
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

HERO: High-speed Enhanced Routing Operation in Software Routers NICs / Petracca, Michele; Birke, ROBERT RENE'
MARIA; Bianco, Andrea. - STAMPA. - (2008), pp. 204-209. (Intervento presentato al convegno IT-NEWS Italian
Networking Workshop tenutosi a Venice, Italy nel FEBRUARY 2008) [10.1109/ITNEWS.2008.4488154].

Original

HERO: High-speed Enhanced Routing Operation in Software Routers NICs

Publisher:

Published
DOI:10.1109/ITNEWS.2008.4488154

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1642245 since:

IEEE

HERO: High-speed Enhanced Routing Operation
in Software Routers NICs

Michele Petracca, Robert Birke, Andrea Bianco

Dip. di Elettronica, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

{lastname}@polito.it

Abstract— Increasing attention has been recently devoted to
software routers based on off-the-shelf hardware and open-
source operating systems running on Personal Computer (PC)
architectures. Today’s high-end PCs PCI shared buses fit into
the multi-gigabit-per-second routing segment, for a price much
lower than that of commercial routers. However, commercially
available Network Interface Cards (NICs) lack programmability,
and require not only packets to cross the PCI bus twice, but
also to process them in software by the Operating System (OS),
reducing routing performance. In this paper we discuss the design
of an FPGA-based NIC that permits to overcome the limitations
of commercial NICs and provide a detailed description of its
implementation.

I. INTRODUCTION

A PC-based software router can be considered as a cen-
tral memory packet switch. Severals standard Ethernet NICs
(Network Interface Cards) are connected to the PCI bus and
transfer the packets into/from the main memory. These packets
are routed by the OS, transferred back to the NICs and re-
injected into the network.

Several criticisms can be raised against software routers,
i.e. limitation of software, lack of system support, scalability
problems, lack of advanced functionalities. In [1], we focused
on the limited performance of the data plane and assessed the
feasibility of building a high-performance FPGA based NIC
for software routers, showing some scenarios where the im-
plementation of basic functions in hardware can significantly
improve the throughput of the entire system.

Fig.1 shows how it is possible to introduce a classification
scheme and to optimize the data forwarding procedure in
a shared bus architecture. Classification enables enforcing
priority policies, improving QoS support. The data forwarding
optimization offers a significant performance increase.

It is well known that the main performance impairment
when routing packets in a software router is in the centralized
nature of PC architectures. The memory, the CPU and the
Operating System, involved in packet routing, may become
the system bottleneck. A distributed approach, where each
NIC is able to determine the output port for a significant
portion of the incoming traffic, allows to use the shared bus
to forward packets directly between NICs. In this case the
only limitation is the bus bandwidth, but there is no central
processing that can represent a bottleneck. We refer to the
exchange of packets directly among NICs as fast path. All

Classification

Routing

Classification

N
E

T
 In

terface

P
C

I In
terface

P
C

I In
terface

N
E

T
 In

terface

Classification

Classification

Routing

.

.

..

P
C

I B
u

s

S
ystem

 R
A

M

Slow Path
...........

...........

Input FIFOs

Output FIFO

Input FIFOs

Output FIFO

High Priority FIFO

Low Priority FIFO

Slow Path

Fast Path

Fig. 1. Enhanced software router structure

the packets whose destination cannot be determined locally
on the input NIC, are routed by the OS following the so-
called slow path. Both paths coexist and forward data traffic
simultaneously, as shown in Fig.1.

The fast path has several advantages: no latency during
read operations, more efficient use of the bus by reducing
the bus occupancy for packet transmissions and CPU off-
loading. Moreover, QoS oriented classification and scheduling
algorithms can substitute the FIFO service discipline available
on commercial NICs. However, to implement direct NIC-
to-NIC communication, the NIC must be able to perform
autonomously the routing to determine the packet destination.
Furthermore, a protocol for NIC-to-NIC communication has
to be defined and implemented.

The availability of powerful programmable logics allows
to extend the open software paradigm to the hardware do-
main. The logic circuitry developed for FPGAs can be made
public [2], reused and improved by the research community.
This “open hardware” approach can open the door to low-cost
hardware implementations of performance-critical functional
blocks.

In this paper we present a detailed description of a re-
engineered version of a FPGA-based NIC with the purpose
to provide to the community an open-source VHDL core
implementing the packet processing and able to communicate
with a PCI-X core and an Ethernet MAC core.

978-1-4244-1845-9/08/$25.00 © 2008 IEEE IT-NEWS 2008204

The paper is organized as follows. Sec.II describes the
hardware and the IP cores used for this project. Sec.III gives
a general overview of the main features of the custom NIC,
while the next five sections present a more detailed analysis:
Sec.IV is devoted to NIC configuration, Sec.V/Sec.VI to
incoming/outgoing packet management, Sec.VII to the slow
path and Sec.VIII to the fast path description. Finally, Sec.IX
concludes the paper.

II. HARDWARE EQUIPMENT

The project used prototyping boards from PLDApplica-
tion [3] designed for networking applications. The boards host
an Altera Stratix GX FPGA and provide two slots for SFP
(Small Form-factor Pluggable) Transceivers able to support
both optical and copper based network connectivity. The bus
connectivity is provided by a 64-bit PCI-X connector.

The Altera Stratix GX family is thought for high-speed
communication applications, embedding hardware support for
connectivity up to 3.125GHz. In our project the target is
connectivity at 1Gbps, which translates to a physical signal
frequency of 1.25GHz, due to the 8B/10B encoding of the
Ethernet physical layer. Further characteristics of the FPGA
are: 41,250 logic elements, 3.25 Mbit of embedded RAM and
325 Mhz maximum clock frequency. The clock frequency is
however strongly affected by the size of the circuit which
can cause long signal propagation delays. The clock design
requirements are 125MHz for the network side clock and at
least 100MHz on the bus side clock.

Two commercial cores have been used: one to manage the
Ethernet interfaces and one to manage the PCI-X interface.
The Ethernet core is produced by MTIP [4]. It fully imple-
ments both the physical layer and the hardware-related part
of the MAC layer. The physical layer manages the channel
synchronization, auto-detection and bit transmission/reception
from/to the wire. The MAC layer buffers packets into internal
FIFOs allowing an easier management of data flows. Further-
more, it evaluates the Frame Check Sequence (FCS) field of
incoming packets and overwrites the source MAC address of
outgoing packets. It also offers support for Jumbo frames, VPN
and multicast, which are not considered in our application.

The PCI-X core is directly provided by PLDA. In master
mode, the core provides 4 independent DMA channels that
are multiplexed in time by the core itself. Thereby, it is
possible to activate up to 4 simultaneous master operations,
which will be scheduled by the core according to an internal
scheduling policy. The core does not buffer packets, but it
simply redirects in real-time the bus control signals to the
control logic that schedules data transfer, either asking for or
providing the packet when the transaction is under progress.
For each channel, the control logic provides to the core the
base address, the data size and the transfer type: read or write.

III. HERO ARCHITECTURE OVERVIEW

HERO (High-speed Enhanced Routing Operation) is the
name of the IP core we developed within the framework of the
BORA-BORA (Building Open Router Architectures - Based

on Router Aggregation) project [5] . The core is functionally
positioned between the two IP cores managing the network
and the PCI interfaces. HERO is basically composed by three
sections, respectively performing the following tasks:

• NIC configuration, through interaction with the driver by
means of registers and interrupts

• forwarding of incoming packets, i.e. packets received by
the driver from the network, by storing them either into
the central memory when using the slow path or into
other NICs memory over the fast path

• forwarding of outgoing packets, i.e. packets received from
the driver or from other NICs are sent to the network

Fig.2 provides an overview of the HERO architecture. The
configuration section deals with the control path and includes
the Register File (RF) block and the Interrupt Generator block.
In the RF block, 64 independent registers, each of 32-bit, are
available. Details about both blocks will be given in Sec.IV.

The Descriptor Queues block controls three FIFOs, con-
taining the memory buffer addresses in RAM where packets
are stored when using the slow path, described in detail in
Sec.VII.

Incoming packets are managed by the Incoming Packet
Management block. This block receives the packets from the
Ethernet core, buffers them, eventually discarding them if the
FIFOs are congested, and performs routing and classification
exploiting a VOQ (Virtual Output Queuing) buffering archi-
tecture. Finally, it forwards packets either on the slow or on
the fast path.

Outgoing packets are managed by the Outgoing Packet
Management block, which forwards the packets to the Ethernet
core.

IV. HERO CONFIGURATION SECTION

The HERO RF (Register File) block is used by the driver to
write and read configuration data. The registers can be grouped
into 5 sets, depending on their use: command registers, IRQ
registers, descriptor registers, routing and classification regis-
ters, and inter-NIC registers.

The command registers are used either to issue a set of com-
mands to the NIC, like the reset command, or to manage the
Ethernet core, i.e., enable Ethernet auto-negotiation, configure
the MAC address or verify the connection status.

Fig. 2. HERO structure

205

The Interrupt Generator block manages three IRQ registers
to signal to the operating system important asynchronous
events such as a packet arrival or departure. A 32-bit register
(Runmasked) maps 32 possible interrupt events, although cur-
rently not all bits are used. Whenever one of the events occurs,
the corresponding bit in Runmasked is raised. Another 32-bit
register (Rmask) is set by the driver to select which events are
allowed to generate an IRQ. Recall that a unique IRQ channel
is assigned to the NIC. Thus, an IRQ is generated every time
one of the enabled events occurs, i.e. Runmasked⊕Rmask > 0.
The result of this operation is stored in the Rmasked register,
to allow the driver to read the event that has triggered the IRQ.
The Interrupt Generator block detects the events, masking the
undesired ones and generating the IRQ signal. Every time the
driver reads the Rmasked register, it clears it, to permit re-
assertion of the proper bit at the next IRQ event.

The use of maskable interrupts allows the driver to run in
two different operating modes: IRQ and NAPI. In IRQ mode,
each packet reception and transmission generates an IRQ. This
operating mode is very easy to implement, but it can lead to
performance degradation due to the IRQ trashing phenomenon.
IRQ trashing occurs when the CPU is flooded by IRQs and is
unable to perform any other operation apart from processing
IRQs. To avoid this problem, NAPI operating mode, based on
the polling idea, has been devised. When adopting NAPI, the
IRQ signal is used only to add the device to a polling list
disabling its IRQs, until the device is active in providing data.
When no more data are available, the device is removed from
the polling list and IRQs are re-enabled. Therefore, when the
data transfer rate is low, the device driver will mainly work
on IRQs, while during high loads periods polling will mostly
be used.

The routing and classification registers are used to route
and classify packets into two priority classes. These registers
are managed by the driver and used to address the incoming
packets into the VOQ system. Further details about routing
and classification operations are given in Sec.V. In the current
implementation, these registers are statically configured by the
driver, not taking into account the dynamic evolution of the
system.

The inter-NIC registers are used for NIC-to-NIC signaling,
needed when dealing with data transfer via the fast path. More
details are provided in Sec.VIII.

Finally, the descriptor registers are used to make packet
descriptors available to the NIC. Sect.VII, describing the slow
path operation, provides a detailed explanation on the type and
functions of descriptor registers.

V. INCOMING PACKETS MANAGEMENT BLOCK

The Incoming Packet Management block is the first stage
that processes a packet received from the Ethernet core. A
detailed block diagram is shown in Fig.3.

A. Parallelization, classification and routing

The interface with the Ethernet core is composed by an 8-bit
data bus plus some control signals. Three control signals are

defined: a data valid signal, high when a byte on the data bus
is valid, a start and a stop signal, asserted for one clock cycle
respectively during the first and the last byte of the packet.
HERO is designed to always be able to receive data from the
Ethernet core, internally dropping packets if necessary.

The Input block (Fig.4) transforms the serial 8-bit data
into a parallel 64-bit word compatible with the PCI-X bus
parallelism. During the parallelization, the Open Header block
collects the initial words of the packet and transfers the
Ethernet and IP headers to the routing and classification logic.
Additional logic in the Input block decrements the TTL field
and updates the IP header checksum. Routing is based on the
destination IP address (32 bits), classification is based on the
following fields (80 bits):

• destination IP address (32 bits)
• source IP address (32 bits)
• ToS (Type of service) (8 bits)
• protocol type (8 bits)
We sized the system to support up to 4 custom NICs in a

single PC; therefore, up to three routes and four classification
rules can be provided by the driver. Everything not matching
any of the given routes is sent along the slow path to the OS.
Each classification rule is associated with a possible destina-
tion, including the OS. If a packet matches a classification
rule, the packet is considered as high priority.

Routing and classification are based on two ternary masks.
The masks were implemented using two separate registers. The
first one contains the pattern P to be matched. The second one
defines a bit mask M , where 1 indicates a “care bit” and a 0
a “don’t care” bit. A value V in the packet header is a match
if (V ⊕ P) · M = 0.

The destination IP address of each packet is compared in
parallel with all three ternary masks. The packet is forwarded
to the lowest ranked NIC having a matching ternary mask;
otherwise, the packet is sent to the OS. Simultaneously, the
classification compares the header fields with the classification
ternary masks, obtaining one result for each possible destina-
tion. The outcome of the routing phase selects then the final
result among the 4 classification results.

By using special values for M and P , it is possible to
deactivate routing and classification functions. When disabling

Fig. 3. Incoming packet management block structure

206

both functions, the board becomes a standard NIC, supporting
a single priority and a single FIFO queue storing packets
addressed to the OS.

B. Dropping

After the routing and classification stages, packet destination
and priority level are established, and the packet is enqueued
into an intermediate FIFO. From this FIFO, packets are
extracted by the Extraction block that enqueues the packet
in the proper FIFO of the VOQ array according to the result
of the routing-classification process. If the destination queue
does not have enough space for the entire packet, the packet
is dropped.

The intermediate FIFO is used to address some design
issues. Packets could be directly dropped by the Ethernet core.
Indeed, when any of the FIFOs is full, HERO could simply
advertise this information to the Ethernet core by “anding”
the control signal that detects FIFO queue overflow. Since
the routing and classification have not been performed yet,
there is no possibility of detecting the status of the “proper”
FIFO. This is not optimal, because the Ethernet core would
drop also packets addressed to non-empty queues. By using
the intermediate FIFO, the packet is received, processed and
then potentially dropped, but only if the proper destination
FIFO is full. Moreover, a store and forward technique is
needed to determine the size of the packet and to check
whether it fits into the destination queue. The intermediate
FIFO also simplifies the control logic allowing to perform
the routing-classification process while receiving the packet,
making those operation zero-latency. If no buffer stage is
introduced, it would be necessary to obtain the information
on the destination queue at the beginning of the packet,
making the control logic more complex or delaying the packet
enqueuing. With our approach, it is enough to execute routing
and classification operations within a time bound equal to the
duration of the shortest possible Ethernet packet. Obviously,
an additional store and forward delay is payed. Finally, the
intermediate FIFO is dual-clocked, and is used to decouple
the 125MHz clock domain of the Ethernet core from the 133-
100MHz clock domain of the PCI-X core.

Fig. 4. Input block details: routing and classification blocks structure

Fig. 5. Outgoing packets management structure

C. VOQ enqueuing

The VOQ block is an array of 4 pairs of FIFOs, one pair
for each possible destination. One FIFO collects high priority
packets, the other one low priority packets. Each FIFO, as
well as all the other FIFOs within the design, is physically
composed by a “data” FIFO storing packets, and by a “size”
FIFO storing the packet size needed to determine packet
boundaries in the data FIFO during packet extraction. The
data FIFOs size is 8Kbyte.

The Packet Upload block is involved in the slow path for-
warding, i.e., packet transmission from the two FIFO queues
to the PC main memory. The Scheduler and the Burst blocks
are involved in the control and data forwarding over the fast
path. Further details are provided in the relative sections.

VI. OUTGOING PACKET MANAGEMENT BLOCK

The Outgoing Packet Management block, shown in Fig.5, is
much simpler than the incoming packet management block. It
performs the multiplexing of packets received from both the
slow and the fast path. A Round-Robin policy is followed,
extracting alternatively one packet from each queue. The size
of the FIFO that collects packets from the fast path is set to
2Kbyte. The Transmission block serializes the 64-bit words
coming from the PCI bus in groups of 8-bits, the parallelism
needed by the Ethernet core.

Further details about the behavior of the Reception and
Scheduler blocks are provided when analyzing the NIC-to-
NIC communication via the fast-path in Sec.VIII.

VII. SLOW PATH

The packet passing mechanism between the driver and the
NIC is based on packet descriptors. A packet descriptor is a
data structure containing two basic information: packet data
address and packet size. These information are passed to
the NIC to exploit its bus master capability to initiate DMA
transfers. When a packet is received, it is immediately written
in a free buffer by the NIC. When the packet transmission
ends, the event is signaled rising an IRQ signal; the driver
passes the newly arrived packet to the kernel. Similarly, when
the driver receives a packet from the kernel, it passes the
descriptor to the NIC, which will read the packet from the
central memory to send it on the wire. When packet reception
is completed, an IRQ signal is generated to free the packet
memory.

207

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 200 400 600 800 1000 1200 1400 1600

B
us

 T
hr

ou
gh

pu
t [

M
bi

t/s
]

Packet Size [bytes]

Write - V
Read - V

Write - SG
Read - SG

Fig. 6. Performance comparison between scatter-gather (SG) and vector (V)
mode (PCI-X @ 133 MHz)

I n p u t
S c h e d u l e r

R X H i g h
Pr io r i t y

 R X L o w
Pr io r i t y

I n p u t
N I C

T X R o u t i n gO u t p u t
N I C

Fig. 7. Description of the slow path.

To increase performance, modern NICs batch these two
operations and organize the descriptors into circular buffers
called rings. These rings can be implemented in two different
ways, which give different performance. We refer to these two
possibilities as scatter-gather mode and vector mode.

The scatter-gather mode organizes the descriptors into a
linked list; the list head is passed to the NIC. For each packet,
the NIC first reads the descriptor and then starts the packet
transfer. Two PCI transactions for each packet are needed.

The vector mode tries to overcome this problem by grouping
the descriptors into vectors. The NIC can read them all at once,
optimizing bus usage.

Fig.6 compares the two modes in terms of achieved through-
put. The vector mode shows better performance both when
reading and writing. This is due to the fact that scatter-gather
mode needs several small bus transactions to download the
descriptors, and each transaction has a high bus-management
overhead. The descriptors queues in Fig.2 are the FIFOs where
the descriptors are stored and are organized according to the
vector mode.

To build the circular buffer, two vectors are needed. During
packet reception, the driver allocates new packet buffers into
a second descriptors vector. When the NIC has used all its
descriptors, the driver swaps the two vectors providing new
descriptors to the NIC. Also in the transmission side two
vectors are used, the first one by the driver to group outgoing
packets, while the NIC is transmitting the packets stored in
the second one.

To support two priorities, a second incoming buffer ring has
been added. A scheduler within the driver serves both rings.
Therefore, three descriptor FIFOs are needed, two for the
descriptors to write incoming packets into the RAM (one for
each ring) and one for reading packets from the RAM. For the
sake of simplicity, the scheduler gives absolute priority to high
priority packets. Low priority packets may suffer starvation.
Fig.7 summarizes the slow path management.

VIII. FAST PATH

The fast path provides a high bandwidth-low latency data
transfer among NICs.

The main shared resource in the PC architecture is the PCI
bus. The aim of bus management is to be fair for NIC-to-
NIC communications and to maximize bus throughput. For
example, it is obviously not a good idea to transfer data to a
congested output NIC only to discard the packets afterwards.
It would be better to discard these packets directly at the input
NIC. A congestion can occur if two or more inputs send traffic
to the same output with an aggregate throughput higher than
the network line rate. In this case, a back-pressure mechanism
has to shape the sending rate of the inputs. Also, fairness must
be ensured: any input NIC should be able to forward packets
to any output NIC without any starvation.

Taking into consideration that the PCI-X protocol schedules
bus access with a proprietary policy, we propose a protocol
able to organize both access requests and data transfers to
meet the above requisites. One possible approach could be
to execute the control at the software level, where the driver
inquires the NICs state and computes the optimal scheduling.
The high latency and low bandwidth imposed by this approach
when the driver accesses the NIC registers discourages this
approach. Instead, we developed a hardware-based inter-NIC
communication protocol.

This protocol is inspired by the three-way schedulers
proposed in slotted IQ switches, like iSLIP [6], but it is
completely asynchronous. Each board can receive packets of
variable size at any time; the use of the bus is granted asyn-
chronously and independently by each output NIC. For these
reasons, the protocol implements a control communication
protocol based on three steps:

• Request: an input NIC communicates to the output NIC
how many data are available for that output;

• Response: the output NIC grants to the input NIC the
amount of available bytes, i.e., the available space in the
output FIFO;

• Burst: the input NIC transfers an amount of data equal or
less than the granted amount received during the response
phase.

The structure of the protocol is due, in part, to some limi-
tations related to bus access procedures. In our architecture, a
board acting as a PCI-bus master can perform both write and
read operations toward the main memory; however, only write
operations toward other peripherals are admissible. Thus, the
protocol exploits write transactions only.

208

A request message is a 32-bit word divided into two 16-
bit section, one for each priority. Each section contains the
number of bytes stored in the corresponding FIFO. The request
message is used to start a communication between two NICs.
When both queues addressed to an output are empty, any
communications toward this output ends. As soon as a packet
for that output is received, a new request message is sent
opening again the communication channel.

When a NIC receives a request, it sends back a response
message containing the minimum between the value stored in
the request itself and the size of the available memory in the
fast path FIFO. The response is organized as a two 16-bit
section in a 32-bit message, one for each priority level. In our
policy, all free space within the FIFO, if needed, is allocated
to the current data exchange. If the memory available is not
able to satisfy the request, the free space is first allocated to
the high priority field; the remaining space, if any, is devoted
to the low priority field.

When a NIC receives a response message, the data transfer
can take place. The packets are grouped into a burst, composed
by several high priority packets followed by the low priority
ones. For each priority level, the number of packets within the
burst never exceeds the value stored in the response message.

Each burst has a header that contains the total number of
high and low priority packets in the burst. A 64-bit control
word is sent prior of each packet in the burst; the control
word contains the packet size and it is needed to extract the
packet from the burst at the receiving end. A 64-bit control
word is appended at the end of the burst; it is used to piggy-
back a new 32-bit request. If no more packets are available
for that output NIC at the end of the burst transmission, the
request bits are set to zero. The piggy-back technique keeps
the communication alive and, during high load periods, saves
a bus transaction. Similarly to the vector mode described in
Sec.VII, saving a transaction and grouping packet transfers
together improves bus performance. This also motivates the
introduction of packet transmissions in bursts.

The generation of request messages is performed by mon-
itoring the VOQs occupancy status. In Fig.3, the block gen-
erating request messages is the Scheduler. The same physical
block, as shown in Fig.5, is also involved in the management
of the requests and in the monitoring of the fast path FIFO to
generate the response messages at the receiving side.

The Burst block in Fig.3 is in charge of generating the burst,
taking into account the incoming response and the new request
to piggy-back. When the burst arrives at the receiving side, it
is parsed by the reception block in Fig.5, and stored into the
FIFO.

Conflicts may occur in high load conditions: two input NICs
may have data available for the same output NIC. Since it
is not possible to receive simultaneously two bursts, they are
serialized. In particular, the first requests are sent by the inputs
as soon as there are data. These messages are received and
collected by the outputs asynchronously and then processed
in a Round Robin (RR) fashion. If resources are available,
a response for the first request is sent back. Then, the NIC

waits for the burst. Only when the burst is completely received
the next requests are processed. This mechanism allows each
NIC to wait at most for one burst at a time, simplifying both
resource allocation and communication protocol. If the input
NIC, upon receiving a response message is not able to fit
at least one packet into the burst, it sends an empty burst
containing only the request to keep alive the communication
channel.

A RR scheduler is also adopted to manage the incoming
response messages. Each NIC detects a new response and
creates the burst. Only when the burst has been completely
sent, the NIC examines the next response.

The request and response messages are written in the inter-
NIC registers described in Sec.IV.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we presented the implementation choices and
the design logic of a custom NIC, able to implement extra
features with the aim of reducing the CPU load and improving
both QoS and bus throughput. This work is made available
as an open source IP core, with two interfaces toward a
PCI-X and an Ethernet IP cores, to obtain a portable NIC
implementation.

This core is fully compatible with the Linux OS and exploits
very flexible interfaces toward both the bus (i.e. PCI core)
and the network (i.e. Ethernet core). It is therefore useful
not only in software routers performance studies, but also
in other applications needing a non-standard network card.
Such applications could be, but are not limited to, security,
network measurements, monitoring and analysis, development
and testing of new MAC protocols for new generation optical
or wireless packet networks.

The design is far from being complete. Among the possible
improvements, we emphasize:

• increase the supported number of routes and priority
classes

• improve the driver internal scheduler
• management of dynamic route updates to maximize the

number of packets going through the fast path.

X. ACKNOWLEDGMENT

This work was performed in the framework of the MIUR
project BORA-BORA [5], and developed in the high-quality
lab LIPAR at the Politecnico di Torino.

REFERENCES

[1] A. Bianco, R. Birke, G. Botto, M. Chiaberge, J. Finochietto, G. Galante,
M. Mellia, F. Neri, and M. Petracca, “Boosting the performance of
pc-based software routers with fpga-enhanced network interface cards,”
in HPSR 2006 (IEEE Workshop on High Performance Switching and
Routing), Poznan, Poland, June 7-9 2006.

[2] “HERO: High-speed Enhanced Routing Operation for software routers.”
[Online]. Available: http://www.telematica.polito.it/hero/

[3] “PLDApplications.” [Online]. Available: http://www.plda.com
[4] “MoreThanIP.” [Online]. Available: http://www.morethanip.com
[5] “BORA-BORA (Building Open Router Architectures - Based On

Router Aggregation).” [Online]. Available: http://www.telematica.polito.
it/projects/borabora

[6] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Netw., vol. 7, no. 2, pp. 188 – 201, 1999.

209

