
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Boosting the Performance of PC-based Software Routers with FPGA-enhanced Network Interface Cards / Bianco,
Andrea; Birke, ROBERT RENE' MARIA; Botto, Gianluca; Chiaberge, Marcello; J. M., Finochietto; G., Galante; Mellia,
Marco; Neri, Fabio; M., Petracca. - STAMPA. - (2006). (Intervento presentato al convegno HPSR2006, 2006 Workshop
on High Performance Switching and Routing tenutosi a Poznan, Poland nel 7-9 June 2006)
[10.1109/HPSR.2006.1709693].

Original

Boosting the Performance of PC-based Software Routers with FPGA-enhanced Network Interface Cards

Publisher:

Published
DOI:10.1109/HPSR.2006.1709693

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1648750 since:

IEEE

Boosting the Performance of PC-based
Software Routers with FPGA-enhanced

Network Interface Cards
Andrea Bianco∗, Robert Birke∗, Gianluca Botto∗, Marcello Chiaberge∗, Jorge M. Finochietto∗, Giulio Galante†,

Marco Mellia∗, Fabio Neri∗, Michele Petracca∗
∗ Dipartimento di Elettronica, Politecnico di Torino, 10129 Torino, Italy, Email: {firstname.lastname}@polito.it

† Networking Lab, Istituto Superiore Mario Boella, 10138 Torino, Italy, Email: galante@ismb.it

Abstract— The research community is devoting increasing
attention to software routers based on off-the-shelf hardware
and open-source operating systems running on the personal-
computer (PC) architecture. Today’s high-end PCs are equipped
with peripheral component interconnect (PCI) shared buses
enabling them to easily fit into the multi-gigabit-per-second
routing segment, for a price much lower than that of commercial
routers. However, commercially-available PC network interface
cards (NICs) lack programmability, and require not only packets
to cross the PCI bus twice, but also to be processed in software by
the operating system, strongly reducing the achievable forward-
ing rate. It is therefore interesting to explore the performance
of customizable NICs based on field-programmable gate array
(FPGA) logic devices we developed and assess how well they can
overcome the limitations of today’s commercially-available NICs.

I. INTRODUCTION

Software routers based on off-the-shelf personal-computer
(PC) hardware and open-source software are becoming ap-
pealing alternatives to proprietary network devices because
of the wide availability of multi-vendor hardware, the low
cost and the continuous evolution driven by the PC-market
economy of scale. Indeed, the PC world benefits from the
de-facto standards defined for hardware components, which
enable the development of an open multi-vendor market, and
the large availability of open-source software for networking
applications, such as Linux [1], Click [2] and the BSD
derivatives [3] for the data plane, as well as Xorp [4] and
Zebra/Quagga [5] for the control plane.

Several criticisms can be raised against software routers,
e.g., software limitation, lack of hardware support, scalabil-
ity problems, lack of advanced functionalities; even though,
performance limitations are compensated by the natural PC-
architecture evolution. Current PC-based routers and switches
have a traffic-switching capability in the range of a few
gigabits per second, which is more than enough for a large
number of applications. However, when looking for high-
end performance, commercially-available network interface
cards (NICs) are affected by many limitations. In [6], where
commercial NICs were used to build a router running both the
standard Linux and the Click Internet Protocol (IP) stack, we
showed that it is not possible to route a single 1-Gbit/s traffic

flow consisting of only minimum-size Ethernet frames, even if
the PCI bus bandwidth is 8 Gbit/s. The main limitations stem
from central-processing unit (CPU) overloading and from large
host-memory-read latency, which represents up to 90% of the
minimum-size-packet transfer time.

One possible solution is to build custom NICs implementing
the well-known direct NIC-to-NIC packet transfer technique,
which is not possible with today’s commercial NICs, because
they lack programmability. This approach has several advan-
tages: (i) the read-latency is reduced, because packets must
not be transfered any longer to the host memory; (ii) the PCI
bus is used more efficiently, since packets traverse it only
once; (iii) CPU resources are freed up; (iv) more-sophisticated
quality-of-service (QoS)-oriented classification and scheduling
algorithms can substitute the classical first-in first-out (FIFO)
service discipline available on commercial NICs. However, to
implement direct board communication, the NICs must be able
to autonomously route IP packets and a scheduling algorithm
as well as a NIC-to-NIC communication protocol must be
defined and implemented.

In this paper we describe the implementation of a custom
NIC on a PCI Extended (PCI-X) development board equipped
with a field-programmable gate array (FPGA) logic device and
a Gigabit-Ethernet transceiver. We focus only on data plane
performance, ignoring all the issues related to management
functions and to the control plane. We aim at assessing the
packet-forwarding rate of high-end PCs equipped with cus-
tom FPGA-enhanced Gigabit-Ethernet NICs, under the Linux
operating system.

Note that the availability of powerful programmable logic
devices permits to extend the open-software paradigm into the
hardware domain. The logic circuitry developed for the FPGAs
could be made public, reused, and improved by the research
community. This open-hardware approach would enable the
low-cost implementation of performance-critical functional
blocks in hardware. See, for instance, [7].

The paper is organized as follows. Section II gives a quick
introduction to the PC architecture, describes the operations
and the bandwidth limitations of its key components, and
explains how a PC can be used as an IP router. Section III
describes the main features of the FPGA-enhanced NIC.

0-7803-9569-7/06/$20.00 c©2006 IEEE

121

Section IV introduces the experimental setup, describes the
tests performed, and comments on the results obtained. Finally,
Section V concludes the paper.

II. SOFTWARE ROUTER ARCHITECTURE

A PC comprises three main building blocks: the central
processing unit (CPU), random access memory (RAM), and
peripherals, glued together by the chipset, which provides
complex interconnection and control functions.

As sketched in Fig. 1, the CPU communicates with the
chipset through the front-side bus (FSB). The RAM provides
temporary data storage for the CPU, and can be accessed by
the memory controller integrated on the chipset through the
memory bus (MB). The NICs are connected to the chipset by
the PCI shared bus.

Today’s state-of-the-art CPUs run at frequencies up to
3.8 GHz. High-end PCs are equipped with chipsets supporting
multiple CPUs connected in a symmetric multiprocessing
(SMP) architecture. Typical configurations comprise 2, 4, 8
or even 16 identical CPUs.

The front-side bus is 64-bit wide and is driven by a 100-
to 266-MHz quad-pumped clock, allowing for a peak transfer
rate ranging from 3.2 Gbyte/s to 8.4 Gbyte/s.

The memory bus is usually 64-bit wide and runs at
100, 133, 166, or 200 MHz with double-pumped transfers, pro-
viding a peak transfer rate of 1.6, 2.1, 2.7, or 3.2 Gbyte/s. The
corresponding double-data-rate (DDR) synchronous dynamic
RAM (SDRAM) chips are soldered on dual-in-line memory
modules (DIMM) marketed with the names PC1600, PC2100,
PC2700, and PC3200 respectively. In high-end PCs, the mem-
ory bandwidth is further doubled, bringing the bus width to
128 bits, by installing memory banks in pairs. Note that this
allows to match the memory-bus peak bandwidth to that of
the front-side bus.

The PCI protocol is designed to efficiently transfer the
contents of large blocks of contiguous memory locations
between the peripherals and the RAM, without requiring any
CPU intervention. As the bus is shared, no more than one
device can act as a bus-master at any given time; therefore,
an arbiter is included in the chipset to regulate the access and
fairly share the bandwidth among the peripherals. Depending
on the PCI protocol version implemented on the chipset and
the number of electrical paths connecting the components, the
bandwidth available on the bus ranges from about 125 Mbyte/s
for PCI 1.0, which operates at 33 MHz with 32-bit parallelism,

. NIC N

CPU RAM

FSB MB

CHIPSET

PCI BUS

NIC 2NIC 1

Fig. 1. Key components in a PC-based software router

to 2 Gbyte/s for PCI-X 266, when transferring 64 bits on a
double-pumped 133-MHz clock.

Typically, Ethernet NICs operate as bus-masters to offload
the CPU from performing bulk data transfers between their
internal memory and the RAM. Incoming packets are stored
directly on ring buffers available in RAM. Each NIC is
connected to one interrupt-request (IRQ) line, that is used to
notify the CPU of events that need service from the operating
system. On the other hand, it is usually possible to switch IRQ
generation off altogether, leaving to the operating system the
burden of periodically polling the NIC hardware and reacting
accordingly.

Summarizing, common PC hardware enables to easily im-
plement a shared-bus, shared-memory router, where NICs
receive and transfer packets directly to the RAM, the CPU
routes them to the correct output ring buffer in RAM, and
NICs fetch packets from the RAM and transmit them on the
wire. In such configuration, each packet travels twice through
the PCI and the memory bus, effectively halving the bandwidth
available for routing traffic. Therefore, a high-end PC equipped
with a 1 Gbyte/s 64-bit-wide PCI-X bus running at 133 MHz
should in principle be able to deal with 3-4 Gigabit-Ethernet
NICs.

III. FPGA-ENHANCED-NIC OPERATION

The PLDA [8] development board used for the custom
NIC includes an optical Gigabit-Ethernet physical layer (PHY)
chip, an Altera Stratix GX FPGA [9], and can be plugged in
a PCI-X bus connector.

A. FPGA Architecture

As depicted in Fig. 2, the FPGA comprises three functional
macro-blocks implementing (i) the Ethernet medium access
control (MAC) protocol interfacing to the Ethernet PHY on
the PLDA board, (ii) IP packet processing, and (iii) the PCI
protocol.

The Ethernet-MAC and the PCI interface are implemented
in two intellectual-property cores available from the market.
Instead, we designed the blocks sitting in between that imple-
ment an IP-routing module, a packet classifier, and a strict-
priority distributed scheduler.

Input Processing: The Ethernet frames received from the
MAC core are parsed to extract the Ethernet protocol type and
the IP header before undergoing IP routing — to determine
their next-hop destination — as well as classification and
scheduling — to enforce QoS.

Routing: The routing module is extremely simplified, does
not implement a full-blown longest-prefix-matching algorithm,
and can store only a limited number of IP routes (in this
implementation, one toward each of the other NICs plugged in
the router). The routing-process outcome is essentially binary.
If the packet at hand matches one of the FPGA-stored routes,
it is processed by the IP module, classified, and enqueued to
be directly forwarded to the selected destination NIC along a
fast path, avoiding any CPU intervention. Otherwise, it is left
untouched, classified, enqueued to be transferred to the RAM

122

along a slow path, routed by the Linux IP stack, and finally
handed to the intended destination NIC for delivery.
IP routing is implemented comparing the packet IP destination
with the 32-bit ternary masks describing the IP subnetworks
reachable through each of the NICs plugged in the router, and
selecting the one that matches. Obviously, this only works if
all subnets are disjoint. Moreover, since it would be difficult to
implement the address resolution protocol (ARP) in hardware
on the FPGA, each routing entry contains, besides a pointer
to the destination NIC, the next-hop router’s Ethernet-MAC
address, rather than its IP address.
Finally, the routing module includes a simple header-rewriting
function for the packets undergoing fast-path forwarding that
updates the Ethernet-frame MAC destination address, decre-
ments the IP time-to-live (TTL) header field, dropping the
packets for which it reaches zero, and recomputes the IP-
header checksum.

Classification: Each packet is classified comparing an 80-
bit string extracted from its IP header comprising the type
of service (ToS), the source address, the destination address,
and the transport protocol with a per-destination 80-bit ternary
mask stored on the FPGA. The packet is assigned either to
the high-priority class, in case of match, or to the low-priority
class, otherwise, and is stored in the per-class per-destination
input FIFO architecture feeding the QoS scheduler.

Slow-path: The FPGA-enhanced-NIC operation in slow-
path routing mode is similar to commercial-NIC operation un-
der NAPI [10], basically a polling scheme. The only significant
difference is that the FPGA-enhanced NIC provides the driver
with two different reception rings, one for each traffic class.
This way, the driver, which in the current version implements
a simple strict-priority software scheduler, can enforce QoS
by handling the packets belonging to the two traffic classes
differently.

E
th

ern
et-M

A
C

 C
o

re
E

th
ern

et-M
A

C
 C

o
re

P
C

I C
o

re
P

C
I C

o
re

Routing

Routing

Classification

Classification

Classification

Classification

.

.

..

P
C

I B
u

s

L
in

u
x IP

 N
etw

o
rk S

tack

Slow Path

Slow Path

Fast Path

Fast Path

...........

...........

Input FIFOs

Output FIFO

Input FIFOs

Output FIFO

High-Priority FIFO

Low-Priority FIFO

Fig. 2. Architecture of the FPGA-enhanced NICs and their interactions with
the PCI bus and the Linux operating system

Fast Path: Packet transfers on the PCI-bus are regulated
by a distributed (asynchronous) scheduling algorithm based
upon in-band messages exchanged among the FPGA-enhanced
NICs, described in Section III-B. The aim is to let each output
NIC select the amount of traffic to be transferred from each
input NIC, so as to prevent any packet drops at the output-NIC
FIFO by confining them only to input FIFOs, and avoid any
PCI-bus-bandwidth waste.

Output Processing: Packets received from the PCI bus
are stored in two different output FIFOs (even though only
one of them is shown in the Fig. 2) depending on whether
they followed the fast or the slow path. A simple round-
robin scheduler extracts packets from such FIFOs, giving
strict priority to those coming from the slow-path FIFO, and
transfers them to the Ethernet-MAC core.

B. Distributed Scheduling Algorithm

The scheduling algorithm is based on a two-step negotia-
tion, involving the transmission of a request (REQ) message,
waiting for the reception of the corresponding response (RES)
message from the output NIC, so as to agree on the amount
of traffic to be transmitted in the subsequent burst packet
transfer. The burst is then immediately followed by a new
REQ message to keep the algorithm going.

1) REQ Message Generation: An output NIC becomes
active at a given input NIC when there is at least one packet
arrival in any of the two associated input FIFOs when both of
them are empty. Note that such NIC remains active until it is
sent a REQ message, returning inactive immediately thereafter.

The input-NIC request scheduler (i) continuously monitors
the input-FIFO occupancy, (ii) selects one out of the active
output NICs, (iii) sends it a REQ message containing the
amount of bytes stored in each of the two associated input
FIFOs, (iv) waits for the corresponding RES message before
going to (i), and generating any other REQ.

Since in the general general case several output NICs may
be active at the same time, a mechanism is needed to break
ties and enforce fairness. The simplest solution is to scan the
input FIFOs for active output NICs in a round-robin fashion,
define a request pointer that keeps track of the last output NIC
to which a REQ message has been sent, and resume the round-
robin scan from it, after receiving the wanted RES message.

2) RES Message Generation: The output-NIC response
scheduler operates similarly to the request scheduler by (i)
continuously monitoring the REQ messages received, (ii)
selecting one input NICs, (iii) sending it a RES message
containing the number of bytes that can be transferred to the
output FIFO from each of the two input FIFOs, (iv) waiting
for the REQ message following the packet burst before going
to (i) and generating any other RES.

Also here, since in the general general case several REQ
messages may have been received from the different input
NICs, ties are broken in a round-robin fashion, defining a
response pointer that keeps track of the last input NIC to which
a RES message has been sent.

123

The RES message contains two fields specifying the number
of bytes the output FIFO can accept for each priority. Their
values are assigned according to a strict-priority criterion,
privileging first high-priority traffic, leaving what is left, if
any, to low-priority traffic.

3) Burst Generation: The input-NIC burst scheduler op-
erates similarly to the request scheduler by (i) continuously
monitoring the RES messages received, (ii) selecting one
output NICs, (iii) sending it a packet burst, (iv) generating
a new REQ message before going to (i) and restarting the
loop.

Again, since in the general general case several RES mes-
sages may have been received from the different output NICs,
ties are broken in a round-robin fashion, defining a burst
pointer that keeps track of the last output NIC to which a
packet burst has been sent.

The scheduler generates and sends a packet burst that
satisfies the output-FIFO size constraints specified in the
selected RES message. The burst header contains the number
of high- and low-priority packets it conveys, if any. High-
priority packets are sent first, followed by low-priority ones;
each packet being preceded by a header indicating its length.
Finally, a trailing REQ is appended to the end of the burst
to notify the destination NIC of the current FIFO state. If
both FIFOs become empty, a null REQ is sent, preventing any
further protocol exchange. If both the head-of-line packets in
the selected input FIFOs are larger than the space available in
the output FIFO indicated by the RES message, an empty
burst message consisting only of the header and a trailing
REQ message is generated and sent anyway, so as to keep
the protocol exchange active.

C. Implementation Details

Driver Interface: At boot time, the NIC register file is
mapped in the PC memory address space, so that the driver can
easily access configuration data. Some registers are reserved
to store the ternary routing and packet classification masks. In
the current implementation, such masks are created by hand
for each test configuration and uploaded to the board with
command line scripts.

DMA-channel Assignment: The board performs all data
transfers to and from the PC memory as a PCI bus master,
using the four-channel direct-memory-access (DMA) engine
provided by the PCI-X core. Each channel can be completely
programmed by the FPGA application, specifying the transfer
direction, the transfer size, and the transfer starting address.
The scheduling of the four channels is proprietary and un-
known, since the core is encrypted. In our prototype, the
four channels are used as follows: (i) to download outgoing
packets from the RAM to the output FIFO (slow path output),
(ii) to upload incoming packets from the input FIFO to the
RAM (slow path input), (iii) to send REQ and RES messages
(distributed scheduling algorithm), and (iv) to send packet
bursts (fast path).

FPGA Occupation: In the current implementation, each
programmable NIC supports two service classes and fast-path

routing toward up to three FPGA-enhanced NICs, requiring
about 33% out of the 41 250 FPGA logic elements. The eight
input FIFOs (three pairs for fast-path forwarding plus one pair
for slow-path forwarding) and the two output FIFOs, fitting
up to 15 kbyte each (roughly corresponding to 10 maximum-
size Ethernet frames), are instead implemented on the 3-
Mbit FPGA DRAM, which can also temporarily buffer debug
information.

Clock Speed: The circuit complexity and size affect the
signal propagation delay and skew, so that sequential-logic set-
up times constrain the maximum FPGA-clock frequency for
the PCI core and the IP-handling macro-block to 66 MHz, even
though the PCI core could also run at 133 MHz. Nevertheless,
the 64-bit parallelism (theoretically) permits to reach a 4-
Gbit/s peak transfer rate. The Ethernet-MAC core is instead
clocked at 125 MHz, to be able to sustain a 1-Gbit/s throughput
on its 8-bit input-output interfaces. Finally, a multiplexing-
demultiplexing block is need to interconnect the 64-bit PCI
core and the 64-bit IP-handling block running at 66 MHz with
the 8-bit Ethernet MAC running at 125 MHz.

IV. PERFORMANCE EVALUATION

The aim of this section is twofold. First, to assess the per-
formance of the FPGA-enhanced NICs in terms of forwarding
rate and of flexibility in dealing with different-priority flows.
Second, to evaluate the benefits of FPGA-enhanced NICs with
respect to standard commercial NICs. Section IV-A introduces
the testbed setup, whereas Section IV-B and Section IV-C
describe the routing and QoS experiments performed, and
comment on the results.

A. Testbed Setup

The FPGA-enhanced NICs were plugged in a high-end PC
based on the SuperMicro X5DPE-G2 mainboard, equipped
with one 2.8-GHz Intel Xeon processor and 1 Gbyte of
PC1600 DDR RAM. The RAM installed is split into two
interleaved banks, so as to bring the maximum memory-bus
transfer rate to 3.2 Gbyte/s. The motherboard features three
133-MHz and three 100-MHz PCI-X slots, supporting a peak
transfer rate of 1 Gbyte/s and 0.8 Gbyte/s respectively.

An Agilent N2X RouterTester 900 [11], equipped with
8 Gigabit-Ethernet ports, which can transmit and receive
Ethernet frames of any size at full rate, was used for sourcing
and sinking traffic in the tests.

All experiments were run on NAPI-enabled Linux kernels,
using 64-byte minimum-size Ethernet frames, because they
produce the highest CPU-usage and the largest bus-transfer
overhead.

We considered both unidirectional flows, where each router
port either transmits or receives packets for all the experiment
duration, as well as bidirectional flows, where all router ports
send and receive packets at the same time. All the tests lasted
30 s and no routing-configuration changes were uploaded to
the board during any experiment run.

124

1 Gbit/s 1 Gbit/s 1 Gbit/s

50
0

M
bi

t/s

1 Gbit/s 1 Gbit/s 1 Gbit/s

B)

C)

1 Gbit/s 1 Gbit/s 1 Gbit/s

1 Gbit/s

1 Gbit/s

1 Gbit/s

500 Mbit/s

500 Mbit/s

D)

1 Gbit/s

500 Mbit/s

500 Mbit/s

E)

500 Mbit/s
500 Mbit/s

50
0

M
bi

t/s

500
M

bit/s

500 M
bit/s

1 Gbit/s

1 Gbit/s

1 Gbit/s

1 Gbit/s

1
G

bi
t/

s
1

G
bi

t/
sF)

1 Gbit/s
400

Mbit/s

A)

OS

Fig. 3. Test configurations

 0

 1

 2

 3

 4

 5

 6

 7

 8

 150 300 450 600 750 900 1050 1200 1350 1500

Sa
tu

ra
tio

n
fo

rw
ar

di
ng

 r
at

e
[G

bi
t/s

]

Ethernet frame size [byte]

Linux slow-path forwarding rate

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1500 64

Sa
tu

ra
tio

n
fo

rw
ar

di
ng

 r
at

e
[G

bi
t/s

]

Ethernet frame size [byte]

Linux slow-path forwarding rate

PCI-bandwidth bottleneck
Forwarding-rate bottleneck

Fig. 4. Slow-path saturation forwarding rate for a Linux router using
commercial NICs vs. Ethernet-frame size

B. Routing Tests

Several tests were run to verify the FPGA implementation’s
correctness and assess the FPGA-enhanced NICs’ perfor-
mance. Fig. 3 shows the scenarios explored.

The aim of the first experiment is to test the FPGA-
enhanced NIC implementation’s correctness in configura-
tion A, by running it as a bare-bones commercial NIC to
forward packets through the operating-system IP stack, via
the standard NAPI interface. The forwarding throughput (not
reported) for minimum size packets of the FPGA-enhanced
NIC closely matches the performance of the commercial
NIC. Note that the achieved saturation throughput strongly
depends on the operating-system configuration; when running
a standard Linux system straight out-of-the-box, the saturation
throughput is roughly equal to 400 Mbit/s.

It may be surprising to notice that the forwarding rate is
limited to 400 Mbit/s, even for the custom NIC. However, as
shown in [6], this stems from both CPU and memory-read-
latency limitations, not from NIC-operation flaws. Neverthe-
less, the FPGA-enhanced-NIC forwarding performance can be
greatly improved by fast-path packet transfers regulated by the
direct board-communication protocol. This way, the FPGA-
enhanced NICs can route without any losses one unidirectional
1-Gbit/s flow in configuration B, or two bidirectional 1-Gbit/s
flows in configuration C, for a net throughput of 2 Gbit/s.

Indeed, the performance of PC-based routers relying only on
commercial NICs is mainly limited by two factors, as shown in
Fig. 4, which depicts the theoretical saturation forwarding rate
for a PC with an 8-Gbit/s PCI bus versus the Ethernet-frame
size. First, for small-size packets, the packet-rate bottleneck,
stemming from the 600-kpkt/s maximum packet rate the archi-
tecture can forward because of CPU availability and memory-
read-latency constraints. Second, for large-size packets, the
PCI-bus maximum bandwidth. The 4-Gbit/s figure is due to
the slow-path routing architecture, which forces packets to go
twice through the 8-Gbit/s PCI bus.

A third card was added to test the round-robin scheduling
in configuration D, where each of two input NICs sends one
unidirectional 1-Gbit/s flow to the same output NIC. Note that
the output NIC cannot transmit the 2-Gbit/s flow resulting
from the merge. In a conventional slow-path scenario, the
output NIC would end up receiving the 2-Gbit/s aggregate flow
and drop from each flow the half of the packets that cannot
fit the 1-Gbit/s output link, wasting 2 Gbit/s of the PCI-bus
capacity. On the other hand, fast-path forwarding and round-
robin packet scheduling allow to draw from each input NIC
just half of the packets in the incoming flow, dropping all
overspill traffic at the input NIC and preserving precious PCI-
bus bandwidth.

In configuration E, a single unidirectional 1-Gbit/s flow
consisting of packets to be forwarded to each of the two output
NICs in a 1:1 ratio was correctly fast-path routed and delivered
to the right output ports by the input FPGA-enhanced NIC.

In configuration F, fast-path forwarding allows to route
three bidirectional 1-Gbit/s flows, yielding a 3-Gbit/s aggre-
gate throughput. Unfortunately, due to the limited availability
of FPGA-enhanced NICs in our lab, it was not possible to
evaluate routers with more than three ports.

C. QoS Tests

To improve the quality of service with respect to the clas-
sical FIFO best-effort model, the FPGA-enhanced NICs can
classify traffic into two service classes handled with different
priority. The tests in this section are performed with traffic

125

 0

 100

 200

 300

 400

 500

1000900800700600500400300200100
 0

 10

 20

 30

 40

 50

Fo
rw

ar
di

ng
 B

itr
at

e
[M

bi
t/s

]

Fo
rw

ar
di

ng
 B

itr
at

e
[%

]

Aggregated Input Bitrate [Mbit/s]

Low Priority
High Priority

 0

 100

 200

 300

 400

 500

1000900800700600500400300200100
 0

 10

 20

 30

 40

 50

Fo
rw

ar
di

ng
 B

itr
at

e
[M

bi
t/s

]

Fo
rw

ar
di

ng
 B

itr
at

e
[%

]

Aggregated Input Bitrate [Mbit/s]

Low Priority
High Priority

Fig. 5. Forwarding rate of the FPGA-enhanced NIC vs. the input packet rate in the A slow-path configuration, when packet classification is disabled (left)
or enabled (right)

 0

 200

 400

 600

 800

 1000

200015001000500100
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Fo
rw

ar
di

ng
 B

itr
at

e
[M

bi
t/s

]

Fo
rw

ar
di

ng
 b

itr
at

e
[%

]

Aggregated Input Bitrate [Mbit/s]

Low priority
High priority

Fig. 6. Performance of the FPGA-enhanced NIC with two-priority traffic.
Test configuration D. Fast path exploited

flows consisting of a mix of low- and high-priority packets
identified by different values in the ToS IP-header field.

The left-hand side of Fig. 5 shows the router forwarding
rate as a function of the input traffic rate, in the A slow-path
configuration when the input FPGA-enhanced NIC ignores the
existence of the two traffic classes, eventually working as a
bare-bones commercial NIC. Obviously, all the packets are
handled in the same way regardless of the class they belong to,
and both low- and high-priority packets experience the same
loss rate. The maximum forwarding rate is still upper bounded
by the 400-Mbit/s packet-forwarding bottleneck.

Enabling packet classification, we obtained the results pre-
sented in the right-hand side of Fig. 5. In this scenario, high-
priority packets are recognized and privileged by the FPGA-
enhanced input NIC and, as long as the input packet rate is
less than the forwarding bottleneck, only low-priority packets
are dropped on its input FIFO.

Packet classification can be used jointly with fast-path
routing in configuration D. The results are shown in Fig. 6;
similarly to the previous scenario, high-priority packets receive
a better service whereas only low-priority packets experience
losses.

V. CONCLUSIONS

In this paper we assessed the feasibility of building a high-
performance FPGA-enhanced NIC for a software-based IP
router. We designed, programmed, and tested three FPGA-
enhanced NICs that offload the CPU from performing IP

routing and directly transfer packets across the PCI bus,
completely bypassing the standard Linux IP stack.

We ran a number of experiments to test the implementation
correctness and evaluate the maximum data-plane throughput,
completely ignoring all control-plane-related issues. The re-
sults are promising, since a software router based on a high-
end off-the-shelf PC and commercial NICs can forward up to
400 Mbit/s, when handling 64-byte packets, whereas the use
of up to three FPGA-enhanced NICs allows to increase the
forwarding throughput up to 3 Gbit/s. Unfortunately, we have
not been able to assess how close we can get to the 4-Gbit/s
saturation limit of a PCI-X bus running at 66 MHz, because
we had only three PLDA boards.

ACKNOWLEDGMENTS

This work was performed in the framework of two projects,
named EURO [12] and BORA-BORA, partly funded by
the Italian Ministry of University, Education, and Research
(MIUR), and developed in the high-quality Internet Proto-
cols and Architectures Laboratory (LIPAR) at Politecnico di
Torino.

REFERENCES

[1] L. Torvalds, “Linux OS.” [Online]. Available: http://www.linux.org
[2] E. Kohler, R. Morris, B. Chen, and J. Jannotti, “The Click modular

router,” ACM Trans. on Comput. Syst., vol. 18, no. 3, pp. 263–297,
Aug. 2000.

[3] “BSD Unix.” [Online]. Available: http://www.bsd.org
[4] M. Handley, O. Hodson, and E. Kohler, “Xorp: An open platform for

network research,” in Proc. of the 1st Workshop on Hot Topics in
Networks, Princeton, NJ, USA, Oct. 28–29, 2002.

[5] GNU, “Quagga.” [Online]. Available: http://www.quagga.net
[6] A. Bianco, R. Birke, J. M. Finochietto, G. Galante, M. Mellia,

P. M.L.N.P.P., and F. Neri, “Click vs. Linux: Two efficient open-source
IP network stacks for software routers,” in Proc. of the IEEE Workshop
on High Performance Switching and Routing (HPSR 2005), Hong Kong,
P.R. China, May 12–14, 2005, pp. 18–23.

[7] “Opencores Project.” [Online]. Available: http://www.opencores.org
[8] PLDA, “PLD Applications.” [Online]. Available: http://www.plda.com
[9] “ALTERA.” [Online]. Available: http://www.altera.com

[10] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond Softnet,” in Proc.
of the 5th Annual Linux Showcase & Conference (ALS 2001), Oakland,
CA, USA, Nov. 5–10, 2001.

[11] Agilent, “N2X RouterTester 900.” [Online]. Available: http://advanced.
comms.agilent.com/n2x

[12] “EURO: University Experiment on Open-Source Routers.” [Online].
Available: http://www.diit.unict.it/euro

126

