
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Synthetic TDR Measurements for TEM and GTEM Cell Characterization / M., Borsero; G., Vizio; D., Parena; Teppati,
Valeria. - In: IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. - ISSN 0018-9456. - STAMPA. -
56:2(2007), pp. 271-274. [10.1109/TIM.2007.890796]

Original

Synthetic TDR Measurements for TEM and GTEM Cell Characterization

Publisher:

Published
DOI:10.1109/TIM.2007.890796

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1605471 since:

IEEE



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 56, NO. 2, APRIL 2007 271

Synthetic TDR Measurements for TEM and GTEM
Cell Characterization

Michele Borsero, Giuseppe Vizio, Daniela Parena, and Valeria Teppati

Abstract—This paper describes the main features of the time-
domain reflectometry (TDR) measurement technique and, in par-
ticular, the TDR analysis performed using a proper operating
mode of the vector network analyzer (VNA), which is called syn-
thetic TDR. Furthermore, some results of reflection measurement,
which aim to characterize the impedance behavior of transverse
electromagnetic (TEM) and gigahertz TEM cells by means of a
commercial VNA in time-domain mode, are presented.

Index Terms—Gigahertz transverse electromagnetic (GTEM),
impedance, reflection coefficient, time-domain reflectometry
(TDR), transverse electromagnetic (TEM), vector network ana-
lyzer (VNA), VNA measurements.

I. INTRODUCTION

T IME-DOMAIN reflectometry (TDR) provides a very use-
ful technique to localize and characterize the reflection

that a signal undergoes along a transmission line. In Fig. 1,
a common TDR device is sketched: Using a step generator
and sampling the reflected waveform with an oscilloscope, it is
possible to know the impedance of simple discontinuities and
identify its type (resistive, inductive, or capacitive) [1], [2].

By means of a step (or pulse) generator, a progressive inci-
dent wave is sent to the device under test and travels along the
transmission line with its own propagation velocity.

If the load impedance is equal to the characteristic impedance
of the line (perfect match), no reflected wave is generated,
and only the step of the incident voltage is observed on the
oscilloscope. On the contrary, if there is a load mismatch, part
of the incident wave is reflected back and displayed on the
oscilloscope, algebraically summed to the incident one, with a
certain delay.

Conventional TDR, which is very useful for qualitative in-
vestigations, has some limits that affect its accuracy, but with
the large diffusion of vector network analyzer (VNA) and of
digital signal processing (DSP), the reflection coefficient versus
time can be obtained with the inverse Fourier transform of the
network reflection coefficient, which is measured by a VNA
in frequency domain. This technique, which is called synthetic
TDR, is implemented almost in all VNAs and used in several
different fields.

With respect to the conventional TDR, the use of data ac-
quired in frequency domain and then elaborated with mathe-
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Fig. 1. (a) TDR system based on a sampling scope and pulse generator, with
an example of load scheme. (b) Typical impulsive response in time domain.

matical methods [3] provides several advantages, particularly
the precise knowledge of pulse or step waveform and of the
equivalent bandwidth, the availability of vector data corrected
for systematic effects, the removal of spurious reflections, and
a large dynamic range.

II. TRANSVERSE ELECTROMAGNETIC (TEM) AND

GIGAHERTZ TEM (GTEM) CELL CHARACTERIZATION

WITH SYNTHETIC TDR

TDR analysis can be performed using a proper operating
mode of the VNA, where the DSP system allows to directly
implement the fast Fourier transform algorithm [4].

Time-domain mode in the VNA offers the possibility to
choose

• the processing method (low-pass or bandpass);
• the windowing to be applied to the data in frequency do-

main to overcome the problems due to the finite definition
interval of the Fourier transform and to attenuate the edge
effects [5];

• the gating, acting as a filter in time domain.

The TEM cell used for the measurements [see Fig. 2(a)] is
a large coaxial line with characteristic impedance of 50 Ω, by
means of which it is possible to produce a uniform reference
electromagnetic field propagating in TEM mode, for frequen-
cies from about 10 kHz to 200 MHz. For frequencies between
100 MHz and 4 GHz, the GTEM cell is used [Fig. 2(b)], which
can be considered a hybrid of a TEM cell and an anechoic
chamber.

TEM and GTEM cell characterization is performed mainly
by means of the frequency response analysis, the evaluation of
the field uniformity inside the test volume, and the measure-
ment of the reflection coefficient Γ in the working frequency
range of the cell. Through the measurement of the Γ coefficient
at the input port, the cell’s impedance behavior can be studied.
This kind of measurement can be performed by means of a true
TDR system or with a VNA (synthetic TDR) [6], [7]. On the
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Fig. 2. (a) TEM cell. (b) GTEM cell.

other hand, the evaluation of the field uniformity inside the cell
requires the analysis of the effects due to the discontinuities of
the cell geometry. This aspect is particularly important for the
GTEM cell, which has a more complex structure than the tradi-
tional TEM cell, and for this purpose, the TDR measurements
can be very useful.

Measurements on the cells with synthetic TDR have been
performed with a three-channel bidirectional VNA, with a
frequency band from 9 kHz to 4 GHz, preliminarily calibrated
for systematic error correction [1]. Conversion from frequency-
domain to time-domain data has been performed by the chirp
z-transform algorithm [8], and the Hann window [5] has been
applied to the data. The VNA can operate in low-pass or
bandpass mode [6]: Since the GTEM cell has a large bandwidth,
for this device, the low-pass procedure, which is more powerful
and accurate, is preferable. For the TEM cell, although the
limited bandwidth could suggest the use of bandpass mode, the
measurements have been performed in low-pass mode in order
to identify the type of discontinuity and to have results compa-
rable with the GTEM ones.

Fig. 3. TDR measurement with VNA: empty GTEM cell impedance, low-pass
step mode.

III. MEASUREMENT RESULTS

In the following, results of reflection measurements per-
formed on the GTEM and TEM cells are presented in terms of
S11 parameter (the scattering parameter related to the reflection
coefficient) or load impedance versus distance along the cell
longitudinal axis, where the space is related to the time through
the signal propagation velocity.

The plot in Fig. 3 shows the step response obtained in low-
pass mode from a GTEM cell. In the first part of the cell, for
about 1 m, there is a considerable deviation of the impedance
from the nominal value of 50 Ω: Values up to about 52 Ω
have been measured, due to discontinuities produced by the
connector matching the standard coaxial cable to the instrument
and by the cell’s apex, which is a separate metallic block.

In the central part of the cell, the impedance is fairly constant,
with values lower than 50 Ω, whereas at distances greater
than 3 m from the cell apex, considerable variations of the
impedance values are observed: Two small capacitive disconti-
nuities [4] correspond to the tips of the pyramidal absorbers (the
distributed load), whereas the peak at about 3.2 m (inductive
type) is related to the resistors, which are placed among the
absorbers and work as a lumped load.

In Fig. 4, the response of the GTEM cell to the pulse signal
is shown in terms of S11 parameter, which is obtained again in
low-pass mode: The position of the discontinuities produced in
the last part of the cell can be observed more clearly.

The measurement of impedance along the cell has been
performed also for the TEM cell, with the same instrumentation
and procedures used for the GTEM cell. In the case of TEM
cell, due to the narrow bandwidth for correct operation of this
device, the VNA in time-domain mode cannot provide accurate
results for intrinsic limits of the instrument.

Anyway, the working bandwidth from 4 MHz to 4 GHz has
been chosen, approximately corresponding to the VNA oper-
ating bandwidth, because the request of compatibility with the
cell’s bandwidth (nominally from direct current up to 375 MHz)
would give rise to an insufficient spatial resolution (approxi-
mately given in millimeter by 150/frequency span in gigahertz).
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Fig. 4. TDR measurement with VNA: empty GTEM cell S11 parameter,
low-pass impulse mode.

Fig. 5. TDR measurement with VNA: empty TEM cell impedance, low-pass
step mode.

Figs. 5 and 6 show the impedance behavior versus the dis-
tance along the cell, which is obtained in low-pass mode, as step
and pulse response, respectively. Again, in the central section
of the TEM cell (about 1–1.4 m), the impedance variations
are sufficiently small, between 50 and 52 Ω, and the reflection
coefficient is close to zero.

The TEM and GTEM cells are used at the Istituto Nazionale
di Ricerca Metrologica (INRIM) to generate reference elec-
tromagnetic fields for calibration purposes. As known, the
uncertainty associated with the field-strength value in the test
volume of the cell is a combination of different uncertainty
contributions, according to the model equation presented in a
previous work [9].

As an example, the uncertainty budget of the TEM cell
presently used at INRIM is shown in Table I, where the
following contributions are considered:

• uP is the uncertainty due to the net power measurement at
the cell input port;

Fig. 6. TDR measurement with VNA: empty TEM cell S11 parameter,
low-pass impulse mode.

• uZ is the uncertainty on the value of characteristic im-
pedance of the cell;

• ub is the uncertainty on the value of the distance between
the septum, which is the metallic plane replacing the
internal wire of a conventional coaxial cable, and the upper
(or lower) wall of the cell;

• uD is the uncertainty due to field non-uniformity in the test
volume of the cell.

In this budget, the uncertainty uZ related to the cell im-
pedance was evaluated mainly through previous S11 measure-
ments at the input port of the cell, and a value of 8.5%, with a
rectangular probability distribution, was estimated. This value
represents the maximum deviation of the impedance from its
nominal value of 50 Ω used in the reference field calculation.

The results obtained in this paper through the synthetic TDR
investigation on the TEM cell (Figs. 5 and 6) seem to lead to
better impedance values in the sections of interest (deviations
from the nominal value within 5%). Therefore, they not only
confirm the values previously estimated but also reduce the uZ

uncertainty contribution.
Similar considerations on the cell impedance and related

uncertainty can be done also in the case of the GTEM mea-
surements.

IV. CONCLUSION

Some measurement results obtained with synthetic TDR
have been presented, which are aimed to characterize TEM
and GTEM cells by measuring the S11 parameter, in order to
evaluate the impedance of the device versus the position along
the longitudinal axis.

The synthetic TDR offers a more accurate impedance evalua-
tion inside the volume in which the reference field is generated.
The obtained results are promising and could be used to reduce
the uncertainty related to the cell impedance and, consequently,
that of the reference field value. Nevertheless, to this purpose, a
deeper analysis and estimate of the different uncertainty contri-
butions are required, taking into account not only the intrinsic
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TABLE I
UNCERTAINTY OF THE REFERENCE FIELD IN A TEM CELL

uncertainty of the VNA calibration but also the uncertainty
related to the transformation and filtering procedures. These
items are the subject of a future development of the work,
together with a systematic comparison between synthetic and
conventional TDR applied to this kind of devices.
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