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Abstract 
Gaussian Mixture Models (GMMs) in combination with 
Support Vector Machine (SVM) classifiers have been shown 
to give excellent classification accuracy in speaker 
recognition.  

In this work we use this approach for language 
identification, and we compare its performance with the 
standard approach based on GMMs. 

In the GMM-SVM framework, a GMM is trained for each 
training or test utterance. Since it is difficult to accurately 
train a model with short utterances, in these conditions the 
standard GMMs perform better than the GMM-SVM models.  

To overcome this limitation, we present an extremely fast 
GMM discriminative training procedure that exploits the 
information given by the separation hyperplanes estimated by 
an SVM classifier. We show that our discriminative GMMs 
provide considerable improvement compared with the 
standard GMMs and perform better than the GMM-SVM 
approach for short utterances, achieving state of the art 
performance for acoustic only systems. 

 
Index Terms: language identification, discriminative 

training, GMM, SVM, separation hyperplane 

1. Introduction 
This paper focuses on the acoustic component of a Language 
Identification (LID) system.  The GMM and the SVM are the 
state of the art classifiers [1],[2] for acoustic LID. 
Discriminative training of acoustic GMMs [3],[4], obtained 
through Maximum Mutual Information Estimation (MMIE), 
was demonstrated to be successful for language identification 
in the last formal NIST Language Recognition Evaluations 
(LRE) [5]. Since MMIE training requires considerable 
computational resources, in this work we propose a new 
discriminative training technique. In particular, we applied to 
language identification a recently proposed approach for 
speaker recognition combining Gaussian Mixture Models 
(GMMs) with a Support Vector Machine (SVM) classifier 
[6]. The results, reported in Section 4.3, which compare the 
performance of the GMM-SVM models with the standard 
GMM technique on the NIST LRE suite of recent years, 
clearly show the advantage of the SVM models for the 30 sec 
duration tests. For the short duration tests, on the other hand, 
such an advantage is not observed. The reason is that in the 
GMM-SVM framework, a GMM is trained for each test 
utterance. Thus, the duration of an utterance has a direct 
impact on the quality of the resulting model and on the 
overall LID accuracy. The problem does not exist in training 
because the training corpora usually include long 
conversations that allow robust models to be estimated. 

To overcome this weakness of the GMM-SVM models, 

without loosing the advantages of this approach, our new 
discriminative training procedure for the GMMs exploits the 
information given by the separating hyperplanes estimated by 
the SVM classifiers. In particular, as will be detailed in 
Section 5, we shift the Gaussian means along the directions 
orthogonal to the hyperplane that separate each language 
GMM from its competitors in the space of the SVM classifier. 
This space is defined by a distance metric based on the 
approximate Kullback-Leibler (KL) divergence between 
GMMs. As expected, these discriminatively trained GMMs 
perform far better than the original models, and better than 
the GMM-SVM models on short duration tests. 

The procedure is very fast because the GMM-SVM 
approach does not perform onerous iterations on all the 
frames of the training database, as required in the GMM 
discriminative training approaches, such as MMIE or 
Minimum Classification Error estimation. 

The paper is organized as follows: Section 2 presents our 
baseline acoustic LID models, and the test databases. In 
Section 3 we detail the features and the database that are used 
to train our baseline GMMs. Section 4 summarizes the 
approach combining GMMs and SVM classifiers. In Section 
5 we introduce our novel discriminative training procedure. 
Our final remarks are given in Section 6. 

2. Acoustic LID models 
Gaussian Mixture Models used in combination with 
Maximum A Posteriori (MAP) adaptation represent the core 
technology of most state of the art text-independent speaker 
recognition systems [1]. In these systems, the speaker models 
are estimated, by means of MAP adaptation, from a common 
GMM root model, the so-called world model or Universal 
Background Model (UBM). Usually, only mean vector 
adaptation is performed during model training. Thus, a 
speaker is represented by the set of mean vectors of all the 
Gaussians of the UBM, adapted using the speaker training 
data, and shares with the other speaker models the remaining 
UBM parameters. 

MAP adaptation is not necessary in language recognition 
because every language GMM can be robustly trained by 
Maximum Likelihood estimation. However, we perform MAP 
estimation from a UBM also in LID, with a small relevance 
factor, for three main reasons. Language models deriving 
from a common UBM are required by our GMM-SVM 
approach. Our frame based inter-speaker variation 
compensation approach [8] computes its speaker factors using 
the UBM. A side benefit of this choice is that it allows fast 
selection of the Gaussians both in training and in testing. 
Thus, larger models can be trained discriminatively. 

In the experiments described in this paper, the UBM and 
the language GMMs consist of mixtures of 512 Gaussians. 
The observation vector includes 56 parameters: the first 7 



 
Figure 1: Hyperplanes separating a class from the 
others, and their discriminative direction vectors wk. 

Mel frequency cepstral coefficients and their usual 7-1-3-7 
Shifted Delta (SDC) features [7]. 

The experiments have been performed on the NIST 1996, 
2003, and 2005 LRE data according to NIST evaluation rules 
[5]. The first two test corpora include 12 target languages: 
American English, Arabic, Canadian French, Farsi, German, 
Hindi, Japanese, Korean, Mandarin, Spanish, Tamil, and 
Vietnamese. Russian has been used as the out-of-language in 
the 2003 tests. In these evaluations there are three duration 
settings: 3, 10, and 30 seconds. The 1996 evaluation database 
consists of 1503, 1501 and 1492 sessions of 3, 10, and 30 
seconds, respectively. The 2003 evaluation has 1280 trials for 
each duration setting. The LRE-05 corpus includes seven 
languages and two dialects: English-American, English-
Indian, Hindi, Japanese, Korean, Mandarin-Mainland, 
Mandarin-Taiwan, Spanish, and Tamil. The evaluation data 
consists of 3662 trials for each duration setting. 

3. Speaker compensated GMMs 
To reduce inter-speaker variability within the same language 
we have shown in [8] that significant performance 
improvement in LID can be obtained using factor analysis. 
We estimate an inter-speaker subspace that represents the 
distortions due to inter-speaker variability, and compensate 
these distortions in the domain of the features. The details of 
this approach are given in [8] and [9].  

Using compensated features, we trained a gender-
dependent model for each of the 12 target languages in the 
NIST corpora using the training and development sets of the 
CallFriend [10] corpus. The conversations in this corpus were 
split into 8172 slices of approximately 150s. The same data 
sets were used for training all other types of models. 

During testing, the UBM gender model that produces the 
best likelihood for the current utterance is selected, together 
with the set of its corresponding gender-dependent GMM 
language models. The final score for each language includes 
T-normalization, computed on the alternative language 
GMMs, followed by the log-likelihood normalization [11]: 
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where l and ls are the index and the log-likelihood score of 
the l-th language GMM respectively. Gender dependent 
models have been used for training MMI models, while our 
new discriminative approach has been tested with gender 
independent models. 

The EER reported results are the average of the EERs for 
each language. 

4. SVM using GMM supervectors 
Since Gaussian Mixture Models in combination with a 
Support Vector Machine classifier have been shown to give 
excellent classification accuracy in speaker recognition [6], in 
this work we use this approach for LID, and we compare its 
performance with the standard GMM based technique. 

 A short overview of the GMM-SVM framework is given 
here, focusing on the main topics that are of interest for the 
development of our discriminative training approach detailed 
in Section 5. 

4.1. Linear Support Vector Machines 

A linear Support Vector Machine is a two-class classifier 
trained to find the hyperplane which separates, with the 
largest margin, the samples of one class from the samples of 
another class. Given a set of linearly separable, labeled train 
data {xi, yi}, where yi is +1 and -1 for the positive and 
negative class targets respectively, the points x that lie on the 
separating hyperplane satisfy the equation 

 
0b⋅ + =w x                  (2) 

 
where w is the discrimination vector, which is normal to the 
hyperplane, |b|/||w|| is the distance from the hyperplane to the 
origin, and ||w|| is the Euclidean norm of w. 

Figure 1 shows an example of hyperplanes separating a 
class from two other classes, and their discriminative 
direction vectors wk. 

4.2. GMM supervectors 

Gender independent GMMs were trained by MAP adaptation, 
with relevance factor 1, from a common UBM  
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where ( ); ,g gN x µ σ  is a Gaussian with mean and diagonal 

covariance p-dimensional vectors µg and  σg respectively, 
and ωg is its mixture weight. A specific GMM is trained for 
each utterance, both in training and in testing. Since MAP 
adaptation is performed only on the mean vectors, the set of 
the mixture weights ωg and the diagonal covariance vectors 
σg are shared among all the GMMs, including the UBM. 

A pxG supervector that maps an utterance to a high 
dimensional space is obtained by appending the adapted mean 
value of all the Gaussians of a GMM in a single stream. This 
mapping, however, is inaccurate because it does not take into 
account the weights and covariances of the Gaussians in the 
mixture. A more accurate mapping is obtained if the resulting 
supervectors can be compared according to a meaningful 
distance measure. The natural choice for a distance measure 
between two GMMs, i and j, is the approximate Kullback-
Leibler divergence [12],[13], [6]: 
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where g is the g-th Gaussian of the mixture, and p is the 
dimension of the acoustic feature vector. Normalizing each 
component of a supervector k according to: 

w2 
 

w1 
 

w3 



Table 1. Average EER(%) of standard 512 GMMs, 
GMM-SVM, Discriminative GMMs, and MMI 

estimated GMMs classifiers on the NIST LRE tasks. 

Duration Year Models 
3s 10s 30s 

Standard GMM  18.35 7.99 3.17 
GMM-SVM 22.27 8.29 1.41 

Discriminative  GMM 16.67 5.96 1.94 
1996 

MMI GMM 14.93 4.83 1.79 
Standard GMM  18.60 8.75 3.84 

GMM-SVM 23.79 8.51 2.32 
Discriminative  GMM 17.40 7.15 2.39 

2003 

MMI GMM 15.28 5.77 2.71 
Standard GMM  22.50 14.06 9.34 

GMM-SVM 25.89 14.08 6.69 

Discriminative  GMM 21.43 11.80 6.96 
2005 

MMI GMM 19.16 11.76 7.79 
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the normalized UBM supervector defines the origin of a new 
space, where the KL divergence is a Euclidean distance. 

In this high dimensional space, referred to in this paper as 
the KL space, an utterance model is a point whose 
coordinates are the supervector’s parameters. The points in 
Figure 1 could represent utterance supervectors of different 
languages. The “sun” symbol, corresponding to the UBM 
supervector, marks the origin of this pxG-dimensional space. 
Since a translation does not alter the relative position, or the 
distance between these points, the supervector normalization 
term can be simply reduced to the scaling factor

g gpω σ .  

4.3. GMM–SVM  

The normalized supervectors are used as samples for training 
a linear SVM, which produces the discrimination vectors w 
and the offset b in (2). The results of this approach are shown 
in the rows of Table 1 labeled GMM-SVM. Compared with 
the standard GMM classifier, the GMM-SVM system obtains 
far better results for the 30s duration tests. For shorter 
durations, however, the estimation of the utterance GMMs is 
not robust enough, due to the lack of data compared with the 
number of parameters of the GMMs. Thus, in these 
conditions, the GMM system gives better results. 

5. GMM discriminative training 
To produce more discriminative GMMs, without performing 
the expensive MMI estimation training, we present in this 
Section a new GMM training approach that exploits the 
information given by the separating hyperplanes estimated by 
the GMM-SVM classifier  

Since a SVM classifier produces a discrimination vector 
wk for each language k, we shift the supervector of the 
standard GMM of language k along its discriminative 
direction in the KL space according to 
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Figure 2. Example of the original space of the acoustic 
features (left) and of the KL space (right). The white ellipses 
represent two Gaussians of language k. 1

kw and 2
kw  , are the 

discriminative directions  in the acoustic feature space. 
 
where kw  is the normal to the hyperplane separating the 
utterance supervectors of language k from the supervectors of 
the other languages, and αk is the shift size,  which has to be 
found. Since the supervectors in the KL space are scaled 
versions of the supervectors in the original feature space, 
where the Gaussians have been estimated, each component of 
the standard GMM of language k will be updated according to 

( ) ( )ˆgpk k k k
gp gp

g

σ
µ α µ α

ω
=                  (7) 

We refer to these new models as Discriminative GMMs. 
Figure 2 shows, on its left side, a two-dimensional 

acoustic feature space. The black ellipses represent two 
Gaussians of the UBM. The white and the dashed ellipses 
represent the corresponding Gaussians of two languages, the 
white ones referring to language k. The white circles shown 
on the right side of Figure 2 represent a two-dimensional 
projection of a set of utterance supervectors of language k 
mapped to the KL space. The dashed circles correspond to the 
utterance supervectors of the competitor languages, and the 

black circle is the UBM. 1
kw and 2

kw , in the acoustic feature 

space, are the rescaled components of supervector kw  for 
the two Gaussians of the language k GMM shown in the 
figure. The figure suggests that the Gaussians of a language k 
are moved away from the corresponding Gaussians of the 
other languages along different directions. These directions 
are the ones that optimize the discrimination of that language 
in the KL space, i.e. the directions that maximize the distance 
of the GMM of language k form its competitor GMMs. This 
distance increases with larger αk, but at the same time the 
likelihood of each training utterance of language k decreases 
because its discriminative GMM moves away from the 
original MAP adapted model (which best matches the training 
data). This behavior is shown by the first curve in Figure 3 for 
a subset of 1000 utterances of the CallFriend test database, 
which has been selected as our development corpus. It shows 
how, for this set, the average log-likelihood ratio between the 
correct model and the UBM decreases as a function of αk. 

Since we cannot select largely different values for the 
parameters αk, to avoid favouring the language models nearer 
to their original GMM, a unique parameter α will control the 
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Figure 3. Average log likelihood for a subset of 1000 

utterances in the CallFriend test database,  %EER for the  
same dataset and %EER  for the 30s tests of the NIST  LRE03, 

as a function of  α. 

Table 2. EER(%) of Discriminative GMMs, and 
GMM-SVM on the NIST LRE tasks. In parentheses, 

the average of the EERs for each language. 

Year Models 
  Discriminative GMMs  GMM-SVM 
 3s 10s 30s 

1996  11.71  (13.71 ) 3.62  (4.92) 1.01  (1.37) 
2003 13.56  (14.40) 5.50  (6.02) 1.42  (1.64) 
2005 16.94  (17.85)    9.73  (11.07 )  4.67  (5.81 ) 

 
shift size along the discriminative directions of every 
language. The rule for selecting the value of α is very simple: 
avoid that a Gaussian move too far from the corresponding 
Gaussian of the UBM, possibly moving toward a region in the 
feature space modeled by another Gaussian, as suggested by 

the direction of 2
kw  in Figure 2. This is obtained by setting α 

to a value that entails maximum distance between models, but 
also guarantees that the average probability of the correct 
language model of the utterances in the development set is 
not less than the probability obtained by the UBM.  

The validity of this criterion can be confirmed by looking 
at Figure 3 which shows, as a function of α, the EER obtained 
by the discriminative GMMs on the utterances of CallFriend 
development corpus and on the 30s trials of NIST LRE03. It 
can be noticed that low EERs are obtained, for both tests, in a 
range of values for α near to the zero-crossing point of the 
average log-likelihood ratio curve. We kept α=12 fixed for all 
the experiments with 512 Gaussian GMMs.  

Using this simple and fast procedure for the selection of 
α, the discriminative GMMs provide considerable 
improvement compared with the standard GMMs and perform 
better than the GMM-SVM approach for short utterances (see 
Table 1). 

Our procedure is much faster than MMIE training, which 
requires several (~20) iterations on all the frames of the 
training database to converge. A single iteration on all the 
frames is required for the GMM-SVM approach to generate 
the UBM and the utterance GMMs. Although our MMIE 
training approach is very fast, because Gaussian selection is 
performed on the UBM, and kept fixed for all the iterations, it 
takes ~60 hours to produce its models starting from the 
standard models. The GMM-SVM approach, on the other 
hand, required only 2 hours to complete its job on the same 
dataset. Discriminative training inside the SVM training 
procedure is extremely fast, compared to MMI training, 
because it uses the models of the utterances, rather than their 

training frames. The cost of moving the language GMM 
supervector along its discriminative direction is negligible. 

Preliminary experiments with a gender independent 2048 
Gaussian GMM-SVM on the 30s tests, and with gender 
dependent Discriminative GMMs on the shorter duration 
tests, achieve performance comparable to the best ones 
reported in [3-4] for acoustic only systems. To enable the 
comparison with previous reported results, Table 2 shows the 
EERs obtained using pooled scores, as was usual practice 
before Odyssey 2006, and in parentheses the average of the 
EERs of each language. 

6. Conclusions 
A very fast, yet effective, discriminative training approach for 
language GMMs has been presented that exploits the 
information given by the separating hyperplanes estimated by 
a GMM-SVM classifier. Excellent results have been achieved 
by combining an inter-speaker variation compensation 
technique, the discrimination capability of the Support Vector 
Machines, and the accuracy of discriminative GMMs. Future 
work will be devoted to improving both our standard gender-
dependent models and their discriminative directions. 
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