 0.0012 0.027 16 642 0.025 0.12 1.16 0.55 2117 

800 4.40 0.0010 0.024 13 188 0.068 0.03 1.16 0.47 2478 

H
o
ld

in
g

 779 4.33 0.0027 0.062 12 17 0.739 0.00 1.17 0.47 2469 

779 4.33 0.0019 0.045 12 25 0.496 0.00 1.17 0.49 2404 

780 4.34 0.0018 0.041 12 40 0.316 0.01 1.17 0.49 2390 

  


