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Abstract - Demand-responsive transpart services are sys- 
tems that assign users ’ specific transport requests to d$ 
ferent vehicles enabled to firf;ll the required service. In 
order to contain costs, maximize profits or get a higher 
service level, different planning algorithms huve been de- 
scribed in literature. In our work we propose a multi-agent 
architecture, which adopts a mixed planning model. This 
model is an integration of centralized and negotiation- 
based decision-making approaches. The advantage of us- 
ing this model respect to a centralized approach is that the 
estimation of the uti1ir)finction is uvoided (the client is in- 
volved in the final decision by means of a negotiation 
process). The model advantages a complete decentralized 
approach in giving results that are not so far from the op- 
timum for  the whole system. 

Keywords: Multi-agent architecture, demand responsive 
transport system, distributed application, intelligent sys- 
tem. 

1 Introduction 
Changes in transport requirements in European citi- 

zens have brought the opportunity to create new services 
aimed to fulfill special transportation demand in addition to 
regular population mobility services. Those systems are 
known as demand-responsive transport (DRT) services, 
and their objective is to satisfy personal transportation re- 
quests at relatively low costs, thanks to an integrated plani- 
fication.with the use of the different available resources on 
transport networks. 

Earlier planning methodologies developed for DRT 
systems adopted centralized approaches, where the control 
and decision-making was done by only one entity that 
maximized the global utility of the whole system (i.e. the 
utility for the operator and for his clients). These ap- 
proaches are usually implemented as heuristic procedures 
that extend basic graph search algorithms, acting over large 
data collections that describe the entities of the domain 
problem (vehicles, service requests, schedules). A key as- 
pect when applying these approaches is the identification 
of a good estimation of the client’s utility function, in order 

to allow the generation of adequate solutions from the cli- 
ent’s point of view. However, the latter is not always feasi- 
ble because not all the clients share the same desires, nor 
appreciate them with the same importance. An example of 
centralized approach can be found in our past research with 
the Advanced Dial-A-Ride with Time Windows 
(ADARTW) algorithm [3]. 

Recent decentralized or market-based approaches, on 
the other band, exploit cooperative relationships in com- 
munities of agents that perform low-level planning, sched- 
uling, execution, and control tasks. In these cases, negotia- 
tion processes among them (e.g. contract-net, auctions, 
bargain, etc.) tend to maximize the utility of individual par- 
ticipants, leading to Pareto-optimal solutions. As opposite 
to centralized evaluations, optimization is done with less 
information and, as consequence, the solution could be far 
!?om the hest for the whole system. 

Thus, existing techniques are not able to find good so- 
lutions to DRT problems, especially when it is not only re- 
quested the satisfaction of the client’s desired service con- 
straints, hut also the maximization of his utility perception. 
This paper addresses a mixed model implementation, 
which combines the best features of both, the centralized 
and the decentralized approaches. The model is supported 
by a multi-agent system architecture. 

The rest of the paper is structured as follows: Section 
2 presents the general DRT problem; Section 3 describes 
the proposed multi-agent architechlre; Section 4 outlines 
the distributed optimization model; Section 5 specifies the 
implemented scheduling algorithm; Section 6 describes our 
initial tests and their results; Finally in Section 7 some 
conclusions are given. 

2 The DRT system 
The DRT system we are treating consists of transport 

requests coming from a set of clients which should be satis- 
fied by a heterogeneous fleet (e.g. composed by busses, 
minivans, vehicles for disabled people, etc.). Vehicles are 
characterized by different properties, but in general, they 
have a limited capacity, periods of time during the day in 
which they are available, and an area of geographic cover- 
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age. As well, vehicles have additional characteristics (e.g. 
types of seats, WC, air conditioning, etc) or complementary 
services (e.g. Bar, bicycle transport, etc). These usually af- 
fect the client's comfort and hence their perception of the 
transport system. 

On the other hand, transport requests commonly spec- 
ify a pick-up and delivery place. They also give a time in- 
terval within which the client has to be picked-up at the 
origin place, and another time interval for his delivery at 
the destination. Moreover, the requests can include further 
descriptions of the desired service, e.g. wheel-chair places, 
number of seats, shared or exclusive use of the vehicle, etc. 

Service profiles are used for the description of both, 
the clients' desired transport services and the vehicles' of- 
fered services. A profile is modeled as a list of properties 
that can be of two types: constraint and utility properties. 
Construinf-properties are characteristics that must be en- 
sured in order to he accepted (e.g. must have WC or air 
conditioning). Ufilify-properfim are not mandatory charac- 
teristics that have a positive contribution in the utility func- 
tion (of the client or vehicle. This properties list that consti- 
tutes a profile specification is made using a common ontol- 
ogy for the whole system. 

Finally, service requests have to be assigDed to vehi- 
cles and scheduled according to the above restrictions, con- 
sidering not exceeding each vehicle's capacity. The model 
considers the possibility of a multi-depot scenario, that is, 
the vehicles can start from and arrive to different depots. 

3 The MAS architecture 
The model is structured as a two-layer architecture 

(see Figure 1): the Intemet layer, in charge of the commu- 
nication with the extemal world (vehicles, clients, other 
systems), and the Planning layer, that encapsulates the as- 
signment and scheduling services. A common Service on- 
tology uniforms the transport domain concepts used by the 
different actors. 

I 

Figure 1. The multi-agent architecture 

The resulting multi-agent architecture allows the plan- 
ning process execution in a heterogeneous network of com- 
puter systems [7]. Flexibility is given in this architecture by 
the possibility of dynamically adding new typologies of 
services and requests within the service ontology bounda- 

ries, as it is used to describe the offered and desired trans- 
port services. 

The main agents within each layer together with the 
service ontology shown in Figure 1 are described as fol- 
lows. 

3.1 The internet layer 
The Intemet layer of the architecture interfaces the 

system with the extemal world (vehicles, clients, other sys- 
tems) and registers the vehicles within the system. This 
layer consists of: 1) Vehicle agents, that wrap real world 
transportation vehicles; 2) the Broker agent, that registers 
the available vehicles and its profiles; and 3) Client agents, 
that interface users with the system. 

Each Vehicle agent holds a profile with the properties 
that define the kind of transport service offered and its util- 
ity function. Each vehicle agent generates its own Schedule 
agent containing the respective service profile, utility func- 
tion and scheduling algorithm. 

The Broker was derived from the Broker design pat- 
tem used in the Global Automation Platform [I]. The Bro- 
ker receives advertisement messages from vehicle agents, 
containing their service descriptions (service profile). The 
Broker registers them in its intemal database and informs 
back with a vehicle-registered message to the correspond- 
ing vehicle agent. It can answer with a failure message in 
case of problems with the service profile or if the vehicle is 
already registered. 

The Broker also processes query messages from the 
planning'layer. The received messages contain client's ser- 
vice profiles (descriptions of their desired transport ser- 
vice). The Broker searches within its vehicle's database the 
ones matching the received profile. It answers with a mes- 
sage containing a list of vehicle's names. 

Client agents are interface agents in charge of captur- 
ing the final user's trip requirements (pick-up place and 
time, delivery place and time, seat type, services offered, 
etc.) and translating them into a suitahle specification using 
the concepts defined in our Service ontology. As men- 
tioned earlier, the resulting service profile of the client will 
include both, constraint and utility properties. Hence, Cli- 
ent agents should ask the corresponding human nser for the 
desired properties together with the preferences and level 
of importance given to each one. 

After that, the Client agent will be able to generate its 
corresponding Trip-request agent containing the resulting 
service profile description. In addition, a Client agent can 
give its Trip-request agent different negotiation capabilities 
and degree of autonomy for making trip decisions. The Cli- 
ent agent is also responsible for communicating the user 
the final result. It can also ask him during the process any 
additional information required by the Trip-request agent 
for taking a decision, as it depends on the level of auton- 
omy. 

Client agents can also be developed extemally to the 
platform but, independently of its origin, they act as facto- 
ries of the Trip-request agents. 
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3.2 The planning layer 
The Planning layer of the architecture is in charge of 

processing, assigning and scheduling the received trip re- 
quests. It provides four kinds of agents that interact directly 
in the evaluation and creation of the routing plan: 1) Sched- 
ule agents, representing the route plan and the scheduling 
policy of single vehicles; 2) Trip-request agents, modeling 
single client request specifications; 3) the Planner agent, 
implementing the assignment policy; and 4) the Map agent, 
in charge of providing the geographical data (streets, dis- 
tances, etc.). 

The dynamics of the planning process is at follows 
(see Figure 1): Schedule Agents are created by Vehicle 
agents when they advertise their availability to the Broker. 
Users ask for transportation through their Client agents, 
generating Trip-request agents. (1) Each Trip-request agent 
asks the Planner to process the request. The Planner proc- 
esses the request (2) first by obtaining from the Broker the 
vehicles that match the required profile, and then (3) by 
making a call for trip-proposals to all the corresponding 
Schedule agents. They send back their proposals and then 
tbe Planner (4) selects the most suitable alternatives among 
the received trip proposals by applying filtering policies 
and starts a negotiation process with the client (through its 
Trip-request agent). After arriving to agreement the Plan- 
ner ( 5 )  tells the Schedule agent that won the proposal to 
add the trip to its actual schedule and tells the others their 
proposal rejection. 

The Schedule agent holds a service profile specifying 
the kind of transport service offered, its characteristics and 
the corresponding utility function of the vehicle. In this 
sense, each vehicle (and its Schedule agent) can specify a 
different utility function by simply defming a different set 
of utility-properties within the service profile description. 

Schedule agents also contain a scheduling policy, that 
is, the scheduling algorithm for processing trip requests. 
The underlying framework allows Schedule agents to im- 
plement different scheduling policies if desired, as each 
vehicle agent generates its own Schedule agent. 

Schedule agents first receive a call for proposal form 
the Planner for serving a client’s trip and make a proposal 
using the vehicle’s utility function and scheduling policy. 
The proposal is modeled as a profile containing the specifi- 
cation of the offered service, that is, a list of constraint 
properties describing additional service characteristics (for 
the Trip-request to use for evaluation) and utility properties 
with the actual values of the represented variables (for the 
Planner and Trip-request to use for evaluation) 

The Trip-request agent models the client’s desires 
conceming the trip. This is stored into a service profile. 
This agent also holds certain negotiation Capabilities and 
afterwards during the negotiation process, will store a list 
of trip proposals from different vehicles and the fmal cho- 
sen alternative. Again in this case, the Trip-request agents 
can implement different types of negotiation capabilities, 
provided that the Planner also supports them. 

The Planner agent is the one in charge of implement- 
ing the assignment through filtering policies and the nego- 
tiation process. It holds a list containiig the trip requests 
being processed and a list of filtering policies to apply to 
the trip solutions. 

The Planner can implement different filtering policies 
that will be applied to the trip-proposals received from the 
Schedule agents (e.g. minimize the number of used vehi- 
cles). The filtering policies allow the underlying frame- 
work to provide the possibility of implementing a central- 
ized or mixed optimization approach. 

The Map agent models the underlying geographical 
region under coverage. This is implemented as a distance 
matrix containing a graph representation. In addition, the 
Map agent manages another matrix with the minimum dis- 
tances between each pair of nodes. The distance values are 
stored as time (required to reach one node from the other) 
and as normal distance. 

The Map agent processes two Wes of requests: 1) 
messages asking for the distance between one (or more) 
pair of nodes, and 2) messages requiring the complete path 
of nodes between one (or more) pair of nodes. These re- 
quests can be done by Schedule agents, Trip-request agents 
and the Planner. 

3.3 The service ontology 
The service ontology provides a support of common 

knowledge in two areas of the system: the properties defi- 
nition (for service and proposal profiles) and the messages 
exchange between agents. This ontology was specified us- 
ing RDF [7] as language for the description. 

In the fust case, the ontology supplies a hierarchy of 
concepts (properties) to use when defining the constraint 
and utility properties of the proposals. Each constraint 
property specifies: 1) the name of the involved concept and 
2) a value or range of values for that concept. 

Examples of ontology concepts used for specifying 
the constraint part of a service profile are: PickupTime, De- 
IiveryTime, PickupAddress, DeliveryAddress, Required- 
Places, MmimumRideTime, PickupServiceTime and De- 
IiveryServiceTime. The fust two concepts are used with a 
range for indicating the possible values (e.g PickupTime: 
[10:30,10:35]), while the rest of the concepts are used to- 
gether with only a single value (e.g. RequiredPlaces: 3). 

Each utility property specifies the concept name to 
which it refers to, together with its value. When the utility 
property is used for detailing the coefficients of an utility 
function, its property value is used to represent the given 
weight when maximizing. Negative weight values can be 
used for properties that need to be minimized. Instead 
when the utility property is used for a proposal profile, the 
value represents just that, the value of that variable in the 
proposal. 

Examples of ontology concepts used for defining the 
utility properties in a profile are: TofalWaitTimeDelivery, 
TotalExcessTravelTime, TotalBusSlackTime, TotalBus- 
TravelTime, ClienfExcessTravelTime, ClientWaitTimeDe- 
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l ivey,  DelfaBusSlackTime, DelfaBusTravelTime, DeltaEx- 
cessTravelTime, DelfaWaifTimeDelivery, DelfaVehicle- 
Tripcost and ScheduledPassengers. In this case, the first 
four concepts are used for describing the vehicle’s utility 
function inside its service profile. The ClienfExcess- 
TravelTime and Clienf WaitTimeDelivery concepts are used 
for the client’s utility function. The ScheduledPassengers 
is used by the Planner to apply the filtering policy of mini- 
mizing the number of used vehicles. Finally, all these con- 
cepts are used in the proposal profile sent by the Schedule 
agents back to the Planner agent. 

The second ontology use is for supporting the mes- 
sages exchange, specifically for detailing the interaction 
protocols and the message’s content. The interaction proto- 
cols define the sequence of messages exchanged during the 
communication of two or more agents. The interaction pro- 
tocols used in the architecture are similar to the ones de- 
fmed by the FIPA standard [4]. Examples of ontology con- 
cepts defming interaction protocols are: W A R P -  
schedule-me, MDARP-process-query and MDARP-call- 
far-frip-proposals. 

Messages between agents usually have serialized pro- 
file objects as content. In some cases the answer messages 
contain single concepts as content. Examples of ontology 
concepts used in these cases are: No-Proposals-Available, 
Nu-Matching- Vehicle-Found, Proposal-Accepted and Pro- 
posal-Rejecf ed. 

4 Optimization and negotiation 
The transport planning problem is treated in the plan- 

ning layer following a two-phased model. The former is an 
optimization phase, aimed to the identification of trip solu- 
tions that maximize the operator’s utility, subject to the 
(client) request profile restrictions. This involves the Plan- 
ner and Schedule agents. The latter is a negotiation phase 
that pursues an agreement between the transportation pro- 
posals and the client’s interests. This is done by the Planner 
and the Trip-request agent. 

This two-phased model offers a major difference: tra- 
ditional DRT systems use a unique objective h c t i o n  that 
includes the client’s utility (level of service). This raises 
the problem of adequately weighting the client’s and the 
operator’s coefficients within the objective function, but 
whose solution is not always realistic or easy to find. 

Our model instead, uses a negotiation process to solve 
the tradeoffs between clients and the operator, avoiding the 
assumption of wrong estimations about the client’s desires, 
by simply incorporating the client in the fmal decision- 
making. In addition, the framework allows the use of dif- 
ferent types of negotiation processes. 

In particular, we implemented a simple negotiation 
mechanism that was used for processing all the trip- 
requests. In practice, the Planner gives the client (through 
his Trip-request agent) a list of filtered proposals. The cli- 
ent ranks and selects from the list of alternatives the most 
suitable trip solution offered by the Planner. 

For doing the evaluation, the Trip-request needs from 
each trip-proposal the values of the variables used by the 
client‘s utility fimction. The required variables are modeled 
as a list of utility properties inside the client’s service pro- 
file. The list arrives to the Planner inside the request and 
then to the Schedule agents inside the call-for-trip-proposal 
message. In this way, each Schedule agent can provide 
back, inside the proposal, the list with the variables’ values 
for that trip insertion evaluation. 

A similar situation happens with the Planner when 
applying the filtering policies. It also needs some variables’ 
values from the trip proposals. So it simply attaches addi- 
tional utility properties to the call for trip-proposal message 
(see Figure 1, 3) ) and gets back their respective values in 
the vehicle’s proposals. 

5 The scheduling algorithm 
The Schedule agents do the main planning work, 

evaluating the insertion of a trip. As mentioned earlier, the 
underlying MAS framework allows the implementation of 
different scheduling policies. In ow preliminary tests, the 
system used all the schedule agents with the same schedul- 
ing policy. The adopted policy was the ADARTW algo- 
rithm, a constructive greedy heuristic [4]. ADARTW fmds 
all the feasible ways in which a new customer can be in- 
serted into the actual vehicle’s work schedule, choosing the 
one that offers the maximum additional utility according to 
a certain objective function. 

While serving, a vehicle can be: 1) in transit, serving 
one or more requests or 2) idle, available for serving the 
next customer. Therefore, a complete vehicle’s work- 
schedule will have periods of vehicle’s utilization (scbed- 
ule blocks) and the so-called slacks times, periods in which 
the vehicle is available and waiting. A schedule block al- 
ways begins with the vehicle starting on its way to pick-up 
a customer and ends when the last on-board customer is 
discharged. Figure 2 shows a schedule block that serves 3 
customers (h,ij) while evaluating the insertion of a fourth 
one (customer x). Each of them has their pick-up (+) and 
delivery (-) stops respectively. 

1 4 

Scheduleblock I I 
Figure 2. Vehicle’s work-schedule 

The search must include all the vehicle’s schedule 
blocks. In a block with already d stops (2 per customer) 
there are (d+l)(d+2)/2 possible insertions, considering that 
the customer’s pickup must precede his delivery. 
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The objective function Max z = AVc measures the 
additional utility for the vehicle due to the insertion of a 
new customer. For the term (AVc) some variables that can 
be considered are: driving time, traveled distance, capacity 
used among others. Notice that the variables and their 
weights are not fxed on advance, nor the same for the 
whole system. They are different from vehicle to vehicle 
according to their service profile description. 

6 Preliminary tests 
The proposed MAS architecture bas been developed 

in a prototype application using the JADE [I]  agent plat- 
form. Using this architecture have been implemented and 
compared both, the centralized and the mixed approaches. 

The centralized model was based on the original 
ADARTW heuristic for the scheduling and assignment of 
requests, as documented in [5]. On the other hand, the fol- 
lowing operational decisions were adopted for the mixed 
model implementation: (I)  the same utility function and 
scheduling algorithm have been used for all the vehicles; 
and (2) all the clients share the same utility function and 
implement the same negotiation model. 

The preliminary tests considered 20 demand scenar- 
ios, each with 50 trip requests, distrihuted Uniformly in a 
two-hours horizon. For each demand scenario 25 runs were 
done. The objective function for the centralized model con- 
sidered the DeltaExcessTravelTime, the Deltawait- 
TimeAtDelivery, the DeltaBusSlackTime, and the 
DeltaBusTravelTime. In the case of the mixed model, the 
utility function of the vehicles was composed by the 
DeltaBusSlackTime and the DeltaBusTravelTime; the util- 
ity function of the clients was composed by the ClientEx- 
cessTravelTime, and the ClientWaitTimeAtDelivery. In all 
cases the variables were weighted with the same value. 

The preliminary results (see Table 1) have shown that 
the mixed approach gives better results for the clients, in 
terms of both, excess travel time and waiting time. On the 
other hand the Centralized model performs better from the 
vehicles’ perspective. 

Table 1. Simulation results 

7 Further work 
A next work is the use of an XML-based language 

(e.g. DAML+OIL) for describing the service profiles and 
trip proposals instead of the used Profile objects. It also in- 
volves implementing the corresponding parser. 

Another future direction is to enable the Broker with 
semantic matchmakiig capabilities, in order to allow cli- 

ent’s and vehicle’s service profiles to be semantically more 
different and still match. 

Finally, other further improvements are: the test with 
different utility functions for clients and vehicles, the im- 
plementation of other scheduling algorithm and the use of 
more complex negotiation schemes between Planner and 
clients. 

8 Conclusions 
In this paper we have described an architecture for the 

implementation of DRT systems. The proposed mixed 
model assigns in a more natural way the roles to the differ- 
ent actors (vehicles, operator, and clients) participating in 
the optimization and decision making process. In this way, 
the estimation of coefficients to weight the actors’ utility 
functions is avoided, and the idea of a more concealed so- 
lution is adopted. 

Moreover, the multi-agent architecture allows the 
planning process execution on a heterogeneous network of 
computer systems and represents a flexible approach for a 
DRT system: the integration of a Broker agent together 
with the specification of a service ontology allows the dy- 
namic registration of new vehicle profiles with new ty- 
pologies of services. 
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