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Implementation of the Mortar method in the

wavelet context

Silvia Bertoluzza∗, Silvia Falletta†and Valérie Perrier‡

Abstract

The paper is concerned with non-conforming wavelet-type dis-

cretization of elliptic partial differential equations. In particular it

analyzes some implementation issues related to the form of the con-

straint operator in the Mortar approach. Moreover it gives a pre-

liminary example of the coupling of wavelets with finite elements in

non-trivial geometries.

keywords: Domain decomposition, multiresolution analysis.
AMS subject classification: 65N55, 65T60.

1 Introduction

Domain decomposition methods are powerful tools for solving systems of
algebraic equations arising from the discretization of partial differential
equations. The computational domain is decomposed into overlapping or
non-overlapping subdomains and the original problem is divided into, or
assembled from, smaller subproblems corresponding to these subdomains.
In this paper, we focus on a particular domain decomposition method, the
Mortar method, which is of non-conforming type and therefore particularly
well suited for coupling different variational approximations in different
subdomains and non-matching discretizations along interior interfaces.
In the Mortar method, point-wise continuity across the interfaces is re-
placed by a weaker condition. More precisely, the interface of the de-
composition is itself decomposed into disjoint “multiplier sides”, each one
being the whole edge of a given subdomain. Weak continuity is imposed
by requiring that the jump on each multiplier side of a discrete function is
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orthogonal to a suitable “multiplier space”, generally defined as a subspace
of the trace of the discretization in the corresponding subdomain. Such
method has nowadays been applied to a wide variety of real-life problems
in both two and three dimensions ([2, 29, 5, 6, 7, 3]) and it is well suited
for parallel implementation ([1]).

It seems then natural to try such a method in order to overcome one
of the more severe drawback of wavelet methods, namely the difficulty in
the treatment of complex geometries.
Wavelet based methods are in fact nowadays widely used for the numerical
solution of partial differential equations. Such bases have several attractive
features, among which the existence of diagonal preconditioners for elliptic
operators of any given order ([24], [19]), as well as the possibility of design-
ing efficient adaptive approximation schemes for different types of problems
([25],[14], [18], [8], [12], [10]). But several drawbacks still limit their ap-
plication to real life problems, among which the treatment of non-trivial
geometries. We recall that such limitations are due to the intrinsic nature of
the wavelets that were first introduced as bases of L2(R) (see [27]) and lately
generalized to L2(]0, 1[) and to L2(]0, 1[d) (see [16] and [4]): roughly speak-
ing, wavelets for the interval are obtained by modifying the basis defined
on the whole real line with suitable modifications of the basis functions
that “interact” with the boundaries. Furthermore, the multidimensional
case involves a tensorial basis that is derived from the mono-dimensional
one, thus limiting their application to tensorial shaped domains. A possible
remedy is then to resort to domain decomposition. Conforming domain de-
composition methods have been proposed by several authors ([13, 17, 22]).
However, the constructions involved are extremely technical and only work
if the domain can be split as the union of tensor-like subdomains, which
is not always practical (for a very complicated geometry the number of
subdomains could be too high). By resorting to non-conforming domain
decomposition one can relax the continuity requirement and obtain a lighter
construction. Moreover, in principle, coupling with other methods in order
to deal with complex geometries is possible ([9]). In [11] the authors stud-
ied the problem of the use of wavelet bases within the Mortar method. In
particular they defined a multiplier space with all the properties needed to
prove optimal error estimates for the resulting method.

The aim of the paper is to deal in detail with some implementation
issues related to the Mortar method in the wavelet context. After recall-
ing the main theoretical results, we will study the form of the constraint
operator and we will show numerical results for the Laplace operator for
several cases of domain decomposition of the unit square and with different
choices of wavelet bases. Finally, we will demonstrate the feasibility of the
non-conforming method in complex geometries showing an example of the

2



coupling of wavelets with finite elements in such a way that the limitation
of multiresolution approximation spaces to trivial (tensor-like) geometries
is overcome.

2 The Mortar Wavelet Method

2.1 Approximation spaces in the wavelet context

We introduce in this section the wavelet spaces which we will need for
defining the mortar wavelet method.

2.1.1 Wavelet settings

In this section we recall the main ingredients of the definition of wavelet
on the interval, and focus on practical aspects. For more details we refer
to the series of papers on the subject [16, 26, 28, 20].

Scaling functions on the interval We start with a couple of biorthog-
onal Multiresolution Analyses (MRA) of L2(0, 1) ([15]), that is a cou-
ple of increasing sequences of finite dimensional approximation subspaces
Vj0 ⊂ . . . Vj ⊂ Vj+1 . . . and Ṽj0 ⊂ . . . Ṽj ⊂ Ṽj+1 . . . , whose respective
unions are dense in L2(0, 1). We assume also that:

Vj = span < ϕj,k, k = 0, · · · , 2j + 1 >,

Ṽj = span < ϕ̃j,k, k = 0, · · · , 2j + 1 >,

where the corresponding scaling function bases {ϕj,k ; k = 0, . . . 2j + 1}
and {ϕ̃j,k ; k = 0, . . . 2j + 1}, are compactly supported and assumed to be
biorthogonal , i.e. they verify:

∫ 1

0

ϕj,kϕ̃j,k′ = δkk′ , ∀k, k′.

Remark 2.1 Roughly speaking, we recall that the construction of mul-
tiresolution on the interval is based on compactly supported multiresolution
in L2(R), by suitably modifying the scaling functions that cross the bound-
aries, and it works under the assumption that the modifications made at
boundary 0 do not interact with the ones made at boundary 1. In general,
such modifications are done in such a way that #Vj = #Ṽj = 2j + 2 − α,
where α is a suitable parameter depending on the support size of the scal-
ing functions. For simplicity, we assume here that the above mentioned
modifications are done in such a way that #Vj = #Ṽj = 2j + 2.
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We will assume that these are Riesz’s bases , that is the two following norm
equivalences hold uniformly in j :

∥

∥

∥

∥

∥

∥

2j+1
∑

k=0

ukϕj,k

∥

∥

∥

∥

∥

∥

0,]0,1[

≃





2j+1
∑

k=0

|uk|2




1/2

(1)

and
∥

∥

∥

∥

∥

∥

2j+1
∑

k=0

ukϕ̃j,k

∥

∥

∥

∥

∥

∥

0,]0,1[

≃





2j+1
∑

k=0

|uk|2




1/2

(2)

‖.‖0,]0,1[ being the L2-norm on [0, 1].

We will make the following additional standard assumptions on Vj and

Ṽj :

given two integers n, ñ, and two reals R, R̃ such that n ≥ R > 1 and
ñ ≥ R̃ > 0 we suppose:

ϕj,k ∈ HR(0, 1) and ϕ̃j,k ∈ HR̃(0, 1), ∀j ≥ j0, k = 0, . . . , 2j + 1.

Moreover the spaces Vj0 and Ṽj0 satisfy a Strang-Fix condition of order n
and ñ respectively, that is polynomials up to order n and ñ are included in
Vj0 and Ṽj0 respectively ( by inclusion so do Vj and Ṽj), which means: there

exists coefficients ap
k, bpk, and ãp

k, b̃pk, such that we have for p = 0, . . . , n− 1

2
j0
2 (2j0x)p =

2j0+1
∑

k=0

ap
k ϕj0,k(x), and 2

j0
2

(

2j0(1 − x)
)p

=
2j0+1
∑

k=0

bpk ϕj0,k(x),

(3)
and for p = 0, . . . , ñ− 1:

2
j0
2 (2j0x)p =

2j0+1
∑

k=0

ãp
k ϕ̃j0,k(x), and 2

j0
2

(

2j0(1 − x)
)p

=

2j
0+1
∑

k=0

b̃pk ϕ̃j0,k(x).

(4)
Remark that the coefficients ap

k, bpk, ãp
k and b̃pk, which will play a role in

the following, are available in practice and hence we can assume they are
known.

From now on we will set N = max(n, ñ).
We recall that the scaling functions ϕj,k and ϕ̃j,k are constructed by

modification of the corresponding scaling functions on L2(R), which are
obtained by integer translation and dyadic dilation of two “father” scaling
functions ϕ and ϕ̃ ∈ L2(R).
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By construction the scaling functions have compact support

diam(suppϕj,k) ≃ 2−j and diam(suppϕ̃j,k) ≃ 2−j,

and are scale invariant, i.e. ∀j ≥ j0, ∀x ∈ [0, 1], and ∀k = 0, . . . , N − 1 on
the left boundary it holds

ϕj,k(x) = 2
j−j0

2 ϕj0,k(2j−j0x), ϕ̃j,k(x) = 2
j−j0

2 ϕ̃j0,k(2j−j0x), (5)

while on the right boundary we have ∀k = 0, . . . , N − 1

ϕj,2j−k+1(1 − x) = 2
j−j0

2 ϕj0,2j0−k+1(2
j−j0(1 − x)), (6)

ϕ̃j,2j−k+1(1 − x) = 2
j−j0

2 ϕ̃j0,2j0−k+1(2
j−j0(1 − x)). (7)

Moreover, the interior scaling functions (i.e. scaling functions whose sup-
port is included into [0,1]) coincide with the original scaling functions on
the real line and ∀j ≥ j0, ∀k = N, . . . , 2j −N + 1 they take the form:

ϕj,k(x) = ϕj,N (x− 2−j(k −N)) = 2j/2ϕ(2jx− k),

where ϕ(x) = 2−j0/2ϕj0,N(2−j0(x +N)) is the scaling function of the cor-
responding multi-scale analysis for L2(R). An analogous relation holds for
the duals ϕ̃j,k, for k = N, . . . , 2j −N + 1.

Finally we can also suppose that all scaling functions of Vj vanish at
the edges 0 and 1, except one function at each edge. To fix the ideas we
will assume:

ϕj,0(0) 6= 0 and ϕj,2j+1(1) 6= 0 , ∀j ≥ j0, (8)

ϕj,k(0) = 0 and ϕj,k(1) = 0 , ∀k = 1, . . . , 2j.

It is well known that the above assumptions imply that the projectors
Pj : L2(0, 1) → Vj and P̃j : L2(0, 1) → Ṽj defined by

Pjf =
2j+1
∑

k=0

< f, ϕ̃j,k > ϕj,k, P̃jf =
2j+1
∑

k=0

< f, ϕj,k > ϕ̃j,k, (9)

satisfy the following direct estimates for all u ∈ Ht(0, 1):

‖u− Pju‖s,]0,1[ . 2−j(t−s)‖u‖t,]0,1[ if s ≤ R, s < t ≤ n+ 1

‖u− P̃ju‖s,]0,1[ . 2−j(t−s)‖u‖t,]0,1[ if s ≤ R̃, s < t ≤ ñ+ 1.
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Wavelets on the interval Biorthogonal wavelet bases ψj,k and ψ̃j,k are

constructed as bases of the spaces Wj = Vj+1 ∩ (Ṽj)
⊥ and W̃j = Ṽj+1 ∩

(Vj)
⊥. They verify the same translation and dilation invariance properties

as for the scaling functions, that is:
- For k = N − 1, . . . , 2j − N the interior wavelets of Wj coincide with

the original wavelets on the real line and they take the form:

ψj,k(x) = ψj,N (x− 2−j(k −N)) = 2j/2ψ(2jx− k),

where ψ(x) = 2−j0/2ψj0,N (2−j0(x+N)) is the wavelet of the corresponding
multi-scale analysis for L2(R). An analogous relation holds for the duals
ψ̃j,k, for k = N − 1, . . . , 2j −N , which span the space W̃j .

- On the left boundary, the left edge wavelets ofWj : ψj,k, k = 0, . . . , N−
2 verify a relation of the form (5), in which ϕj,k is replaced by ψj,k (and

similarly for ψ̃j,k, k = 0, . . . , N − 2).
- On the right boundary, the right edge wavelets of Wj : ψj,2j−k−1,

k = 0, . . . , N − 2 verify a relation of the form (6), in which ϕj,2j−k+1 is

replaced by ψj,2j−k−1 (and similarly for ψ̃j,2j−k−1, k = 0, . . . , N − 2).
Consequently, L2(0, 1) will be spanned by wavelet bases, and we will

use the decompositions:

L2(0, 1) = Vj0

+∞
⊕

j=j0

Wj = Ṽj0

+∞
⊕

j=j0

W̃j .

Moreover for all J > j0, the projectors PJ and P̃J of (9) rewrite:

PJf = Pj0f +
J−1
∑

j=j0

2j−1
∑

k=0

< f, ψ̃j,k > ψj,k, (10)

P̃Jf = P̃j0f +

J−1
∑

j=j0

2j−1
∑

k=0

< f, ψj,k > ψ̃j,k.

Fast wavelet transform The wavelet coefficients < f, ψ̃j,k > and <
f, ψj,k > of a given function f , involved in the wavelet decompositions (10)
are computed in the same way as on the real line, except for a specific
treatment of the (left and right) boundary coefficients, which necessitates
(small size-)matrix vector products. For the sake of completeness, we re-
mind here the practical way to compute filters and to deal with the Fast
Wavelet Algorithm. We will focus on the computation of the < f, ψj,k >,

since the one of the < f, ψ̃j,k > carries on the same manner.
Two-scale equations :

For each scale j > j0, the families {ϕj,k} and {ψj,k} satisfy a two scale
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equation. In particular, for the internal functions it holds that (recall that
they coincide with the functions defined on the whole real line)

1√
2
ϕj,k(

x

2
) =

∑

p

hp−2kϕj,p(x),

and
1√
2
ψj,k(

x

2
) =

∑

p

gp−2kϕj,p(x).

The family of left-edge scaling functions {ϕj,k}k=0,N−1 satisfies the two-
scale equation:

1√
2







ϕj,0

...
ϕj,N−1






(
x

2
) = H0







ϕj,0

...
ϕj,N−1






(x) + h0







ϕj,N

...
ϕj,3N−3






(x) (11)

where H0 and h0 are N ×N and N × (2N − 2) matrices.
We also have a two-scale equation for the left-edge wavelets:

1√
2







ψj,0

...
ψj,N−2






(
x

2
) = G0







ϕj,0

...
ϕj,N−1






(x) + g0







ϕj,N

...
ϕj,3N−3






(x). (12)

where G0 and g0 are (N − 1) ×N and (N − 1) × (2N − 2) matrices.
For the edge 1 we use in fact the following notation:

1√
2







ϕj,2j−N+2
...

ϕj,2j+1






(2j(1 − x)) = H1







ϕj,2j+1−N+2
...

ϕj,2j+1+1






(2j+1(1 − x))

+ h1







ϕj,2j+1−3N+4

...
ϕj,2j+1−N+1






(2j+1x) (13)

and the analogous formula for G1 and g1:

1√
2







ψj,2j−N+1

...
ψj,2j−1






(2j(1 − x)) = G1







ϕj,2j+1−N+2

...
ϕj,2j+1+1






(2j+1(1 − x))

+ g1







ϕj,2j+1−3N+4

...
ϕj,2j+1−N+1






(2j+1x). (14)

7



Without going into a deep description, we recall thatH0, h0, G0, g0, H1,
h1, G1, g1 are suitable matrices depending on the standard filters on the
line {hk} and {gk} and on the modifications made to build the boundary
function bases. For more details see [28] and [26].

Numerically, all was done to find the above two-scale relations that give
the matrices used in the fast algorithms. The practical computation of the
filters for the specific Daubechies wavelets is detailed in annex.

Fast algorithms
We will now describe the fast algorithm for analyzing and synthesizing
vectors in the spaces of the multiresolution analysis. As in the case of the
real line, the algorithm is based on the elementary step:

Ṽj = Ṽj−1 ⊕ W̃j−1

Suppose that we know the scalar products of a given function f in Ṽj with
the scaling functions ϕjk, and that we want to compute scalar products
〈f, ϕj−1,k〉 with the scaling functions of Vj−1 and 〈f, ψj−1,k〉, with the
wavelets of Wj−1. We start then from a vector cj composed of:

• 〈 f | ϕj,k 〉 for k = 0, N − 1, left-edge scaling coefficients

• 〈 f | ϕj,k 〉 for N ≤ k ≤ 2j −N + 1, interior scaling coefficients

• 〈 f | ϕj,2j+1−k 〉 right-edge scaling coefficients for k = 0, N − 1.

To obtain the projection of the function f on Ṽj−1, we have to multiply
the vector cj by the matrix





H0 h0 0
0 Hj 0
0 h1 H1





where:

• Hj is the (2j−1 − 2N +2)× (2j − 2N +2) matrix whose general term
is H

j
k,l = h−N+2+l−2k,

• h0 (defined, as H0, in (11) for the edge 0) is completed with columns
of 0 at the right to fit the width of Hj ,

• h1 (defined, as H1, in (13) for the edge 1) is completed with columns
of 0 at the left.

To obtain the projection on Wj−1, we multiply cj by the matrix




G0 g0 0
0 Gj 0
0 g1 G1





where
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• Gj is the (2j−1 − 2N + 2)× (2j − 2N + 2) matrix whose general term
is G

j
k,l = g−N+2+l−2k,

• g0 (defined, as G0, in (12) for the edge 0) is completed with columns
of 0 at the right to fit the width of Gj ,

• g1 (defined, as G1, in (14) for the edge 1) is completed with columns
of 0 at the left.

The result lies in the vectors cj−1 and dj−1.
Reversely, to find cj starting from cj−1 and dj−1, we have to multiply

the column vector
(

cj−1

dj−1

)

by the matrix




H̃0 0 0 G̃0 0 0

h̃0 H̃j h̃1 g̃0 G̃j g̃1
0 0 H̃1 0 0 G̃1





where the matrices H̃j and G̃j (which have the same size as Hj and Gj)
are built from the standard filters on the line h̃k and g̃k and h̃0, g̃0, h̃1, g̃1
are completed with columns of zeros, as above.
Notice that this algorithm is not applied as multiplications of matrices.
It is worth for the edges, but for the interior, it just relies on discrete
convolutions, as on the real line.

2D Multiresolution Approximation As usual in the unit square ]0, 1[2

we will define the approximation spaces by tensor product:

Vj = Vj ⊗ Vj = span < ϕj,k ⊗ ϕj,k′ , k, k′ = 0, . . . , 2j + 1 > . (15)

The family (Vj)j≥j0 constitutes a MRA of L2(]0, 1[2). The two-dimensional
biorthogonal projection on Vj will be denoted by Pj . Two-dimensional
wavelets are constructed (as usual) by tensor products of one-dimensional
bases. The direct inequalities are still valid in dimension 2 ([15]). In par-
ticular, for all u ∈ Hs(]0, 1[2), 1 < s ≤ n+ 1 it holds:

‖u− Pj(u)‖1,]0,1[2 . 2−j(s−1)‖u‖s,]0,1[2 (16)

where ‖.‖s,Ω denotes the Hs-norm on Ω.

9



2.1.2 The biorthogonal wavelet multiplier space

Let now V 0
j ⊂ H1

0 (0, 1) be the space of functions of Vj vanishing at the
boundaries of the interval ]0, 1[. Following (8), we get:

V 0
j = Vj ∩H1

0 (0, 1) = span < ϕj,k , k = 1, . . . , 2j >,

Vj = V 0
j ⊕ span < ϕj,0 , ϕj,2j+1 > .

In the Mortar Wavelet Method, this space V 0
j plays the role of the

space of traces on a “multiplier side” of discrete functions, vanishing at the
extrema.

In order to build a suitable space Mδ to be used as a multiplier space for
imposing weak continuity (see the definition of Xδ (30) in the following), we
construct a second multi-scale analysis M̃j , biorthogonal to V 0

j . It is well
known that the multiplier space Mδ needs to approximate well functions
that take non zero values at the extrema of the subdomain edges (namely
it needs to approximate the outer normal derivative of the solution) and,
following the Mortar point of view, it needs to be biorthogonal to V 0

j in
order to treat each mortar independently. Moreover, we recall that the
natural choice of the multiplier space on an edge is not necessarily a subset
of the space of traces of the interior functions, as it is in the classical Mor-
tar method; we will see that, under suitable assumptions which are easily
verified in the wavelet case, this does not yield any major modification in
the results that can be obtained, with no substantial difference with re-
spect to the “classical” Mortar method (in this respect see also [30]). More
precisely set

φ̃j,k = ϕ̃j,k + ck ϕ̃j,0 , for k = 1, N (17)

φ̃j,k = ϕ̃j,k , for k = N + 1, 2j −N

φ̃j,k = ϕ̃j,k + dk ϕ̃j,2j+1 , for k = 2j −N + 1, 2j

with

ck = −αk

α0
, k = 1, N − 1 cN = 1

α0

dk = − βk

β2j+1
, k = 2j −N + 2, 2j d2j−N+1 = 1

β2j+1

(18)
where (αk)k=0,··· ,N−1 and (βk)k=2j−N+2,··· ,2j+1 are respectively the solu-
tions of the two following linear systems

N−1
∑

k=0

ãp
kαk = ãp

N , and

2j+1
∑

k=2j−N+2

b̃pkβk = b̃p2j−N+1, ∀p = 0, N − 1. (19)
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where ãp
k and b̃pk have been introduced in (4). Then we set

M̃j = span < φ̃j,k, k = 1, . . . , 2j > .

Remark again that, as requested, M̃j does not verify homogeneous bound-
ary conditions; moreover this construction is, in fact, a particular case of
the construction presented in [21].
The following theorem was proven in [11]:

Theorem 2.1 For all j ≥ j0 the set {φ̃j,k, k = 1, · · · , 2j} is biorthogonal
to the set {ϕj,k, k = 1, · · · , 2j}, that is it holds

∫

]0,1[

ϕj,k(x)φ̃j,k′ (x) dx = δkk′ . (20)

Moreover the projector πj : L2(0, 1) → V 0
j and its adjoint π̃j : L2(0, 1) →

M̃j defined by

πjf =

2j
∑

k=1

< f, φ̃j,k > ϕj,k, (21)

and

π̃jf =

2j
∑

k=1

< f, ϕj,k > φ̃j,k, (22)

verify the following direct estimates: for all u ∈ Ht
0(0, 1),

‖u− πju‖Hs
0(]0,1[) . 2−j(t−s)‖u‖Ht

0(]0,1[) if s ≤ R, s < t ≤ n+ 1

and for all u ∈ Ht(0, 1),

‖u− π̃ju‖s,]0,1[ . 2−j(t−s)‖u‖t,]0,1[ if s ≤ R̃, s < t ≤ ñ+ 1.

2.2 Non conforming domain decomposition

Let Ω ⊂ R
2 be a polygonal domain. We will consider the following model

problem. Given f ∈ L2(Ω), find u : Ω−→R such that

{

−∆u = f, in Ω,
u = 0, on ∂Ω.

(23)

In order to solve such a problem by the mortar wavelet method, we will
consider a decomposition of Ω as the union of L subdomains Ωℓ,

Ω =
⋃

ℓ=1,L

Ωℓ, (24)
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which we will assume to be rectangular and regular in shape, that is we
will assume that there exist constants C0, C1 and C2 such that, for all ℓ,
Ωℓ contains a ball of diameter C0Hℓ, it is contained in a ball of diameter
Hℓ, and the length of each side is bounded from below by C0Hℓ. Moreover
any interior angle ω satisfies 0 < C1 < ω < C2 < π.

We set

Γℓ,ℓ′ = ∂Ωℓ ∩ ∂Ωℓ′ , (25)

S = ∪Γℓ,ℓ′ , (26)

and we denote by γ
(i)
ℓ (i = 1, . . . , 4) the i-th side of the ℓ-th domain:

∂Ωℓ =

4
⋃

i=1

γ
(i)
ℓ . (27)

For simplicity we will assume here that the decomposition is geometri-

cally conforming, that is each edge γ
(i)
ℓ coincides with Γℓ,ℓ′(= ∂Ωℓ ∩ ∂Ωℓ′)

for some ℓ′, 1 ≤ ℓ′ ≤ L.
The space approximation is performed by introducing for each ℓ the

affine and boundedly invertible transformation F ℓ : [0, 1]2 → Ωℓ mapping
the reference square onto the subdomain Ωℓ:

Ω̄ℓ = F ℓ([0, 1]2).

Moreover we will denote by F ℓ
i : [0, 1] → γ

(i)
ℓ the restriction to the i−th

side (which is identified with the interval [0, 1]) of F ℓ.
We then choose a discretization level jℓ ≥ j0 and set

Vℓ
δ = F ℓ(Vjℓ

) ∩H1
0 (Ω)|Ωℓ

.

According to the mortar approach, in order to impose weak continuity,
we start by splitting the skeleton as the disjoint union of a certain number

of subdomain sides γ
(i)
ℓ , usually called “non mortars” or “slave sides”. More

precisely, we choose an index set I ⊂ {1, . . . , L}×{1, . . . , 4} such that,

S =
⋃

(ℓ,i)∈I

γ
(i)
ℓ ,

(ℓ1, i1), (ℓ2, i2) ∈ I,

(ℓ1, i1) 6= (ℓ2, i2)
⇒ γ

(i1)
ℓ1

∩ γ(i2)
ℓ2

= ∅. (28)

On each slave side γm (with the compact index notation m = (ℓ, i) ∈ I)
we define a multiplier space

Mm
δ = F ℓ

i (M̃jℓ
), (ℓ, i) ∈ I,

12



and we look for a solution of our problem among the functions which satisfy
across each “slave” side the jump constraint

∫

γm

[u]λδ = 0, ∀λδ ∈Mm
δ , (29)

where we recall that, for γm = ∂Ωℓ ∩ ∂Ωk, [u] = uℓ − uk denotes the jump
across γm.

More precisely we set

Xδ =

{

vδ ∈
L
∏

ℓ=1

Vℓ
δ, ∀m ∈ I, ∀λδ ∈Mm

δ

∫

γm

[vδ]λδ = 0

}

. (30)

We remark that unlike the classical Mortar method, the spaces Mm
δ

used for defining on each mortar side the space Mδ are not included in the
trace spaces Vℓ

δ|γ(i)
ℓ

, but in the corresponding dual spaces.

We can now introduce the following discrete problem:

Problem 2.1 (PD) Find uδ ∈ Xδ, such that for all vδ ∈ Xδ,

L
∑

ℓ=1

∫

Ωℓ

∇uδ∇vδ =

∫

Ω

fvδ. (31)

It is possible to prove the following theorem [11]:

Theorem 2.2 There exists a unique solution of problem (PD), satisfying
the following error estimate: if the solution u of problem (23) satisfies
u|Ωℓ

∈ Hs(Ωℓ), s > 1 ∀ℓ = 1, · · · , L, then

‖u− uδ‖1,∗ .
(

∑L
ℓ=1 2−2jℓ(s−1)‖u‖2

s,Ωℓ

)1/2

(32)

+

(

∑L
ℓ=1 2−2jℓ(s−1)

∥

∥

∥

∂u
∂νℓ

∥

∥

∥

2

s−3/2,∂Ωℓ

)1/2

,

where ‖ · ‖1,∗ denotes the broken H1 norm defined as

‖u‖1,∗ =

(

L
∑

ℓ=1

‖u‖2
1,Ωℓ

)1/2

,

and νℓ is the outer unit normal to the subdomain Ωℓ.
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3 Implementation

3.1 Numerical solution in the constrained space

It is well known that in the implementation of the mortar method, the mul-
tiplication by the stiffness matrix can be performed by applying subdomain-
wise the local stiffness matrix (which does not take into account the con-
straints), after multiplication by a “transfer matrix”, which gives the values
of the constrained degrees of freedom (the ones living on the interior of mul-
tiplier sides) in terms of the remaining (free) degrees of freedom, and which
is a discrete realization of the projector π (see Section 2.1.2).

For each subdomain Ωℓ, we will denote by Rℓ the local stiffness matrix
relative to the discretization of the Laplace operator in Vℓ

δ: more precisely,
setting for each k = (k1, k2) ∈ {0, · · · , 2jℓ + 1}2

Φjℓ,k(x, y) = ϕjℓ,k1(x)ϕjℓ ,k2(y), (x, y) ∈]0, 1[2, (33)

Φℓ
jℓ,k(x, y) = Φjℓ,k((F ℓ)−1(x, y)), (x, y) ∈ Ωℓ, (34)

we write

Rℓ
n,k =

∫

Ωℓ

∇Φℓ
jℓ,k∇Φℓ

jℓ,n.

An element uδ of Xδ has the form

uδ = (uℓ
δ)ℓ=1,L, with uℓ

δ =
∑

k

uℓ
k Φℓ

jℓ,k,

where the coefficients (uℓ
k
) must satisfy the discrete equivalent of the jump

constraint on the interface S.
The actual degrees of freedom are all the coefficients uℓ

k
, k = (k1, k2) ∈

{1, · · · , 2jℓ}2, corresponding to basis functions vanishing on ∂Ωℓ, and those
coefficients uℓ

k
, k1 and/or k2 being either 0 or 2jℓ+1, corresponding to either

a vertex of Ωℓ or to a “non mortar” side (γ
(i)
ℓ , (ℓ, i) 6∈ I, see (28)).The value

of those coefficients uℓ
k

(k1 or k2 being either 0 or 2jℓ + 1) corresponding
to basis functions vanishing at the vertices of Ωℓ and “living” on mortar

sides (γ
(i)
ℓ , (ℓ, i) ∈ I) is uniquely determined by the remaining coefficients

through the jump condition. For the sake of simplicity, we will introduce
the following notations: let

u =







u1

...
uL






,

be a generic global coefficient vector, whose components uℓ, with ℓ =
1, · · · , L (uℓ = (uℓ

k
)κ∈{0,...,2jℓ+1}2), represent the vector of the local co-

ordinates of uδ relative to the ℓ-th subdomain. We will denote by uM and

14



uS the coefficient vectors corresponding to the degrees of freedom and to
the constrained ones respectively. Therefore, by introducing P as a suitable
permutation matrix allowing us to write u in the compact form

u = P

(

uM

uS

)

, (35)

and denoting by C the matrix expressing the global constraint operator,
such that

uS = CuM , (36)

we will write

u = P

[

I
C

]

uM . (37)

For the implementation, each function in Xδ can be expressed through two
different coefficient vectors. The first one is the vector uM of coefficients
corresponding to the actual degrees of freedom, the second is the redundant
vector u: in fact, the global stiffness matrix R corresponding to problem
(31), acting on the vector uM of degrees of freedom is, by definition, the
matrix R such that, denoting by vM and uM the vectors of coefficients of
two functions uδ and vδ in Xδ, it holds

(vM )TR uM = aX(uδ, vδ).

Therefore, since

aX(uδ, vδ) =

L
∑

ℓ=1

∫

Ωℓ

∇uℓ
δ∇vℓ

δ = vT







R1 0 0

0
. . . 0

0 0 RL






u,

using relation (37) we easily obtain

R =
[

I CT
]

PT







R1 0 0

0
. . . 0

0 0 RL






P

[

I
C

]

.

Therefore, the application of the global stiffness matrix consists on three
steps:

1. apply the constraint operator to the global coefficient vector u in
order to obtain the constrained coefficients in function of the degrees
of freedom

2. apply the local stiffness operator subdomain-wise
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3. apply the transpose of the constraint operator.

Remark that steps 1 and 3 are the two operations that allows the dif-
ferent subdomains to interact with each other, while step 2 depends only
on the corresponding subdomain.

3.2 The constraint operator in the wavelet context

Let us then give a closer look at the form that the constraint takes in the
wavelet context .

We first split the function u as the sum of several contributions corre-
sponding to the interior part, the vertices and the four edges respectively:

uℓ
δ =

∑

k∈Iℓ
0

uℓ
k

Φℓ
jℓ,k +

∑

k∈Iℓ
V

uℓ
k

Φℓ
jℓ,k +

4
∑

i=1

∑

k∈Iℓ
i

uℓ
k

Φℓ
jℓ,k, (38)

with

Iℓ
0 = {k = (k1, k2), k1 = 1, . . . , 2jℓ , k2 = 1, . . . , 2jℓ},

Iℓ
V = {(0, 0), (0, 2jℓ + 1), (2jℓ + 1, 0), (2jℓ + 1, 2jℓ + 1)},
Iℓ
1 = {(k, 0), k = 1, . . . , 2jℓ},
Iℓ
2 = {(2jℓ + 1, k), k = 1, . . . , 2jℓ},
Iℓ
3 = {(k, 2jℓ + 1), k = 1, . . . , 2jℓ},
Iℓ
4 = {(0, k), k = 1, . . . , 2jℓ}.

The last sum in (38) can be further split as the contribution of the master
sides plus the contribution of the slave sides, yielding

uℓ
δ =

∑

k∈Iℓ
0

uℓ
k

Φℓ
jℓ,k+

∑

k∈Iℓ
V

uℓ
k

Φℓ
jℓ,k+

∑

i:(ℓ,i)∈I

∑

k∈Iℓ
i

uℓ
k

Φℓ
jℓ,k+

∑

i:(ℓ,i) 6∈I

∑

k∈Iℓ
i

uℓ
k

Φℓ
jℓ,k.

It is clear that there is a natural correspondence between Iℓ
i and the set

{1, . . . , 2jℓ} and for a given k ∈ Iℓ
i we will denote by k the corresponding

element of such a set, given by

uℓ,i
k = uℓ

k(k,i)α
k,i with k(k, i) =



















(k, 0) i = 1

(2jℓ + 1, k) i = 2

(k, 2jℓ + 1) i = 3

(0, k) i = 4

and αk,i =

{

ϕjℓ,0(0) i = 1, 4

ϕjℓ,2jℓ+1(1) i = 2, 3
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The actual degrees of freedom are the coefficients uℓ
k

with k ∈ Iℓ
0 ∪

Iℓ
V ∪i:(ℓ,i) 6∈I I

ℓ
i , while the coefficients uℓ

k
with k ∈ ∪i:(ℓ,i)∈II

ℓ
i are uniquely

determined by the constraint. Let us then assume that (ℓ, i) ∈ I and that
the corresponding master is (ℓ′, i′), that is

γ
(i)
ℓ = Γℓ,ℓ′ = γ

(i′)
ℓ′ .

Observing that the trace operator reads

uℓ
δ|Γℓ,ℓ′

=

2jℓ+1
∑

k=0

uℓ,i
k ϕjℓ,k, uℓ′

δ |Γℓ,ℓ′
=

2j
ℓ′ +1
∑

k=0

uℓ′,i′

k ϕjℓ′ ,k,

the constraint becomes

∫

Γℓ,ℓ′





2jℓ+1
∑

k=0

uℓ,i
k ϕjℓ,k −

2j
ℓ′ +1
∑

k=0

uℓ′,i′

k ϕjℓ′ ,k



 φ̃jℓ,k′ = 0, k′ = 1, . . . , 2jℓ .

Using the biorthogonality relation (20), and according to the definition (17)
of φ̃jℓ,k′ , this can be rewritten as

uℓ,i
k′ =

∫

Γℓ,ℓ′





2j
ℓ′ +1
∑

k=0

uℓ′,i′

k ϕjℓ′ ,k



 φ̃jℓ,k′ − uℓ,i
0

∫

Γℓ,ℓ′

ϕjℓ,0φ̃jℓ,k′

− uℓ,i

2jℓ+1

∫

Γℓ,ℓ′

ϕjℓ,2jℓ+1φ̃jℓ,k′

=

∫

Γℓ,ℓ′





2j
ℓ′ +1
∑

k=0

uℓ′,i′

k ϕjℓ′ ,k



 φ̃jℓ,k′ − uℓ,i
0 ck′ − uℓ,i

2jℓ+1
dk′ ,

with k′ = 1, . . . , 2jℓ . In the case that a geometrically conforming decom-
position is considered and that all subdomains are discretized by wavelets,
the application of the constraint (i.e the multiplication by the matrix C)
will reduce to performing either a Fast Wavelet Transform or an Inverse

Fast Wavelet Transform depending on which of the two discretizations on
the “trace” and on the “multiplier” side is finer.

Indeed on one mortar side γ
(i)
ℓ = Γℓ,ℓ′ , which for instance we can assume

to be the lower side of Ωℓ and the upper side of Ωℓ′ , the jump condition
would imply

2jℓ+1
∑

k=1

uℓ
(k,0)ϕjℓ,k(x) = πjℓ

(

2j
ℓ′

+1

∑

k=0

uℓ′

(k,2j
ℓ′ +1)

ϕjℓ′ ,k(x)

−uℓ
(0,0)ϕjℓ,0(x) − uℓ

(2jℓ+1,0)ϕjℓ,2jℓ +1(x)
)

,
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where πjℓ
= F ℓ

i ◦ πj ◦ (F ℓ
i )−1 is the projection operator πjℓ

: L2(γ
(i)
ℓ ) −→

V 0
jℓ

(γ
(i)
ℓ ) obtained by (21).

The coefficients of the left hand side can be retrieved by means of a
Fast Wavelet Transform (FWT) in O(2max{jℓ,jℓ′}) operations. In other
words, multiplying uM by C reduces to applying a sequence of FWTs on
the mortar sides.

4 Numerical Results

We test the Mortar Wavelet method on a very simple model problem,
namely the Poisson equation

−∆u = f (39)

on a square domain, with homogeneous boundary conditions. The tests we
show are referred to different choices of the function f and of the wavelet
discretization spaces.
In particular we use biorthogonal B-spline compactly supported scaling
functions, showing that, in agreement with the theory, the solution is cor-
rectly calculated by the method proposed though different levels of dis-
cretization are used in the different subdomains, and though no strong
continuity is imposed at the interfaces. We study the behavior of the error
with respect to the following norms :

• the relative L2 norm ‖u−uδ‖0

‖u‖0
;

• the relative H1 broken norm
‖u−uδ‖1,∗

‖u‖1,∗
;

• the relative L∞ norm ‖u−uδ‖∞

‖u‖∞

.

Moreover, we evaluate the jump [uδ] of the numerical solution.
We consider three different functions f , which are described in the following
cases together with the exact analytical solution u:

Case 1:










f(x, y) = −2π2 sin(πx) sin(πy)

u(x, y) = sin(πx) sin(πy).

(40)
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Case 2: Given a ∈ R,



























f(x, y) = −(4a2x2 − 4a2x+ a2 − 2a)e−a(x−1/2)2
[

e−a(y−1/2)2 − e−a/4
]

−(4a2y2 − 4a2y + a2 − 2a)e−a(y−1/2)2
[

e−a(x−1/2)2 − e−a/4
]

u(x, y) =
[

e−a(x−1/2)2 − e−a/4
] [

e−a(y−1/2)2 − e−a/4
]

.

(41)

Case 3: Given a ∈ R,















































f(x, y) =















1
1−e−a/4

[

e−a(x−1/2)2
(

4a2(x− 1/2)2 − 2a
)

y(y − 1)

+2
(

e−a(x−1/2)2 − e−a/4
) ]

if x ≤ 1/2,

−π2 sin(πx)y(y − 1) + 2 sin(πx) if x > 1/2

u(x, y) =

{

1
1−e−a/4

[

e−a(x−1/2)2 − e−a/4
]

y(1 − y) if x ≤ 1/2,

sin(πx)y(1 − y) if x > 1/2

(42)

Remark 4.1 Case 3 refers to a solution u which belongs to C∞([0, .5)×
[0, 1]) × C∞(.5, 1] × [0, 1]), but whose second derivative with respect to
the variable x is discontinuous. Figure 1 show the behavior of the exact
solution, its gradient along the x axis and its Laplacian.

4.1 Wavelet basis: B-spline 2.2

As first test, we choose a B-spline 2.2 basis, that is a discretization space
spanned by tent functions, for which the lower level parameter j0 = 3. The
following sections deal with different choices of the function f and several
cases of conforming domain decomposition, the square unit domain being
decomposed into rectangular subdomains, some of such cases treating also
the presence of cross-points.

4.1.1 Case 1

We start by considering the right hand side of equation (39) given by (40).
Tables 1 – 6 show the error for several choices of resolution in the master
and in the slave edges, some referring to a decomposition of the original
domain into two subdomains, and others to a domain decomposition with
the presence of cross-points.
We remark that, whenever there is no presence of cross-points and the scale
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parameter jM of the master subdomain is lower or equal than the scale pa-
rameter jS in the slave one, the solution is continuous along the interface,
since the discretization on the mortar side is included in the discretization
of the multiplier one (the resolution in the multiplier side is finer and an
Inverse Fast Wavelet Transform has to be performed in order to compute
the constraint operator). In Figure 2 we plot the L2 norm and H1 bro-
ken norm of the error in logarithmic scales together with the asymptotic
rates O(h) and O(h2). Remark that the error behaves as previewed by
the theoretical estimate (Theorem 2.1). In particular the Mortar Wavelet
method displays the same optimal convergence behavior as the Wavelet
element method, without the need of imposing strong continuity of the de-
tails of the multilevel decomposition (whose implementation is, as already
observed, extremely technical (see [13, 17, 22])).

4.1.2 Case 2

The numerical tests refer to the choice of the function f corresponding to
Case 2. We choose the subdivision of the unit square into six rectangular
subdomains (a 3×2 decomposition); the corresponding numerical behavior
of the errors is shown in Table 7 for the value of the parameter a appearing
in the exponential function (see the definition of f (41)) equals to 20. The
level parameters j in each subdomain, given in anti-clockwise order, are

case (a1): j = 3 in all the subdomains

case (a2): j = 4 in all the subdomains

case (a3): j = 5 in all the subdomains

case (a4): j1 = 3, j2 = 4, j3 = 3, j4 = 4, j5 = 3, j6 = 4

case (a5): j1 = 4, j2 = 3, j3 = 5, j4 = 3, j5 = 4, j6 = 5

case (a6): j1 = 4, j2 = 5, j3 = 6, j4 = 4, j5 = 5, j6 = 5.

4.2 Wavelet basis: B-spline 3.3

In this section we show the numerical results for a different choice of the
discretization spaces, considering a B-spline 3.3 basis; we recall that in
such a case the minimum value of the level parameter is j0 = 4 and that
both the discretization and the multiplier spaces reproduce polynomials of
degree 2. As we did in the previous section, we distinguish the different
cases referred to the different choices of f .
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4.2.1 Case 1

Tables 8 – 12 refer to the choice of the right hand side given by 40 and treat
several cases of geometrical decompostion. Also in this case remark that the
jump of the solution across the interfaces (see the column corresponding to
the evaluation of the L∞ norm of the jump [uδ]) is visible whenever cross-
points are present in the decomposition or when the master discretization
is finer (and therefore not included) than the slave one.

4.2.2 Case 2

The parameter of the exponential function is a = 20 and, as in the case
where the B-spline 2.2 were considered, we test the method for a 3 × 2
D.D. We treat the following cases corresponding to different choices of
level resolution in each subdomain:

case (a1): j = 4 in all the subdomains

case (a2): j = 5 in all the subdomains

case (a3): j1 = 4, j2 = 5, j3 = 4, j4 = 5, j5 = 4, j6 = 5

case (a4): j1 = 4, j2 = 5, j3 = 6, j4 = 5, j5 = 4, j6 = 4.

Table 13 shows the behavior of the errors.

4.2.3 Case 3

The function f considered in this examples corresponds to case 3 (see (42)
for its analytical expression); the true solution has a jump in the Laplacian
along the x axis (see Figure 1)). The tests we perform refer to Tables 14,
15 and 16; in the first case we consider the solution without decomposing
the original domain and for increasing values of the level parameter. We
compare the results with other two cases, the second being the case in
which the domain is split into two subdomains, with an horizontal edge
orthogonal to the discontinuity (a 1× 2 D.D) and the third with a vertical
edge along the discontinuity of uxx respectively (a 2×1 D.D); in both cases
the level j of the two subdomain is equal. As we can notice Tables 14 and
15 show the same behavior of the error, while Table 16 shows that the
choice of decomposing the original domain into two subdomains with an
interface along the irregularity of the solution gives better results. Table
17 refers to a 2 × 2 D.D with uniform resolution for each subdomain, and
finally Table 18 shows the behavior of the numerical solution for a nine
subdomains decomposition with alternating values of levels.
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4.2.4 Coupling of wavelets and finite elements

As already briefly observed in the introduction, the wavelet domain de-
composition method, be it conforming or non conforming, does not allow
to (easily) treat general complex geometries. This is because not all ge-
ometries can be easily split as the union of a small number of (reasonably
big) tensor product like domains. In the non conforming approach one can
however resort to the coupling with finite elements. The idea is here to split
the geometry in two regions: one which can be further split as the union of
tensor product like sub-domains, to be treated via wavelets, and the other,
containing perhaps complex geometrical details, to be discretized with the
finite element method.

In order to demonstrate the feasibility of such an approach, we consid-
ered the following model problem. Denoting be Ω̌

Ω̌ = {(x, y) : 64(x− .25)2 + 16(y − .5)2 ≤ 1}

the ellipse centered in (.25, .5) and with semi-axes a = 1/8 and b = 1/4, we
set

Ω =]0, 1[2\Ω̌.
On such a domain we consider Problem (39) with homogeneous Dirichlet
boundary conditions and the right hand side f constructed in such a way
that the function

u(x, y) = sinπx sinπy
[

4(x− .25)2 + (y − .5)2 − .0625
]

is the true solution.
In order to apply the Mortar domain decomposition method we split Ω

as Ω = Ω1 ∩ Ω2 with

Ω1 =]0, 1/2[×]0, 1[\Ω̌, Ω2 =]1/2, 1[×]0, 1[.

We choose to discretize the solution in Ω1 by the finite element method,
and in Ω2 (which is rectangular) by means of wavelet.

The main difficulty of the Wavelet/FEM coupling is the computation
of the integrals appearing in the jump constraint (29). In particular,
there is in general no good classical quadrature rule allowing to compute
the integral of the product of a wavelet type function times a piecewise
polynomial on a generic grid. Such a problem has been faced and it has
been given a satisfactory solution in [9]. It is however far from the scope of
this paper to give further details on such an issue and we address the reader
to such a paper. We only want to give here an example of the feasibility of
the Wavelet/FEM coupling approach in order to treat complex domains,
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so we will consider a very particular case in which the constraint can be
computed exactly and we will choose finite element grids whose trace on
the interface is dyadic (that is uniform with mesh-size h = 2−j for some
positive integer j).

In principle any of the two subdomains can be chosen as slave side.
Optimal error estimates are available independently of such a choice (see
[11] for an abstract error estimate which includes both wavelets and finite
elements as particular cases). From an implementation point choosing the
wavelet side as slave side has some small advantage over choosing the finite
element side and using the classical multipliers for the finite element space,
as proposed by Bernardi, Maday and Patera. In fact, in the wavelet case,
the matrix to be inverted in order to compute the mortar projection is
diagonal (while it is tridiagonal in the finite element case). We remark
however that in the recent approach introduced by B. Wohlmuth in [30]
suitable dual Lagrange multipliers are introduced in such a way that such
a matrix is diagonal also in the finite element case, and the two choice
become equivalent. In what follows we choose Ω1 to be the master side
and Ω2 as slave side. For all tests we used 2.2 B-splines wavelets and P1

finite elements. As already observed it is far from the aim of this paper to
fully explore the behavior of the Wavelet/FEM coupling (of which we only
want to illustrate the feasibility) so we only consider a bunch of cases. In
particular in Table 19 we show the error behavior with respect to the usual
norms and for some choices of the approximation spaces. The parameter
j indicates the level of the wavelet decomposition in the slave subdomain
and the parameter h indicates the uniform meshsize on the interface of the
geometrical decomposition corresponding to the trace of an unstructured
finite element decomposition in the master subdomain. In Figures 3 and
4 we show the behavior of the numerical solution corresponding to other
cases of approximations.
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5 Annex: Practical computations

Practical Construction of filters in the case of orthonormal basis.
In this section we describe how to construct practically the wavelet

basis on the interval, from a classical MRA of L2(R). We restrict here our
explanation to the orthonormal case and Daubechies wavelets.
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5.1 Starting from the construction of Cohen-Daubechies-

Vial

We start from a usual orthonormal MRA of L2(R) and its associated scaling
function ϕ and wavelet ψ, compactly supported, withN vanishing moments
and minimal support [−N + 1, N ] [23]. Let (hk) and (gk) be the filter
coefficients such that:

ϕ(x) =
√

2

N
∑

k=−N+1

hkϕ(2x− k),ψ(x) =
√

2

N
∑

k=−N+1

gkϕ(2x− k). (43)

and a particular choice of gk is: gk = (−1)kh1−k.

5.1.1 Computation of scaling function moments

Polynomials up to degree N −1, are locally reconstructed in the MRA and
we can write:

For ℓ = 0, . . . , N − 1,
xℓ

ℓ!
=

+∞
∑

k=−∞

Pℓ(k) ϕ(x − k) (44)

By orthogonality,

Pℓ(k) =<
xℓ

ℓ!
| ϕ(x − k) > (45)

is the ℓth moment of the scaling function ϕ(x − k). Following [16], Pℓ is a
polynomials of degree ℓ defined by:

Pℓ(X) =

ℓ
∑

n=0

Cℓ−n

n!
Xn, (46)

where:

Cm =

∫ +∞

−∞

xm

m!
ϕ(x)dx = Pm(0). (47)

and the coefficients Cℓ can be computed recursively using:

{

C0 = 1

Cℓ = 1
2ℓ−1

∑ℓ
r=1MrCℓ−r

with

Mr =
1√
2

N
∑

m=−N+1

hm
mr

r!
.
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5.1.2 The edge scaling functions

The left-edge scaling functions are defined to remain polynomials up to
degree N − 1 to remain in the MRA Vj of L2(0, 1). For instance we can
define [28]:

Definition. For ℓ = 0, . . . , N − 1, the left-edge scaling functions are

defined by:

ϕleft
ℓ (x) =

N−2
∑

k=−N+1

Pℓ(k) ϕ(x− k) χ[0,+∞[(x) . (48)

Functions ϕleft
ℓ are such that for all x in [0,+∞[:

xℓ

ℓ!
= ϕleft

ℓ (x) +

+∞
∑

k=N−1

Pℓ(k) ϕ(x− k)

where the functions ϕ(.− k) for k ≥ N − 1 are all supported on [0,+∞[.

The left-edge scaling functions verify a two-scale equation:

Proposition 5.1 There exists a matrix b of size N × (2N − 2) such that,

writing D = (dij)1≤i,j≤N the diagonal matrix dij =
δi−j

2i−1 ,







ϕleft
0
...

ϕleft
N−1






(
x

2
) = D







ϕleft
0
...

ϕleft
N−1






(x) + b







ϕN−1

...
ϕ3N−4






(x). (49)

with the notation ϕk(x) = ϕ(x − k). Moreover, the general term of the
matrix b is:

bi+1,j−N+2 =
Pi(j)

2i
−
√

2

⌊ j+N−1
2 ⌋
∑

m=N−1

Pi(m)hj−2m (50)

for i = 0, . . . , N − 1 and j = N − 1, . . . , 3N − 4, ⌊x⌋ being the integer part
of x.

The right-edge scaling functions on [0, 1] are constructed by considering
the operator T , defined by:

∀f ∈ L2(R), T f(x) = f(1 − x). (51)
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We see that support Tϕ = [−N + 1, N ], the same as ϕ. Tϕ satisfies the
two-scale relationship:

Tϕ(x) =
√

2

N
∑

k=−N+1

ȟk Tϕ(2x− k), (52)

where ȟk = h1−k for all k in ZZ.
The right-edge scaling functions are then defined by, for all ℓ = 0, N−1:

ϕright
ℓ = T (Tϕ)left

ℓ .

Functions ϕright
ℓ are such that for all x in ] −∞, 1]:

(1 − x)ℓ

ℓ!
=

1−N
∑

k=−∞

P̌ℓ(−k) ϕ(x − k) + ϕright
ℓ (x)

where the functions ϕ(.− k) for k ≤ 1 −N are all supported on ] −∞, 1].
By orthogonality,

P̌ℓ(k) = 〈 (1 − x)ℓ

ℓ!
| ϕ(x+ k) 〉 = 〈 x

ℓ

ℓ!
| Tϕ(x− k) 〉 (53)

is the ℓth moment of the scaling function Tϕ(x− k), obtained in the same
way as Pℓ, but using coefficients ȟk instead of hk.

The right-edge wavelets are defined in the same way and we have, for
ℓ = 0, N − 2:

ψright
ℓ = T (Tψ)left

ℓ .

5.2 The orthonormalization procedure

In each space Vj orWj we dispose of a Riesz basis of scaling or wavelet func-
tion that we have to orthogonalize or biorthogonalize. As interior functions
are already orthogonal and as edge functions are orthogonal to the interior
ones, we just have to (bi-)orthogonalize the (left and right-) edge functions.
In any case, the orthonormalization, or more generally the biorthogonal-
ization of basis functions requires the computation of the Gram matrix of
the family:

Gleft = [< ϕleft
k ;ϕleft

ℓ >]0≤k,ℓ≤N−1

Proposition 5.2 The Gram matrixGleft of the left-edge scaling functions
ϕleft

ℓ for ℓ = 0, . . . , N − 1 is computed by:

2 Gleft = DGleftD + bbt, (54)

where the matrices D and b have been introduced in (49). It goes similarly
for the Gram matrix Gright.

26



Our orthonormalization procedure uses a Gram-Schmidt algorithm, in
a reverse order, as it preserves the number of vanishing derivatives at the
edges.

Proposition 5.3 Let us define







Φ0

...
ΦN−1






= B







ϕleft
0
...

ϕleft
N−1






(55)

where (Gleft)−1 = BT B is some Cholesky decomposition of the inverse of
the Gram matrix, imposing that B is triangular superior.
The family of scaling functions (Φℓ)ℓ=0,N−1 is orthonormal and satisfies
the two-scale equation:

1√
2







Φ0

...
ΦN−1






(x/2) = H0







Φ0

...
ΦN−1






(x) + h0







ϕN−1

...
ϕ3N−4






(x) (56)

where H0 and h0 are the N ×N and N × (2N − 1) matrices:

H0 =
1√
2

B D B−1 and h0 =
1√
2

B b.

It goes similarly for the computation of the filters associated to edge
wavelets [28].
Remark: An alternative choice for the orthonormalization procedure could
be to take B = (Gleft)−

1
2 and corresponds to the Gram procedure which is

used in [28], and preserves the translation invariance of functions (whenever
it exists).

Another possibility is to biorthogonalize the edge functions and to in-
troduce the dual functions:

ϕ̃left
k =

N−1
∑

ℓ=0

(Gleft)−T
k,ℓ ϕleft

ℓ
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Table 1: Two subdomains domain decomposition. The value of the level j
in the first column represents the resolution parameter of both subdomains.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 3 1.002e− 02 8.764e− 02 8.043e− 03 4.441e− 16

j = 4 2.501e− 03 4.274e− 02 2.006e− 03 4.441e− 16

j = 5 6.251e− 04 2.031e− 02 5.021e− 04 4.441e− 16

j = 6 1.571e− 04 9.081e− 03 1.255e− 04 2.221e− 16

j = 7 3.944e− 05 3.432e− 03 3.221e− 05 4.441e− 16
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Table 2: Two subdomains domain decomposition. j represents the value
of the level parameter jM in the master subdomain, while in the slave one
the level jS = jM + 1.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 3 7.088e− 03 7.035e− 02 9.593e− 03 6.661e− 16

j = 4 1.742e− 03 3.381e− 02 2.427e− 03 4.441e− 16

j = 5 4.291e− 04 1.582e− 02 6.159e− 04 4.441e− 16

j = 6 1.083e− 04 6.892e− 03 1.536e− 04 3.331e− 16
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Table 3: Two subdomains domain decomposition. j represents the value
of the level parameter jM in the master subdomain, while in the slave one
the level jS = jM − 1.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 4 6.896e− 03 6.897e− 02 9.746e− 03 9.797e− 03

j = 5 1.718e− 03 3.347e− 02 3.347e− 02 2.419e− 03

j = 6 4.296e− 04 1.573e− 02 6.147e− 04 6.031e− 04

j = 7 1.062e− 04 6.867e− 03 1.567e− 04 1.506e− 04
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Table 4: 2 × 2 domain decomposition. The level j chosen equal in all the
subdomains.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 3 3.801e− 03 5.551e− 02 3.218e− 03 6.349e− 05

j = 4 9.503e− 04 2.709e− 02 8.035e− 04 2.431e− 06

j = 5 2.376e− 04 1.288e− 02 2.007e− 04 3.743e− 07

j = 6 5.798e− 05 5.765e− 03 5.195e− 05 1.305e− 08

j = 7 1.474e− 05 2.186e− 03 1.279e− 05 8.047e− 09
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Table 5: 3 × 3 domain decomposition. The level j in chosen equal in all
the subdomains.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 3 1.69e− 03 3.725e− 02 3.016e− 03 4.287e− 03

j = 4 4.226e− 04 1.809e− 02 7.537e− 04 1.023e− 03

j = 5 1.056e− 04 8.591e− 03 1.885e− 04 2.494e− 04

j = 6 2.572e− 05 3.844e− 03 4.769e− 05 6.153e− 05
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Table 6: 3 × 3 domain decomposition. The first column represents the
minimum value of the level parameter, which is alternated with j + 1 in
the other subdomains.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 3 1.253e− 03 2.992e− 02 2.726e− 03 3.013e− 03

j = 4 3.142e− 04 1.443e− 02 6.835e− 04 6.924e− 04

j = 5 7.802e− 05 6.773e− 03 1.718e− 04 1.687e− 04
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Table 7: A 3×2 D.D. with different values of the level parameter j in each
subdomain.

case ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
(a1) 1.216e− 02 1.169e− 01 9.819e− 03 1.679e− 02

(a2) 3.048e− 03 5.687e− 02 1.957e− 03 2.256e− 03

(a3) 7.625e− 04 2.704e− 02 4.889e− 04 2.873e− 04

(a4) 8.739e− 03 9.299e− 02 7.556e− 03 1.542e− 02

(a5) 8.236e− 03 8.856e− 02 9.142e− 03 1.548e− 02

(a6) 1.071e− 03 3.069e− 02 1.406e− 03 2.815e− 03
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Table 8: Two subdomains domain decomposition. The value of the level j
in the first column represents the resolution parameter of both subdomains.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 4 1.208e− 03 8.697e− 03 1.875e− 03 2.942e− 15

j = 5 1.118e− 04 1.595e− 03 2.412e− 04 2.276e− 15

j = 6 1.001e− 05 2.877e− 04 3.025e− 05 1.776e− 15

j = 7 8.891e− 07 6.821e− 05 3.759e− 06 8.466e− 16
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Table 9: Two subdomains domain decomposition. j represents the value
of the level parameter jM in the master subdomain, while in the slave one
the level jS = jM + 1.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 4 8.776e− 04 6.589e− 03 1.859e− 03 2.665e− 15

j = 5 8.017e− 05 1.178e− 03 2.422e− 04 3.053e− 15

j = 6 7.141e− 06 2.118e− 04 3.049e− 05 1.749e− 15
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Table 10: Two subdomains domain decomposition. j represents the value
of the level parameter jM in the master subdomain, while in the slave one
the level jS = jM − 1.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 5 8.559e− 04 6.282e− 03 1.781e− 03 1.939e− 03

j = 6 7.917e− 05 1.149e− 03 2.346e− 04 2.528e− 04

j = 7 7.096e− 06 2.093e− 04 2.992e− 05 3.193e− 05
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Table 11: 2 × 2 domain decomposition. The level j chosen equal in all the
subdomains.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 4 1.594e− 04 2.253e− 03 2.413e− 04 2.548e− 10

j = 5 1.415e− 05 4.078e− 04 3.035e− 05 4.277e− 10

j = 6 1.254e− 06 9.883e− 05 3.787e− 06 1.377e− 10

j = 7 1.113e− 07 2.396e− 05 4.701e− 07 2.357e− 11
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Table 12: 3 × 3 domain decomposition. The first column represents the
minimum value of the level parameter, which is alternated with j + 1 in
the other subdomains.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 4 3.132e− 05 6.988e− 04 1.653e− 04 2.337e− 04

j = 5 2.764e− 06 1.293e− 04 2.132e− 05 2.861e− 05
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Table 13: A 3 × 2 D.D. Behavior of the errors for the choice of the level
parameters corresponding to cases (a1) – (a4).

Fig. ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
(a1) 1.2566e− 03 1.371e− 02 3.089e− 03 6.089e− 03

(a2) 7.686e− 05 1.905e− 03 4.671e− 04 9.216e− 04

(a3) 8.788e− 04 9.849e− 03 2.643e− 03 4.236e− 03

(a4) 3.622e− 04 4.804e− 03 1.769e− 03 3.321e− 03
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Table 14: Behavior of the errors on the whole domain. No decomposition
of the unit square has been considered.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 4 2.953e− 03 1.993e− 02 5.497e− 03 −
j = 5 2.211e− 04 3.037e− 03 5.338e− 04 −
j = 6 7.438e− 05 5.687e− 04 8.991e− 05 −
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Table 15: Decomposition of the unit square into two subdomains. In partic-
ular it is a 1×2 D.D, where the interface is orthogonal to the discontinuity
of the Laplacian of the exact solution. The level j is chosen equal in both
the subdomains.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 4 2.953e− 03 1.993e− 02 5.495e− 03 7.355e− 16

j = 5 2.215e− 04 3.035e− 03 5.356e− 04 5.689e− 16

j = 6 7.513e− 05 5.628e− 04 9.144e− 05 2.914e− 16
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Table 16: Decomposition of the unit square into two subdomains. It is a
2×1 D.D, with an interface along the discontinuity of the Laplacian of the
exact solution. The level j is chosen equal in both the subdomains.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 4 6.486e− 04 8.393e− 03 1.823e− 03 8.466e− 16

j = 5 4.951e− 05 9.566e− 04 1.671e− 04 6.801e− 16

j = 6 3.673e− 05 2.298e− 04 5.193e− 05 3.539e− 16
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Table 17: 2 × 2 D.D. The level j in equal in all the subdomains.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 4 6.489e− 04 8.392e− 03 1.831e− 03 1.682e− 08

j = 5 4.906e− 05 9.527e− 04 1.626e− 04 1.779e− 09

j = 6 3.638e− 05 2.141e− 04 5.086e− 05 2.216e− 10
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Table 18: 3 × 3 D.D - level j and j + 1 alternated.

level ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 4 2.084e− 04 4.112e− 03 8.221e− 04 1.683e− 04

j = 5 3.044e− 05 7.332e− 04 1.104e− 04 2.005e− 05
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Table 19: 2 × 1 D.D: Wavelet/FEM coupling. The parameter j indicates
the level of the wavelet decomposition and the parameter h indicates the
meshsize of the unstructured finite element decomposition whose trace on
the interface is uniform.

decompositions ‖u−uδ‖0

‖u‖0

‖u−uδ‖1,∗

‖u‖1,∗

‖u−uδ‖∞

‖u‖∞

‖ [uδ] ‖∞
j = 3, h = .0625 1.162e− 02 9.124e− 02 1.183e− 02 1.457e− 02

j = 3, h = .03125 1.309e− 02 9.42e− 02 2.085e− 02 2.053e− 02

j = 4, h = .03125 2.88e− 03 3.348e− 02 3.36e− 03 4.39e− 03

j = 5, h = .015625 2.92e− 03 2.166e− 02 1.487e− 02 1.11e− 03
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FIGURE CAPTIONS

Figure 1: Behavior of the exact solution of Case 3, together with its
gradient ux along the x axis and its Laplacian.

Figure 2: Logarithmic plot of the L2 norm and H1 broken norm of
the error in the cases of the 2×1 and 2×2 decompositions of Tables 1 and
4.

Figure 3: WAV/FEM coupling. The master(left) subdomain dis-
cretized by finite elements on unstructured mesh and the slave (right) one
by wavelets. The mesh defined on the master side of the interface corre-
sponds to the trace of the unstructured triangular mesh of the associated
subdomain, it is uniform and dyadic and is finer and therefore strictly in-
cluded in the mesh defined on the slave side. In particular the parameters
correspond to the second case of Table 19.

Figure 4: WAV/FEM coupling. An analogous situation as in Figure 3
is presented. The values of the parameters of the mesh-size defined on the
interface corresponds to the third case of Table 19.
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