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Abstract 
This paper describes the Loquendo – Politecnico di Torino 
system evaluated on the 2006 NIST speaker recognition 
evaluation dataset. This system was among the best 
participants in this evaluation. It combines the results of two 
independent GMM systems: a Phonetic GMM and a classical 
GMM. Both systems rely on an intersession variation 
compensation approach, performed in the feature domain. It 
allowed a 30% error rate reduction with respect to our 2005 
system. The linear combination of the two GMM engines gives 
a further 10% error rate reduction. 

We also report the results of a set of post evaluation 
experiments, related to the training data for the intersession 
variation evaluation, both for the telephone and microphone 
datasets. The approach adopted for the two wire tests is also 
described, showing the effect of the speaker segmentation 
component of our system. Finally, we describe how we 
performed the incremental unsupervised adaptation tests. 
Index Terms: Speaker Recognition, Speaker Segmentation, 
Intersession Feature Compensation 

1. Introduction 
One of the main causes of relevant performance degradations 
in automatic speaker recognition is the mismatch that occurs 
when models, trained in a set of conditions, are used to test 
speaker data collected from different microphones, channels, 
and environments. Moreover, system performance is heavily 
affected by the intrinsic variations of different utterances of the 
same speaker. 

Several proposals have been made to contrast these effects 
by means of feature transformations. Some feature based 
transformations, such as feature warping [1], do not rely on a 
specific model and can be used as an additional front-end step 
for any recognition system. Feature mapping [2] exploits, 
instead, the a priori information of a set of models trained in 
known conditions to map the feature vectors toward a channel 
independent feature space. The drawback of this approach is 
that it does require labeled training data to identify the 
conditions that one wants to compensate. Model-based 
techniques have been recently proposed that are able to 
compensate variability without requiring the explicit 
identification of different conditions. These techniques share a 
common background: modeling the differences in speaker 
utterances constraining them to a low dimensional space. This 
approach has been shown to be effective for speaker adaptation 
both in speech [3] and speaker recognition [4], and for channel 
compensation [5-7]. All these methods use MAP adapted 
Gaussian Mixture Models (GMM) [8] for modeling the 
speakers. 

The system submitted by Loquendo – Politecnico di Torino 
to NIST 2006 Speaker Recognition Evaluation (SRE06) 

consists of the linear combination of two independent GMM 
systems: a Phonetic GMM (PGMM) and a classical GMM. 
Both systems adopt a new Feature Domain Intersession 
Compensation (FDIC) technique that adapts the observation 
vectors exploiting the priori knowledge of a constrained 
intersession variation subspace [9]. A similar technique, 
described in [10], has been independently developed and 
assessed on speech recognition.  

The paper is organized as follows: Section 2 summarizes 
the NIST SRE06 tasks. Section 3 presents the speaker 
recognition systems used for the experiments. Our intersession 
compensation approach in the feature domain is described in 
Section 4. The results obtained in a set of different test 
conditions are given in Section 5. Section 6 reports our 
concluding remarks. 

2. NIST 2006 SRE 
The National Institute of Standards and Technology (NIST) 
organizes an annual Speaker Recognition Evaluation (SRE) 
with the goal of encouraging the research and the development 
of advanced technologies in the field of text independent 
speaker recognition [11]. The 2006 evaluation, like the 
previous ones, focused on the speaker detection task, where the 
goal is to determinate whether a target speaker is speaking in a 
segment of conversational speech. The performance of a 
system is assessed using the Detection Cost Function (DCF) 
[11] and Detection Error Tradeoff (DET) curves [12]. 

SRE06 includes 5 training conditions and 4 testing 
conditions for a total of 15 different test configurations, 
including different amounts of speech (ranging from 10sec. to 
8 conversations), 2/4 wire recordings and microphone data. A 
complete description of the data, tasks and rules of SRE06 can 
be found in the evaluation plan available in [11]. 

In this paper we discuss the results of the experiments 
performed in three test conditions: 

• the core test, where both training and test are performed 
on one side of a two channel telephone conversation 
lasting ~5 minutes. 

• the cross channel test condition, where the testing speech 
was collected through a set of different microphones. 

• the summed channel test condition, where the two sides 
of the conversation are summed in a single track. 

Moreover, the effect of unsupervised adaptation is evaluated on 
the core test condition. 

3. Systems overview 
Two GMM systems have been tested in this work: a Phonetic 
GMM, and a classical GMM [8]. A simple linear combination 
of the results of these two systems was our primary system for 
the SRE06 evaluation. Both systems used feature domain 
intersession compensation FDIC [9]. The PGMM system, 
without FDIC, was used for the 2005 NIST evaluation. 
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3.1. Phonetic GMM system 

The PGMM system decodes the speaker utterance, both in 
enrollment and verification, producing phonetically labeled 
segments. The decoder is a hybrid Hidden Markov Model –
Artificial Neural Network (ANN) model trained to recognize 
11 language independent broad phone classes. Each phone 
class, excluding the silence, is modeled by a three state left-to-
right automaton with self-loops. The ANN is a Multilayer 
Perceptron that estimates the posterior probability of each 
phone class state, given an acoustic feature vector. The ANN 
has been trained using 20 hours of speech in 10 different 
languages using corpora not specifically collected for speaker 
recognition.  The UBM and the voiceprints consist of a set of 
phonetic GMMs, one for each state of a phone class. The 
maximum number of (diagonal covariance) Gaussians per 
mixture is 64, for a total of 1954. This gender-independent 
UBM has been trained on the same data that were used for 
training the ANN model. 

In enrollment, the labels and the boundaries of the phonetic 
segments are used for MAP adaptation of the parameters of the 
class-dependent GMMs. In recognition, the phonetically 
labeled audio segments are scored against their corresponding 
GMMs. Thus, the likelihood of a given observation vector is 
computed by selecting the GMM corresponding to the phone 
class decoded at that time frame.  

The system uses 19 Mel Frequency Cepstral Coefficients 
(MFCC). We perform feature warping to a Gaussian 
distribution on each static parameter, with a 3 second sliding 
window excluding silences [1]. Each observation includes 36 
parameters obtained by discarding the c0 cepstral parameter, 
and computing the delta parameters on a symmetric window of 
5 frames. The FDIC technique, described in the following 
Sections, is used both in enrollment and verification. 

3.2. GMM system 

The GMM system is characterized by a reduced set of mixtures 
(512), and features (13 MFCC and their deltas, excluding c0). 
The gender independent UBM has been trained using data from 
the NIST 2000, the OGI National Cellular, and HTIMIT 
databases. Moreover, feature mapping [2] is performed before 
applying the FDIC technique. Gender and channel dependent 
models have been used for feature mapping, with the channels 
labeled as Carbon, Electret, GSM, Analog, and Digital. 

4. Feature Domain Intersession 
Compensation (FDIC) 

Gaussian Mixture Models (GMMs) used in combination with 
Maximum A Posteriori (MAP) adaptation [8] represent the 
core technology of most of the state-of-the-art text-independent 
speaker recognition systems. In these systems the speaker 
models are derived from a common GMM root model, the so 
called Universal Background Model (UBM), by means of MAP 
adaptation. Usually, only mean vector adaptation is performed 
during model training. A supervector that by includes all the 
speaker specific parameters can be obtained simply appending 
the adapted mean value of all the Gaussians in a single stream. 
The speaker model can be seen as a point in a high dimensional 
space, whose coordinates are the supervector’s parameters. 
When some kind of mismatch, like the use of different 
microphones or communication channels, the speaking style, 
the phonetic content, etc. affects the input speech, all the 
speaker supervector parameters may be modified. 

The idea behind the intersession compensation is that the 
distortions in the large supervector space can be summarized 

by a small number of parameters in a lower dimensional 
subspace: the channel factors [12]. 

4.1. Feature-domain adaptation  

Channel factor adaptation for an utterance i and a supervector 
k is performed, in the supervector model space, as follows:  

      (1) ),()(),( kikki Ux+= μμ

where μ(i,k) and μ(k) are the adapted and the original 
supervector of GMM k respectively. U is a low rank matrix 
projecting the channel factor subspace in the supervector 
domain. The N-dimensional vector x(i,k) holds the channel 
factors for the current utterance i and GMM k. 

Channel factor adaptation in the model domain has been 
shown to improve the performance of GMM speaker 
recognition systems. The feature domain method that we 
propose allows the benefits of the channel factor adaptation to 
be exploited, mapping the compensation supervector on the 
acoustic features. To obtain intersession compensation in the 
feature domain, however, some simplifications are required. 

First, since x(i,k) should account for the distortions produced 
in the supervector space by the intersession variations, we 
expect that x(i,k) depends on utterance i, but only slightly on 
speaker model k. Thus, we drop the dependency on the channel 
factors from the speaker model by setting x(i,k) = x(i) for each 
model k. This simplification allows significant saving of 
computation time, in particular when score normalization is 
performed by T-norm [14], which would require the estimation 
of a different x(i,k) for every impostor model k. Moreover, it 
offers the possibility of applying the intersession compensation 
directly in feature domain. We rewrite, thus, (1) for each 
Gaussian component m of the supervector as: 
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k and Um refer to the m-th Gaussian of GMM k.  
The adaptation of the feature vector at time frame t, O(t), 

is obtained by subtracting from the observation feature a 
weighted sum of the channel compensation offset values: 
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where γm(t) is the Gaussian occupation probability, and Um x(i) 
is the channel compensation offset related to the m-th 
Gaussian of the UBM model. In the actual implementation, the 
right side summation of (3) is limited, for the sake of 
efficiency, to the first best contributes only. 

4.2. Training of the channel factor subspace 

The channel factor subspace, modeled by the low rank matrix 
U, is assumed to represent the distortion due to the intersession 
variations. This distortion can be estimated by analyzing how 
the models of the same speaker are affected, when trained with 
utterances collected from different channels or conditions. 
Thus, the intersession factor subspace is estimated off-line 
according to the following steps: for each utterance of the 
same speaker collected from different sessions, a supervector 
is estimated by MAP adaptation of the UBM. Then, the set of 
the differences among the supervectors of the same speaker is 
collected for all the available speakers [6]. Finally, matrix U is 
obtained with an Expectation-maximization Principal 
Component Analysis (EM-PCA) algorithm [15], using as 
features the difference supervectors.  



4.3. Estimation of the channel factors parameters 

To perform channel adaptation, the channel factors vector x 
must be estimated for each test utterance. A Maximum 
Likelihood Eigen-Decomposition solution to a similar problem 
has been proposed for speaker adaptation in [3]. For speaker 
verification, a technique called Probabilistic Subspace 
Adaptation (PSA), which uses MAP estimation of x has been 
presented in [4]. In our experiments, we perform a single 
iteration of the PSA estimation, obtaining the vector x(i) for 
each test or training utterance i in (3). 

5. Experimental results 
In this section we show the results obtained by the GMM and 
PGMM systems submitted to SRE06, for different test 
conditions. The results are given in term of Equal Error Rate 
(EER) and minimum NIST Detection Cost Function (DCF).  

All the results are obtained by normalizing the raw 
verification scores. First, the scores are normalized by means 
of Z-norm. The parameters for each speaker model have been 
estimated using a subset of speaker samples included in the 
NIST SRE04 database. Separate statistics have been collected 
for the female and male speakers, using two conversations of 
80 speakers for each gender. Test dependent normalization is 
performed using T-norm [14]. A fixed set of impostor models 
was selected from the voiceprints enrolled with data belonging 
to SRE04. The T-norm parameters for each test sample were 
estimated using the Z-norm scores of the impostor voiceprints. 
We refer to the Z-norm followed by T-norm as ZT-norm.  

5.1. Core test condition 

The primary system submitted to SRE06 consists of the linear 
combination of the GMM and the PGMM classifiers. The 
performance of the combined system (PGMM+GMM) and 
those of the component systems are given in Table 1 in terms 
of Equal Error Rate (EER) and minimum Detection Cost 
Function (DCF), measured on the core test, all trials. The first 
row of the Table shows the performance of the “mothballed” 
system used in the SRE05 evaluation and tested on SRE06. 
The 2005 PGMM baseline system did not include the FDIC 
technique. 

Table 1: Equal Error Rate and minimum Detection 
Cost Function on SRE06 core test condition, all trials 

System Subspace EER(%) DCF 
PGMM 2005 NO 8.7 0.406 

PGMM 40 tel. 6.0 0.280 
GMM 40 tel. 5.9 0.271 

PGMM+GMM 40 tel. 4.9 0.236 
 
The number of intersession factors used by the GMM and 

PGMM systems is fixed at 40. The intersession compensation 
subspace was trained using data coming from the SRE04 and 
the SRE05 datasets. 

5.2. Cross channel test 

Since 2005, NIST encourages the submission of results on a 
cross channel test condition. These tests require that the 
enrollment of the voiceprints is done on telephone speech, and 
that the verification is performed on audio recordings made 
using microphones. The SRE06 includes conversation 
collected simultaneously through eight different devices, 
ranging from low cost PC microphones to high quality 
professional transducers. 

For these tests we submitted again the results of a linear 
combination of a PGMM and a GMM classifier. The subspace 
of the GMM system was retrained, for these tests, using the 
differences between microphone and telephone recordings, 
according to the testing condition. The PGMM, on the other 
hand, used the same subspace matrix as the core test. 

Table 2. Equal Error Rate and minimum DCF on the 
SRE06 cross channel test condition, all trials 

System Subspace EER DCF 
PGMM 40 tel. 10.5 0.365 
GMM 40 mic. 6.6 0.271 

PGMM AGC 20 tel. 7.8 0.320 
PGMM AGC 20 tel+mic 6.4 0.250 

PGMM AGC+GMM 20 tel+mic, 40 tel  5.1 0.201 
 
During post evaluation we noticed that the performance of 

the submitted PGMM was very poor when compared with the 
GMM system. This was due to the very low signal level of the 
many microphone recordings, which has a strong impact on the 
phonetic decoding in our PGMM, because many phonemes 
were recognized as silence and discarded. To overcome this 
problem we inserted an automatic gain control (AGC) in the 
PGMM system, so increasing its performance as shown in the 
third row of Table 2. Moreover, we extended the data for 
training the intersession subspace including the microphone 
recording available in SRE05. The results obtained (fourth row 
of Table 2), were comparable with the ones obtained with the 
GMM system, even using a reduced number of channel factors 
(20 vs. 40, for the sake of efficiency). The linear combination 
of the two systems further improves the performance as shown 
in the last row of the Table. It is worth noting that the 
intersession compensation using this new subspace gives good 
results even on telephone data: the performance on the core test 
condition is EER 6.1%, DCF 0.277. 

5.3. Summed channel test 

In addition to the four wires (4w) test condition, NIST 
proposes a set of tests involving two wire (2w) recordings. In 
the former condition, each audio file in the enrollment and 
verification lists includes a single side of a conversation, i.e. 
the voice of one speaker, whereas in the 2 wire condition a 
whole conversation between two speakers is supplied as 
training or test audio file.  

We report here the results referring to the four wire training 
and two wire testing condition (1conv4w-1conv2w). This test 
has the goal of producing a score related to the probability that 
one of the two speakers involved in a conversation is the target 
speaker. 

We performed the 2w tests, preprocessing the incoming 
audio using our automatic speaker segmentation approach [16] 
to produce two audio tracks, each containing the voice of a 
single unknown speaker. Since the automatic segmentation is 
not perfect, we are interested in evaluating the impact of the 
segmentation errors on speaker detection. Both audio tracks 
produced after segmentation are scored against the target 
model, and the best of the two scores is produced as the 
matching result. It is worth noting that this procedure, even 
neglecting the segmentation errors, will produce less accurate 
results compared with the corresponding 4w tests, due to the 
increase of the probability of false alarms (FA). The 
probability of not having a FA on the whole conversation is the 
product of the probabilities of not having FAs on both the 
segmented sides. This behavior is similar to that described for 
multi-target detection in [17]. 



To obtain a one-to-one comparison with the 4w test 
condition, we defined a new “unofficial” 2w test, by summing 
the two sides of all the recordings in the list of the core test. 

Table 3. Equal Error Rate and minimum DCF on 4 and 
2 wire test conditions, all trials 

System Test EER(%) DCF 
PGMM 4w 6.0 0.280 
PGMM 4w + 4w 7.3 0.345 
PGMM 2w unofficial 8.4 0.385 

 
The first row of Table 3 reports again the results of the 

baseline PGMM system on the 4w core test condition. The 
second row shows the result obtained, without segmentation, 
on a 4 wire extended test, where both sides of a conversation 
have been taken into account and the best matching decision 
rule, used for the 2 wire tests, has been applied. This result 
highlights the impact of the anticipated increase of the FAs on 
the system accuracy, even in the absence of automatic speaker 
segmentation. Finally, the last row of the Table shows the 
performance on the unofficial 2w test, including the effect of 
automatic segmentation. Comparing the results shown in Table 
3, it is interesting to observe that the main source of accuracy 
degradation is the presence of both sides of the conversation in 
the trials. Further degradation of the results is due not only to 
automatic segmentation errors, but also to the occurrence of 
overlapped speech in the summed 2 wire signals.  

5.4. Unsupervised adaptation test 

Another task suggested in SRE is the “unsupervised adaptation 
mode”. This test condition allows adaptation of the target 
models based on previous trial segments, whenever a correct 
match has been hypothesized. NIST rules require that the 
decoding trials are performed in the order given in the supplied 
test index files. 

To select the trials that we used for adaptation, we 
performed the 1conv4w-1conv4w unsupervised adaptation test 
using the outcome of the unadapted PGMM system. The 
selection has been driven by a quite conservative threshold on 
the ZT-normalized score, set to 4. There are two reasons for 
using the unadapted scores for the selection: first, it reduces the 
risk of divergence of the target models due to the adaptation of 
the models with impostor data; second it simplifies the batch 
ZT-normalization process of the adapted voiceprints. On the 
other hand, using the adapted target models for trials selection 
could further increase the benefits of adaptation. 

Table 4. EER and minimum DCF on SRE06 core test 
condition, all trials, with and without adaptation 

System Adaptation EERs DCF 
GMM+PGMM NO 4.9 0.236 
GMM+PGMM YES 4.5 0.202 

 
Using a decision threshold set to 4 in our test we correctly 

selected 72% of the target data for adaptation. Among the 
selected data (trials with ZT-norm score > 4) only 5% were 
recordings of a speaker other than the target one. Table 4 
compares the results of our unadapted and adapted systems. 
The unsupervised adaptation allows a 14% relative reduction 
on the DCF. 

Future research will be devoted to studying the effect of 
using the adapted scores of the combined systems for selecting 
the adaptation trials. 

6. Conclusions 
The Loquendo – Politecnico di Torino system evaluated on the 
2006 NIST speaker recognition evaluation has been described. 
The main features of the system are the FDIC technique, which 
allows a substantial reduction of the error rate, and the simple – 
and easily tunable – linear combination of two GMM engines. 
The FDIC shows its effectiveness even when the intersession 
variation subspace is trained with mixed telephone and 
microphone data. In the tests on the summed channel condition 
we have shown the effect of performing detection on both sides 
of a conversation, giving evidence that detecting a speaker on 
the 2 sides of a conversation has the same or greater relevance 
on the system accuracy as automatic segmentation. Finally, our 
unsupervised adaptation experiments highlight interesting 
perspectives that require further investigation. 
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