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Abstract. In the present paper we describe some methods forowed from the meteorological literature (e.Georgakakos
verifying and evaluating probabilistic forecasts of hydrologi- et al, 2004 Gangopadhyay et aR005.
cal variables. We propose an extension to continuous-valued However, this meteorological-oriented approach has two
variables of a verification method originated in the meteo-drawbacks: first, most of the methods developed by the me-
rological literature for the analysis of binary variables, and teorologists were originally proposed for the probabilistic
based on the use of a suitable cost-loss function to evaluatgredictions of discrete-valued variables, and the adaptation
the quality of the forecasts. We find that this procedure isof these techniques to deal with continuous-valued variables
useful and reliable when it is complemented with other veri- can reduce the discriminating capability of the verification
fication tools, borrowed from the economic literature, which tools (e.g. Wilks, 1995 Jolliffe and Stephensg2003. For
are addressed to verify the statistical correctness of the prokexample, a continuous-valued forecast can always be con-
abilistic forecast. We illustrate our findings with a detailed verted into a binary prediction by using a threshold filter
application to the evaluation of probabilistic and determinis- (e.g., Georgakakos et al2004 Roulin, 2007): this allows
tic forecasts of hourly discharge values. one to use verification tools developed for binary variables,
but it also reduces the amount of information carried by the
forecast, and the usefulness of its verification. A second
problem with the usual hydrological approach to probabilis-
1 Introduction tic forecast evaluation is that it disregards some other avail-
able tools: more specifically, other verification methods ex-
Probabilistic forecasts of hydrological variables are nowa-ist, proposed in the last decade in the economic field (e.g.,
days commonly used to quantify the prediction uncertaintyDiebold et al, 1998, but these methods have been usually
and to supplement the information provided by point-valueignored by the hydrologists, notwithstanding their relevance
predictions Krzysztofowicz 2001, Ferraris et al.2002 To- for the problem under consideration.
dini, 2004 Montanari and Brath2004 Siccardi et al.2005 The purpose of this paper is to overcome these two prob-
Montanarj 2005 Tamea et a.2005 Beven 2006. How-  lems and to provide an efficient approach to probabilistic
ever, probabilistic forecasts are still less familiar to many forecast verification; in order to do that, we first need to de-
people than traditional deterministic forecasts, a major prob-scribe some existing forecast verification tools. We do not
lem being the difficulty to correctly and univocally evaluate have the ambition of fully reviewing the vast literature in the
their quality Richardson2003. This is especially true in  field, and we will limit ourselves to describe some methods,
the hydrological field, where the development of probabilis- which in our opinion are the most suitable for application in
tic forecast systems has not been accompanied by an analthe hydrological field (Sect. 2). This serves as a basis for
gous effort towards the proposition of methods to assess théeveloping, in Sect. 3.1, a simple cost-loss decision model
performances of these probabilistic forecasts. In contrast, thevhich allows one to operationally evaluate a probabilistic
usual choice when evaluating probabilistic predictions of hy-forecast of a continuous-valued variable. We then consider
drologic variables has been to adopt verification tools bor-in Sect. 3.2 the approach of the economists to forecast eval-
uation, and discuss its merits and drawbacks, with special
Correspondence tdz. Laio attention to its applicability to hydrological predictions. The
(francesco.laio@polito.it) two approaches are compared in Sect. 4 through an example
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Table 1. Forecast verification tools, subdivided by the type of predicted variable (columns) and the forecast outcome (rows). We refer to

F. Laio and S. Tamea: Verification tools for probabilistic forecasts

Sect. 2 for details and references about the methods.

Discrete predictands .
, M ulticategory Coer:;_l nuom(st
Binary Nominal Ordinal Predictands
. HIT RATE, PEARSON'S GOODMAN
De}gggg‘?'c THREAT COEFF.OF | AND KRUSKAL ,\'\ﬁg
SCORE, ... CONTINGENCY G STATISTIC
TESTSFOR THE
NOT NOT NOT
I nterval forecast CONDITIONAL AND
APPLICABLE APPLICABLE APPLICABLE UNCOND. COVERAGE
Probabiligtic CONVERSION RANKED
forecast BRIER SCORE TO BINARY PROBABILITY THIS PAPER!
TABLES SCORE

of application to the forecast of hourly discharge values. Fi-for details). The available verification tools depend upon the
nally, in Sect. 5 the conclusions are drawn, aimed at pro-kind of forecast and predictands under analysis, as presented
viding some guidelines for the use of probabilistic forecastin Tablel. In all cases, the verification process requires that
evaluation methods in the hydrologic field. the obtained forecasts;( or {L;(p), U;(p)}, or p;(x;)) are
compared to the real future values, for all points belong-

ing to the testing set. We will now rapidly describe some
of the verification tools available in the different situations,

separating the cases when the predictand is a discrete vari-
Before describing the tools for verifying a probabilistic fore- gple from those when it is a continuous one.

cast, we need some definitions. Suppose that a time series
of measurements of a variabids available, sampled atreg- 2.1 Discrete-valued predictands
ular intervals,{x;},i=1, .., N. A portion of the time series
of sizen, which we call “testing set”, is forecasted, obtain- Most of the methods for the analysis of discrete binary or
ing an estimate; of the actual value;. The predictions are  multicategory predictands originate from the meteorologi-
carried out using the information available up to a time stepcal literature (se&Vilks, 1995 or Jolliffe and Stephenson
i—h, whereh is the lead time, or prediction horizon, of the 2003 for a detailed review). Consider a situation in which
forecast. Three different kinds of forecasts, with increasingthe variablex can be partitioned inté mutually exclusive
level of complexity, can be carried out: if the result of the classes(y, ..., Cx. Verification of deterministic forecasts of
prediction is a single value for each predicted point, one hasliscrete predictands (row two, columns two to four in Ta-
a deterministic forecast;; if the prediction consists of an ble 1) requires the representation of the results through a
interval [L; (p), U;(p)] wherein the future value; is sup-  contingency table, i.e. a table whogec) cell contains the
posed to lie with coverage probabilify, one has an inter- frequency of occurrence of the combination of a determinis-
val forecastChatfield 2001, Christoffersen1998; finally, if tic forecast falling in clas€’, and an observed event in class
the whole probability distribution of the predictands(x;), C.. Verification in this case is carried out by defining a suit-
is estimated, one has a probabilistic forecAstramson and  able score to summarize in a single coefficient the informa-
Clemen 1995 Tay and Wallis 2000. tion contained in the contingency table. Examples of these
A second important discrimination regards the form of scores are the hit rate and the threat score for binary variables
the variable under analysis: can be a a continuous-valued (Wilks, 1995, the so-called G statistic for multicategory or-
variable, which is the most typical case in hydrology; or a dinal variables Goodman and Kruskall954 Kendall and
discrete-valued variable, i.e. a variable that can take one an8tuart 1977, p. 596), and the Pearson’s coefficient of con-
only one of a finite set of possible values (the typical casetingency Goodman and Kruskall954 Kendall and Stuart
is the prediction of rainfall versus no rainfall events). When 1977, p. 587) for multicategory nominal variables. As for the
the predictands and forecasts are discrete but not binary varinterval forecasts of discrete variables (row three, columns
ables, a further distinction occurs between ordinal and nomiwo to four in Tablel), these are seldom performed, due to
inal events, depending on the presence of a natural order béaherent difficulty of combining the fixed coverage probabil-
tween the classes whereinis partitioned (se&Vilks, 1995 ity of the interval prediction and the coarse domain of the

2 General issues in forecast verification
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discrete variable. form {L;(p), U;(p)} (Tablel, row three, column five). De-

We now turn to the probabilistic forecast of discrete vari- fine an indicator functiond; which is equal to 1 ifx; <
ables, and consider the case ofk&lasses ordinal vari- {L;(p), U;(p)}, while I;=0 in the reverse case. Standard
able (row four, column four in Tabl&). The probabilis- evaluation methods of interval forecasts consist in comparing
tic forecast of the-th point in the testing set;, has now the actual Coverag(}; > ' 4 I; of the interval, to the hypo-
the form of a vector{p; 1, ..., pix}, where p; ;>0 (with thetical coverage. A likelihood ratio test for the hypothesis
j=1,...,k) represents the probability assigned to the fore—% Y i_1 Ii=p is proposed byhristofferser(1998 to verify
castx; falling in classC;. Analogously, one can define the the (unconditional) coverage of the interval. However, this
vector {0; 1, ..., 0; }, With 0; j=1if x; € C;, ando; ;=0 test has no power against the alternative that the events in-
in the reverse case. A commonly adopted verification toolside (or outside) the interval come clustered together. This
in this case is the Ranked Probability Scaxu¢phy, 1970 shortcoming can be avoided by verifying that thevalues

1971 Epstein 1969 Wilks, 1995 which takes the form form a random sequence in time; we refeiGhbristoffersen
R (1998 for a discussion of this problem and a description of
RPS— } Z Z [Pi = O m]Z 1) an appropriate joint test of coverage and independence.
g lmmt ’

whereP; =3, pi j is the cumulative distribution func- 3 verification tools for probabilistic forecasts of contin-

tion (cdf) of the forecasts;, while 0; ,= Z'}Ll 0;,j is the uous variables

corresponding cdf of the observatians(which actually de-

generates into a step function, taking only 0 and 1 values)The main focus of the present paper is on the evaluation of

The rationale behind the use of the RPS as a verification tooprobabilistic forecasts of continuous variables, which are fre-

for ordered multicategory predictands lies in the fact that it isquently the object of investigation in the hydrological field.

sensitive to distance, i.e. it assigns a higher score to a forecagivo approaches to the problem are considered. The first

which is “less distant” from the event, or class, which actu- one is adapted from analogous methods developed by the

ally occurs (se@urphy, 1970. In the particular case when meteorologists when dealing with binary variablgi(phy,

k=2 (binary predictand, row four, column two in Taldlgthe 1969 Wilks, 1995 Palmer 200Q Richardson2003, and it

ranked probability score reads is based on the comparative evaluation of the forecasts in
12 12 terms of their operational value, or economic utility. This ap-

RPY, , == Z [Pi1— 0,-,1]2 == Z [pi1— 01.’1]2 (2)  proach requires that the decision-making process of individ-
i3 i ual users is considered, and a cost-loss function is specified

which is called the Brier score. Finally, the rather uncommonbY the forecaster; the evaluation of the forecast involves a sin-

case of multicategory nominal variables is usually treatedgle statistic which measures the overall value of the predic-

by converting the contingency table into binary tables (seet'on' Details on this approach are presented in Sect. 3.1. The

Wilks, 1995 other approach is preeminently used by the economists (e.qg.,
' ' Diebold et al, 1998 Berkovitz, 2001 Noceti et al, 2003,
2.2 Continuous-valued predictands who avoid to measure the overall quality of the prediction

and concentrate on the evaluation of the formal correctness
Consider now the situation when the variable to forecast is &f the uncertainty description provided by the probabilistic
continuous one (column five in Taklg When the prediction  forecast. Suitable statistical tools are developed for this pur-
is deterministic, the assessment of the quality of the fore{ose, as detailed in Sect. 3.2.
cast requires that a suitable discriminant measure between
the forecasted and observed values is calculated, a good pré-1 Determining the operational value of probabilistic pre-
diction being the one that minimizes the discrepancy. Com- dictions
monly used measures are the mean squared error,
; As mentioned, the approach of the meteorologists to proba-
MSE = 1 Z [% — x]?, ©) bilistic forecast evaluation requires the definition of a cost-
ni= loss function to determine the value of the forecast. This ap-
proach has been originally proposedMurphy (1969 and
and the mean absolute error, Epstein(1969 for the evaluation of probabilistic forecasts
"o of discrete-valued variables. The modification of this frame-
MAE = -~ D% =l (4)  work to deal with the evaluation of probabilistic forecasts of
i=1 continuous-valued variables represents one of the purposes
Before considering the main point of the paper in Sect. 3of this paper.
(verification of probabilistic forecasts of continuous vari-  Suppose that the forecast user knows that the cost of
able), we consider the case of an interval forecast of theghe precautionary actions to guarantee protection against an

www.hydrol-earth-syst-sci.net/11/1267/2007/ Hydrol. Earth Syst. Sci., 11, 1267-2007
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ever, the future value is obviously not known, which com-
plicates the optimization problem. This is where the proba-
bilistic prediction turns out to be useful: in fact, the decision
maker can use the probabilistic forecagtt) to represent
the probability distribution of the future eventg(x). Un-
der this hypothesis, he/she will be able to calculate the ex-
pected expens@(x):fam CL(x, x)p(x)dx, and to take
the decisiony* that minimizesCL(x) (e.g.,Diebold et al,
1998 Palmer 200Q Richardson2003. The decisiony*
will depend upon the probabilistic forecast throygtt), and
a better prediction will decrease the actual expenditure of
> moneyCL(x, x*)=C(x*)+L(x, x*). This provides a gen-
eral framework for the comparison of probabilistic forecasts
based upon their operational value.
We proceed in our description by specifying the above pro-
Eig. 1. Examples of _quadrat_ic (dash_ed line), absolute-value (dottedraqure for the case of a simple cost-loss function, which we
in_ne) a';?] asymrrtl;letnc (Ct?]m'rr:uc.’us 't'nle’ see b;ﬂcc:zt—lqss”funr:- propose here to evaluate probabilistic forecasts of hydrologic
vIv(I)wri]ISe.x is?h\:ea::aaal %tl(jrr:a V;u:nzon alaxis s the “design” vaiue, variable_s. We suppose(y) is a Iin_ear functio_nC(X)zox,
wherec is a constant, and (x, x) is a stepwise linear one,
L(x, x)=H(x — x)I-(x — x). Here H(-) is the Heavyside
) . . . . function, which is equal to one for positive arguments and
hypothetical eveny is C(x), whereC(,) is an increasing ;o4 gtherwise, antlis a constant (note that-c, since oth-

fEnct!or}: T:ebvarrllablde( re-presen:(s at:)sort gf deS|hgn fvalue, erwise one would spend more money to guarantee protection
that is fixed by the decision maker based on the forecasfy,,, \hat js eventually lost, which is an anti-economic prin-

outcome: if the.prediction is qet'erministig,.is .nec.essarily ciple). The cost-loss function reads

equal to the point forecask=x; if the prediction is prob-

abilistic, then they value can be chosen among the pos-CL(x, x) =c-x +Hx — x)-1- (x — x). (5)

sible forecast outcomes. In particular, the decision-maker ) ) )

will take a decision that minimizes the total expenditure of A linear transformation of Eq.3), obtained by subtracting

money. In order to do that, also the economic logsedue ~ ¢* @nd dividing by /2,

to _the actual occurrence qf an eventneed to be_ defined: pe (X, x) = 26(x —x) + 2H(x — x) - (x — %)

L is supposed to be zero if the observed event is lower than

the design evenk <y (in fact, in this case the precautionary = Ix —x1+2(¢ - 05( —x). ®6)

actions guarantee protection), and to increase Withx)  is a completely equivalent cost-loss function (a similar func-

whenx> . The overall cost-loss function is the sum of the tjon is used byEpstein(1969 and byMurphy (1970 when

cost and loss terms, and depends on both the observed angaling with binary or multicategory variables), but it is more

the design event’'L(x, x)=C()+L(x, X)- suitable to evaluating predictions. In fact, it depends on a
An example can help to follow the reasoning: considersingle parameter, the cost-loss rafiec//<1, and it attains

the case when is the water stage at a given point along a null value wheny=x, i.e. when the hypothetical value is

a river, andy is the design value selected by the decision-equal to the actually occurred one (perfect forecast).

maker on the basis of the information provided by the fore- An example of such cost-loss function is reported in Ejg.

caster. The larger ig, the more impactive and expensive continuous line, where it is compared to an absolute value

are the necessary precautionary actions (emission of floodost loss-function,papg(x, x)=|x—x|, and to a quadratic

warnings, closure of roads and bridges, temporal flood proofcost-loss functionpquad(x, x)=(x—x)2. The main differ-

ing interventions, people evacuation, etc.); this explains whyence is in the fact that the: function assigns different

C(x) is taken as an increasing function gf If x over-  weights to under-design and to over-design, which is more

comesy, some losses will also occur; as the distance be-appropriate when environmental (hydrological) variables are

tween the observed and hypothesized values;x), in- predicted. In this casé,values lower than 0.5, giving rise to

creases, the losses become more and more relevant, includest-loss functions similar in shape to the one in Rigare

ing disruption of cultivated areas, inundation of civil infras- to be preferred: in fact, the losses are expected to be much

tructures, flooding of inhabited areas, loss of human lives greater than the costs of protection. Also note thatdhe

etc. As a consequenceé(x, x) is an increasing function of  function is the generalization of the absolute value cost-loss

(x—x) whenx>y. Once the cost-loss function is defined, function, asp: converges tqoaps When £=0.5 (this is an-

it is still necessary to determine the optimal design value,other reason why it is convenient to usg rather thanCL

x*, i.e. the value that minimizes the total expenses. How-from Eq.5).

P(X %)
A

2P

UNDER-DESIGN X OVER-DESIGN X
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Once the loss function is defined, one can search for thehe mean deviatioﬁ:% ' 1 lxi — X|. Our proposal is to
optimal design valuec*. By taking the expected value of plot EC(¢)/§ versusg, in order to be able to directly deter-
Eq. 6), one obtains mine the value of the forecast compared to the mean-value

0 prediction: if EC(&)/$ is lower (larger) than one, the fore-
pe(x) =2 (X — f fp()?)d)%>+2/ (X—x)p@)dx, (7)  castis more (less) valuable than the climatologic prediction.
alle X An example of application of this procedure is reported in
whose derivative with respect jg equated to zero, provides Sect. 4.

the optimal decisiony * The idea of plotting theEC(¢) curve is new (however,
. . 1 Palmer(2000, Richardson2003 andRoulin (2007 use a
P =1-§=x"=P"1-8 (8) similar graph for determining the value of probabilistic pre-

that depends only on the cumulative distribution function of dictions of discrete variables); more frequently, the meteo-
the forecastsP(-), and on the cost loss ratio<1. Of course, rolog|st_s face the difficulty of setting an exact_valuegdmy
the same result would have been obtained by usingas(  SUPPOsing thaj is a random variable with a uniforfi (0, 1)
the cost-loss function (this is why the two formulations are distribution (e.g.Murphy, 1969, and then taking the average
equivalent). In contrast, if a similar procedure is adoptedvalue of EC(§) over the possiblg values. This corresponds
with the absolute value or the quadratic cost-loss functiont© calculating the are&C below theEC(§) curves,
(Fig. 1), the median and the mean of the forecasts distribution 1 18 L
are respectively selected as the design vajtes EC = / EC(§)ds = — Z/ pg (xi, x;)0E. (11)

The total expenses will now amount p@(x, x *)=|x* — 0 niziJo
x|+2(6—0.5)(x" —x), and the operational value of different  gjnce the integral and summation terms interchange, we can
predictions will be found from the averaggdy, x*) values  concentrate on a single addendum in the summation and elide

over then points in the testing set, the subscripts for simplicity:
1 o 1L _ 1 1
EC®) =Y et = D (I A0 —xlt g = [ o= [arta-o-xi+ @2
i=1 i=1 0 0
2(6 — 05) (P (1—&) — x,-)} : ) +2(6 — 05) (P11 — £) — x)}dé.

. . _ -1
The lower is the obtained C (&) value (EC stands for “ex- Substitutingy=P""(1 - §) one has

pected cost”), the more valuable is the forecast. Note that, oo
when the prediction is deterministi® (x)=H (x—x), and, —/ {ly =xI+[1=2P(WI(y —0)} p(y)dy =
as mentionedy *=x for any&. In this case Eq.9) reads oofoo
1 [ 2[H(y —x) — P(WI(y —x)p(y)dy. (13)
ECdet®) = = Y {1 —xi| +2(6 —05)(% —x)}, (10) -
i3 Using the formula for integration by parts, and considering

which is a discrepancy measure similar to the mean square@atH(y — )= P(y)=0 wheny— oo, one obtains

error and mean absolute error defined in Egsaqd @). o0 2
A difficulty with Eq. (9) is that the expected cost depends ! = / oo[H (y —x) = P(»)]°dy, (14)

on the cost-loss ratig; different predictions can thus be

ranked in different manners by different users, implying thati.e. that fol pe(x, x*)d& is equivalent to

there cannot be an universally accepted “best” probabilisthe continuous ranked probability score,

tic prediction. This can be especially problematic, since theCRPS =ff°oo[H(y—x)—P(y)]2dy, which is sometimes

cost-loss function is seldom known, and, even when it is sim-used to assess the performances of probabilistic forecasts of

plified as in Eq. §), it may be difficult to set a specific value continuous variablesHersbach2000. As a consequence,

for the cost-loss ratig. Our preferred solution is therefore EC in Eq. (L1) is also equivalent t€RPS Hersbach200Q

to avoid fixing a¢ value, but rather to graphically represent Eq. 5). This equivalence is not surprising: in fact, the CRPS

how the expected costs, associated to different forecasting the limit of the ranked probability score in EdL)(for

systems, change with Special attention should be paid to an infinite numberk of zero-width classes (sdadersbach

the EC (&) curves in the part of the diagram whege0.5, 2000, and the RPS was obtained by applying to discrete

corresponding to situations where the losses are very relevariables a cost-loss function which is similar tg in

vant compared to the costs of the precautionary actions. W&q. 6) (Murphy, 1969 1970. However, the manner how

also propose to re-scale t” (&) curves with respect to the  we obtained the CRPS in Edl4) is novel, and allows one

cost of a “climatologic” mean-value deterministic prediction, to better understand what are its qualities and drawbacks.

Xi=x = %Z?:l x;. By setting this value in Eq10) one ob-  In particular, Egs. (12) told) demonstrate that the CRPS

tains that the expected cost of the climatologic prediction isis averaged over different cost-loss ratios, and, as such, its

www.hydrol-earth-syst-sci.net/11/1267/2007/ Hydrol. Earth Syst. Sci., 11, 1267-2007



1272 F. Laio and S. Tamea: Verification tools for probabilistic forecasts

indications can be misleading, due to the excessive weight Under the null hypothesis of independence and with
assigned in its calculation to expenses correspondegt to n>10, the standardized statistic
values larger than 0.5, which are rather unrealistic in the
hydrologic field. In our opinion, it is better to evaluate the T [9n(n —1)
different predictions by plotting th&€C(§)/8 curves, rather st = o, =t 2(2n 4+ 5) (16)
than trying to summarize all information in a single statistic.
has a normal distribution with null mean and unitary variance
3.2 Statistically-oriented evaluation of probabilistic fore- (Kendall and Stuartl977), which allows one to easily deter-
casts mine the limit values for the independence test. For example,
the 95% test of independence will be passediifs below
.645 (one-tail test).
Consider now the uniformity hypothesis: many goodness-
f-fit tests for this hypothesis existD{Agostino and
tephensl986 Noceti et al, 2003. HoweverDiebold et al.

The economists criticize the approach based on the evalual-
tion of the forecasts through the use of cost-loss functions
for the fact that the evaluation turns out to be user-depende

rather than objective: in fact, two users with different cost- . .
loss functions may rank in a different manner two forecasts.(1998 argue thatitis bgtter to adopt a less fprmal graphlca'l
Moreover, they argue that the cost-loss function is seldommethOd,’ based on an histogram rgpresentaﬂon Of. the_ density
known, which introduces an undesired element of uncer—onhez_" s. We agree that the gra_p_hlcal representatlor_l 'S more
tainty in the evaluation@iebold et al, 1998. The followed revealing, bUt. prefer a pr(.)bab.lhty. plot representation that
approach is therefore to leave aside considerations on thgOes not require a subjective binning of the data. The prob-

operational value of the probabilistic forecast, and simplygsmtm;i:\?; Igi;ripblﬁtig;: ;ﬁizéﬁ\éil;es V-?—Lséjzyfgeg gfn:ﬁg':ﬁl
verifying if the forecast is correct under a statistical view- i/ P

point. A correct probabilistic forecast aof is one whose _sultin_g curve reveals if the dqta are approximative_ly uniform,
probability density functionp; (£;) coincides with the true 't?] Wg.'Ch caselih?z,-, Ri/n) pom;c_zare clgse;o the blslectgrof
distribution ofx;, fi(x;). Even if f;(x;) is not known (the € |ag(;am. h olmogorov cr(])_n : ednce an s_dcan also fe rep—l
distribution changes with, and only one sampled value is :::teg;eun?:%rtm(iatSar'lr']r?eg?cfllmg] z:oirggﬁgzvérz ?Wmoogﬁa?rma
available), it is feasible to build up a test of the hypothesisl. llel t )t/h bisect gd t a dist f 9
Ho : pi(x;))=fi(x;). The test is based on the probability in- ines, parallel to the bisector and at a distanee)//n from

tegral transformz;=P; (x;), that consists in evaluating the b Whereq(e) is a coefiicient, dependent upon the signifi-

cumulative distribution function of the predictions in corre- Eia;ce Isvel ofdthsetteit (Z%.E’SQ(O[T? Ot'o‘?.: 1'35%’ S?]e
spondence to the observed vaki€Berkovitz, 2007). Under gostino an ephei 9. € testis passed when

the hypothesi#iy, the distribution of; is uniform, U (0, 1). th(aTﬁurvesbret;ﬁI?ln |In?|de thesetctt)_nfld(;ance batndfsl. tellif th
If one applies the probability integral transform to all points € probability plotrepresentation does not only tefl Htne

in the testing set, a sample gf values is obtained. If the yniformity test is passed or not, b.ut .also provide.s a t90| to
probability forecast is correct, the values are mutually in- investigate the causes behlnd deviations _f_rom unn‘ormﬁ_y. In
dependent and identically (0, 1) distributed. The test of the fact, the shape ofthe curvesinthe probab|llty plot (seeZjig.
hypothesisHo can therefore be split into an independence is suggestive of the encountered problem, since the steepness

test and a goodness-of-fit test of thi€0, 1) hypothesis. of the curves is larger where mozg points concentrate. In

. L the case of the continuous line in Fig. for example, the
As for the independence, the usual suggestion is to look

h lation f i ¢ d of thei z; points are concentrated in the vicinity of the end points
a;t e autocorrelation function of the's and of their powers 0 and 1. This corresponds to having the reaValues that

2, .. 2" (€..,Diebold et al, 199§. This produces some fall, more frequently than expected, on the tails of the distri-

prohferathnh of thgbtlest Sts;['St'cs ]Eqne for eac;h Cofnsr:deredbution of the forecasts. As a consequence, the probabilistic
power), with possible problems of interpretation of the re- prediction is “narrow”. Similar considerations apply to the

.SUItS' Our proposal is to use instead the Ken_dalltsst of " other curves in Fig2. The probability plot representation
independenceKendall an.d Stuart__'L977). Consider the_ S€-  has already been used Bye Gooijer and Zeron2000); in
quencezy, ..., zn, and their associated ranky, ..., Ry, ,|.e. contrast, it should not be confused with the apparently simi-
their pqsmon in the ordered vector of tlzé.s.. Kendall'st lar attributes diagram\ilks, 1995, which is a tool for the
test of independence is based on the statistic verification of probabilistic predictions of binary variables.
When using this approach to forecast verification, one
_ 4Ny (15) ends out with results concerning with the formal correctness
n-—Dn-2° of the probabilistic prediction; however, these results do not
imply that the prediction is good: there can exist a prediction
where N, is the number of discordances, i.e. the number ofthat passes the independence and uniformity tests, but has no
pairs (R;, R;+1) and (R;, R;;1) that satisfy eitheR; <R; operational value. In our opinion, the method should there-
andR;y1>R;41,0rR;>R; andR;1<Rj41. fore necessarily be used together with some other method,
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like those described in Sect. 3.1, allowing one to understand
if the prediction is really valuable or not.

A final comment is necessary regarding multi-step-ahead
predictions (i.e., characterized by a prediction horiizefl).
In this case, serial correlation in thg series is expected
up to a lagh—1 (Box and Jenkins1970, and the indepen-
dence and goodness-of-fit tests should be applied separately
to theh subserieszi, z1+n, 21428, ---}s {22, 22415 224205 -}y
wory {zns 220, 231, ...} (Diebold et al, 1998. One obtains:
gt Statistics ande probability plots for each prediction. The
global tests will be obtained from the combination of the tests
performed on each of the subseries: however, the combina-
tion is complicated by the fact that tthesubseries are mu-
tually (not internally!) dependent. When the samples being
tested are correlated, the correct significance level to have a
global a-level test should be between(linearly dependent
samples) and/ i (independent samples). In our opinion the
correlation between the subseries is strong, and it is thus bet-
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ter to perform the tests on thikesubseries with a significance Fig. 2. Examples of the possible outcomes of a probability plot
level«, instead of using a level/ h for each sub-test as sug- representation of the;=F; (x;) values versus their corresponding

gested byDiebold et al.(1999.

ranksR; (divided by the sample siz€). If the points lie close to

the bisector, the forecast is deemed reliable; otherwise, a problem
with the spread of the probabilistic forecast, or a prediction bias, are
detected.

4 Application and discussion

The verification tools described in the previous sections are
applied to the probabilistic forecasts of a discharge time se-
ries, obtained with a prediction method developedagnea

et al.(2009 andLaio et al.(2007), and based on local poly- o

nomial regression techniqudsafmer and Sidorowicii987,

Fan and Gijbels1996 Cleveland and Loadel 996 Porpo-

rato and Ridolfi 1997 Regonda et al.2005. We use this
prediction method as a mean to exemplify the described veri-
fication techniques; we therefore referlamea et al(2005
andLaio et al. (2007 for a detailed description of the pre-
diction method, which is here briefly introduced. A time
series of past values of discharge (and concurring average
precipitation over the basin) is required as input. The func-

tional relation between the values to be forecasiedand 3.

the regressorg;_; (vector of past discharge and precipita-
tion values) is locally approximated by polynomials, whose
coefficients are estimated on a neighborhood ofsi@eeach
query point. The regressions obtained, different from point
to point, are applied to the respective query points to give the
deterministic predictiort;. The method produces forecasts
for the points in the testing set, provided that a$ef model
parameter values is assigned by the forecaster.

We use in our verification exercise four different types of
predictions, all based on the mentioned local polynomial re-
gression method. Two forecasting techniques are determin-
istic and two are probabilistic, as detailed hereafter.

1. Best deterministic predictionit is the point forecast 4.

obtained by selecting the parameter Sgist that pro-
duces the “best” deterministic predictions when the
method is applied to the calibration set, i.e. to a set of

www.hydrol-earth-syst-sci.net/11/1267/2007/

discharge values selected for cross-validation purposes
(seeTamea et a).2005.

Ensemble forecasit is a probabilistic forecast obtained
by selectingg parameter sets rather than a single one
(we use in the following example thhe= 100 sets that
minimize the mean absolute error over the calibration
set). Each of these sets is separately used to obtain
different predictions for each point in the testing set.
The empirical distribution function of this sample @f
predictions is taken as representative of the distribution
characterizing the ensemble forecast.

Probabilistic forecast the same as before, but with a
suitable parameter uncertainty representation attached
to each member in the ensemble; this is obtained by us-
ing thek residuals of the local polynomial regressioks (

is the so called “humber of neighbors”). The residuals
are converted into out-of-sample errors by resampling
and inflating them with a multiplying factor accounting
for the prediction uncertainty, according wikendall

and Stuart(1977; finally they are summed up to the
point predictions in the ensemble (deso et al, 2007,

for more details). A large sample 8f ;, j=1,..,q - k
values is obtained, whose empirical distribution func-
tion is taken as the estimate pf(x;).

Median prediction it is a deterministic prediction ob-
tained by taking,for each point in the testing set, the me-
dian of the above defined probabilistic predictiarix;)

as the estimator of;.
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Fig. 3. An example of forecasts of an hourly discharge time series: portion of the testing set with predictiefsidashowing the outcomes
of the four prediction methods described in Sect. 4 (&eeea et al(2005 andLaio et al.(2007 for all the details).
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Fig. 4. Representation of the expected cost from B (fe-scaled

by the mean deviatiod) as a function of the cost-loss rat§o for

a 1 step-aheafh) and a 6-steps ahedl) hourly discharge predic-
tion. The four lines in each graph refer to four different forecasting
methods, described at the beginning of Sect. 4.
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The prediction methods have been applied to the discharge
time series of the Tanaro river, in the northwest of Italy. The
catchment basin at the gauge station of Farigliano has an ex-
tension of 1522 krh and an elevation ranging from 235 to
2651 m above the sea level. The hourly discharge time series
has been measured from 1997 to 2002. The testing set cov-
ers the period between 14 November 2002 and 27 Novem-
ber 2002, and corresponds to an important flood event. The
mean rainfall over the catchment is used as an endogenous
variable for the prediction. The mean rainfall is determined
from the data collected by eleven rain gauges located on the
basin. Both hydrometric and pluviometric data have been
collected by the Regional Agency for the Protection of the
Environment (ARPA-Piemonte), and are the same already
used byTamea et al(2005. Prediction horizons of one and
six hours (corresponding fo=1 andh=6) are considered in
the following examples. A portion of the testing set with the
corresponding four types of prediction/at6 is displayed in
Fig. 3, where the two series of point forecasts (1. and 4.) are
displayed together with the 90% bands from the two proba-
bilistic prediction methods (2. and 3.).

In Fig. 4 the expected cost from EP)( re-scaled by us-
ing the mean deviatiod, is represented as a function of the
cost-loss ratic for the four predictions listed above. Note
that theEC(&)/8 values are much lower than 1, both for the
1-h ahead prediction (Figla) and for the 6-h ahead predic-
tion (Fig.4b), demonstrating that all forecasting methods are
very competitive with respect to the climatological predic-
tion. The quality of the four prediction methods can now be
comparatively evaluated: the lower is the expected cost of a
forecast, the higher is its operational value. It is clear from
Fig. 4 that the two probabilistic methods outperform the de-
terministic ones, in particular in the part of the diagram that
is more important when dealing with flood events (large ex-
pected losses compared to the costs, i.e daalues).

www.hydrol-earth-syst-sci.net/11/1267/2007/
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It is also interesting to comment on the shape of the four

curves in the diagram: the relation between the expected cos 1
andé¢ turns out to be linear when the prediction is determinis- @ = /
tic; in fact, by settinngl(l— &)=x; in Eq. (9), one obtains 08k o g '
the equation of a straight line, whose slope is two times the = / )
bias of the prediction% Y '_1(% — x;), and whose intercept _ /
with the §=0.5 vertical line is the MAE of the forecast, a 0or Ry
measure of the spread of the prediction errors. As expected = ' )
both the (negative) bias and the spread of the errors increas 0.4t
when the prediction horizon passes from 1 to 6h. The me- At
dian prediction is better than the best deterministic prediction 02 .
for £ <0.5, which is mainly due to the beneficial effect of tak- N i .
ing an ensemble of predictions rather than a single one (see s prob.
Georgakakos et a2004 Tamea et a).2005 Regonda et . % o2 oz o6 o8 1
2005. z
On the same diagram the probabilistic predictions tend 1 ‘ ‘ ‘ _
to have a parabolic shape, with null (or very low) val- I
ues at the extremes and a maximum foe0.5. The (b) i
reason for the low values at the extremes is the fol- 0.8y
lowing: when £§=0 the cost of the precautionary ac-
tions is null, and one can therefore always take an action 0.61
that protects against any possible occurring flood. An- =_
alytically, when £=0, one hasP *(1-&)=max(#;) and . oal
ECE=0)=5 > {Imax(%) — xi|—(max&)—x)};  the '
only terms contributing to the expected cost are therefore -
those when the actually occurred valyds greater than the 0.2 _
maximum predicted value, mai ), which never happens for L5 ' * prob.
the more reliable probabilistic prediction, and only rarely for 0 ¢ 0; v - s o ]

the ensemble prediction.

When&=1 the cost of the precautionary action is equal
to that of the eventually occurring losses; there is thus no
convenience to take any action, i.e. the design valuie Fig. 5. Probability plot representation (see Fig. 2) of the ensemble
Eq. (6) can be set to zero (actually, to niip)). As a conse- (gray C|rcle_s) and p_robablllstlc (b_Iac_k cnrcles_) forecasts of an hourly
quence ps—; and EC(é=1) are also null (or very low). In discharge time series. Each point in the diagram corresponds to a

. . . . point in the testing set. Pang@) refers to 1 step-ahead predictions,
;hls second dcase thr? t?tal COSthOl;:d in reality ?e dlf-ferempanel(b) to 6-steps ahead forecasts. The Kolmogorov 5% signifi-
rom zero, due to the . os_se_s., ut the passage from Eli)q ( cance bands are also reported as dashed lines.
to Eq. 6) produces this fictitious result. However, this is
not a relevant incongruence, since both extrege® and

&=1 correspond to unrealistic situations when the decision ] o
fo be taken is obvious, and the forecast is useless. It is not=1817 m*/s. Also these results confirm the superiority of

then the shape of the single curve on the diagram that is of€ Probabilistic method, even if, as mentioned, the relevance
interest, but the relations between the curves for fixedl-  Of the CRPS index is doubtful when dealing with hydrologi-
ues. Considering this aspect, it can be noted how the prob¢al applications.

abilistic prediction provides more valuable results than the We now turn to the application of the statistically-oriented
ensemble prediction, in particular for the more relevant lowforecast verification tools: since these methods are targeted
& values. As a further detail, the continuous ranked probabil-at evaluating probabilistic predictions only, the comparison
ity score values are the following: A1, CRPS=10.1 m®/s will be limited to the ensemble and probabilistic predic-
for the best deterministic predictiotCRPS=8.8m®/s for tions methods. As mentioned, the verification of the prob-
the ensemble predictioGRPS=7.7 m®/s for the probabilis-  abilistic forecast is a two step process, requiring to apply
tic prediction, andCRPS=10.2 m?/s for the median pre- the transformation;=P; (x;) and then separately test the in-
diction. At k=6, the corresponding values are 41¥sn  dependence and the uniformity of thgs. The standard-
(best), 25.8 /s (ensemble), 23.6%s (probabilistic), and ized Kendall's zg; statistic in Eq. {6) is calculated, ob-
31.1 /s (median). These values correspond to the areas bdaining ts=1.38 (ensemble) ands=—3.17 (probabilistic)

low the curves in Fig4, multiplied by the mean deviation for h=1. Both values are not significant at the 5% level,
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i.e. the independence test is passed. /=66, six subseries hypothesis thap; (x;)=f; (x;). More in detail, we found that
{z1, 27, 713, ...}, {22, 28, 214, ...}, -1 {26, 212, 218, ...} @re con-  suitable tools, based on the probability integral transform
structed, and six different; values (for each prediction) are z;=P;(x;), require the application of the Kendall's indepen-
obtained. The independence test is passed if the maximurdence test and the representation of#®through a proba-
among these values is not significant at éhkevel. The ob-  bility plot (Fig. 5), which allows one to assess the uniformity
tained values arest=3.11 (ensemble) and;=0.90 (proba-  of the z;’'s. The combination of these two approaches, re-
bilistic), i.e. the independence test is passed at the 5% levedpectively based on the concept of operational value of the
by the probabilistic prediction, but not by the ensemble pre-forecast and on the formal statistical verification of its re-
diction (note that the test would not be passed even when thiability, provides the basis for an exhaustive and effective
significance level was reduced ¢g #=0.008, as suggested probabilistic forecast evaluation.

by Diebold et al, 1998.
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