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Small scale localization in the simulation of a turbulent jet at
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SUMMARY: It is proposed a methodology for the automatic selective insertion-elimination
of subgrid scale stresses in the numerical simulation of transitional laminar-turbulent flows
in both compressible and incompressible regimes. By means of a functional of the filtered
vorticity field, it is possible to approximatively locate the flow regions that are rich in small
scale motions. In these regions, it can be opportune to filter the equations of motion to carry
out a Large Eddy Simulation, that is, a simulation where the larger scales only are resolved,
but the small scale dynamics is considered and represented through proper terms in the
equations. In case of compressible regimes, a functional of the pressure local variation and
divergence can be associated to the functional previously mentioned in order to determine
the eventual presence of shocks. In such a way, it is possible to locate the regions where,
to capture the shock, it is necessary to insert an explicit numerical dissipation and suppress
the subgrid model.

1. SMALL SCALE LOCALIZATION CRITERIUM

The large eddy simulation method is going to be one of the more used tools to predict
the behaviour of turbulent flows in many different physical and engineering applications.
Compressible turbulent flows in nature may be characterized by very high Reynolds numbers.
Consequently, any attempt to numerically solve the Navier-Stokes equations for such flows
requires a great number of scales to be resolved. At present, the largest three-dimensional
turbulence simulations have a resolution that allows a ratio between the largest scales and
the smallest scales of no more than one thousend, thus, in general, the large scales only of the
flow can accurately be simulated and a large-eddy simulation (LES) approach is necessary.

In this context, there are two conflicting requirements: 1) to capture discontinuities
such as shock waves without the introduction of spurious oscillations, which requires a high
numerical dissipation, 2) the numerical algorithm should not damp the turbulent structures,
which requires a low numerical dissipation. The problem of the reliable representation of
the presence of smaller scales in compressible turbulent flow simulations has often been
overlooked; it has often been assumed that numerical dissipation, implicit in upwind shock
capturing numerical schemes, could simulate net energy transfer from larger to smaller scales.
However, this is questionable and moreover it has been shown (Ducros et al. [1999]) that
such an approach is not compatible with LES modelling due to the antithetic behaviour of
the high numerical viscosity which overwhelms the subgrid scale term effects.

Our aim is the development of a method that allows the contemporary detection of
strong shocks and small scale turbulence. To locate the small scales we propose a) to
introduce a criterium based on the local structure of the vorticity field, in particular on its
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three dimensional character and b) to use a centered low dissipation scheme (Ducros et al.
[1999] and Yee et al. [1999]) coupled to a shock sensor function which, in case, activates
a local explicit artificial dissipation. In such a way, it is possible to selectively introduce a
compressible LES model, for example the angular momentum model (Iovieno and Tordella
[2002]).

The criterium for the small scale localization is based on the introduction of the func-
tional

f(〈u〉, 〈ω〉) =
| 〈ω〉 · ∇〈u〉 |

| 〈ω〉 |2 (1)

which uses information from just one filtering level, ∆, and where 〈u〉, 〈ω〉 are the filtered
velocity and vorticity fields, respectively. The behaviour of f is observed in a developed
HI turbulence field, either fully resolved (DNS) or under-resolved (LES, with various filter
scale). At this point, a range of f values typical for HIT can be selected by means of the
insertion of a threshold tω and the computation of the probability density distribution that
f be larger than the given threshold. The value of this threshold tω was determined through
a priori tests on high-resolution, direct numerical simulation of incompressible homogeneous
and isotropic turbulence (Biferale et al. [2005]) with Reλ = 280.

In this work, the criterium – f ≥ tω – was applied to snapshots from a numerical
simulation of the temporal decay of a hypersonic jet with Mach number of 5 (Rossi et al.
[1997]). This has made it possible to identify the presence of small scale and then the region
where it is opportune to locally modify the motion equations filtering them and inserting a
subgrid scale turbulence model (Iovieno and Tordella, 2002). In such a way the Reynolds
stress balance is corrected by adding the contribution coming from the subgrid term to
the turbulent stresses, which improves the general properties of the temporal and spatial
evolutiom of the simulated field.

2. DESCRIPTION OT THE TEST FLOW

In fig. 1, a visualization of the instantaneous vorticity field of the jet in a section placed 6
diameter downstream of the inlet at nearly 13 time scales from the initial instant and, in fig.2,
the representation of the averaged radial and axial distributions of the streamwise velocity
component. In this simulation the hydrodynamical equations are integrated numerically
using a three-dimensional version of the Piecewise Parabolic Method code (Colella and
Woodward 1984). The domain is (0, 10πa) × (−6.7a, 6.7a) × (−6.7a, 6.7a), where a is the
initial jet radius, is described by a Cartesian coordinate system (x, y, z) and is covered by a
128 x 128 x 128 and a 256 x 256 x 256 grids. The initial flow structure is a cylindrical jet,
with its symmetry axis lying along the x-direction, which is also the direction of the initial
jet velocity. The interface between the initial jet and the surrounding fluid is a smoothy
varying (hyperbolic secant) velocity shear layer. The boundary conditions are free outflow
conditions at the upper and lower boundaries in the y and z directions. The boundary
conditions along x direction are periodic, see Rossi et al. (1997), Bodo et al. (1998).

3. A PRIORI TESTS

3.1 On Homogeneous Isotropic Turbulence in a box
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Figure 1: Contour plot of the vorticy componentes, (a) wx, (b) wy, (c) wz .
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Figure 2: Radial (a) and axial (b) distributions of the mean velocity.
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Figure 3: Distribution of f on different resolutions for homogeneous and isotropic turbulence.

A priori tests on a DNS of homogeneous and isostropic (incompressible) turbulence
(10243 grid, see Biferale et al. 2005) and on filtered fields (643, 1283, 2563, 5123) deduced
from this DNS have been carried out. The 10243 turbulence is here considered a resolved
fully developed turbulent field and is taken as reference. The functional f is computed in all
these fields. As previously pointed out, the range of the f possible values in a resolved HIT
and in under-resolved HIT can be obtained by considering a threshold tω and by computing
the probability density distribution that f is larger than the a given threshold value, see
fig.3. In this figure it can be noticed that, in the resolved turbulence, there is practically zero
probability of having f > 0.5. However, in the unresolved cases, larger values are possible.
Thus, if in a simulation of a fully developed turbulent flow, f assumes values larger than
0.5, the turbulent field is probably under-resolved and can thus benefit from the activation
of a local LES (by inserting a sub-grid scale term in the motion equation). Figure 3 shows
also that in the under-resolved fields, values lower than 0.5 – for example values in the range
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[0.2, 0.5] – have a much greater probability to exist than in the resolved field. This diffrence
is then shrinking getting close to f = 0. So, it can be argued that also when f is in the
[0.2, 0.5] range, there is a definite chance to improve the simulation by switching to a local
LES.

3.1 On the time evolution of a turbulent jet at M= 5

Figure 4 shows the contour lines of the functional f computed in the central section
of the jet (with respect to the computational domain, x = 5πa). Island of high f values
can be observed. According to the criterium above, these islands can be viewed as regions
where small scales are present and are under-resolved. By varying the threshold tω, maps
of regions where f ≥ tω can be obtained. For instance, figure 5 describes the distribution of
such regions in the mid-section of the jet (x = πa, t = 13 initial time scales). Two values of
tω = 0.3 and tω = 0.5 are compared. It is observed that, by increasing tω, the global area
occupied by the small scales at a given time instant is reduced.

At this point it is necessary to calibrate the tω value with information coming from
laboratory experiments or from higly resolved numerical simulation of a jet at Mach 5. This
last information is not available a the current state of the art. Data from a few experiments
on compressible jets up to Mach 4 are instead available. In particular, the spatial growth
rate as a function of the global Mach number for experiments on jets or on plane mixing
layers were collected in the famous ”Langley curve”, see e.g. Smits and Dussage (1996, cf.
par. 6.3, fig. 6.2). In the present test, recalling that the spatial evolution is suppressed due
to the periodic b.c.s, we can estimate the spatial spreading rate by applying the Taylor’s
trasformation and by computing the temporal spreading, dδ(t)/dt, of the simulated jet

dδ

dx
=

dδ

dt

dt

dx
=

1
U0

dt

dx
(2)

where U0 = U0(t) is the averaged axial velocity.
In the temporal decay of this jet, for t > 10, we can reasonably assume to have reached

near similarity conditions. This implies that the filtered transversal distribution of the
streamwise velocity is of the kind U = U0(t)f(η), where η is the lateral coordinate normalized
with the thickness δ(t). Due to simmetry reasons, y and z play the same role, thus, for the
turbulent stresses we can put τxy = τxz = τ . Furthermore, the streamwise momentum
balance for the filtered field yields

∂U

∂t
=

∂τ

∂y
+

∂τ

∂z
+

∂τsgs

∂y
+

∂τsgs

∂z
(3)

By assuming the similarity trasformation for the turbulent stresses, τ = τ0(t)g(η) and
τsgs = τsgs

0 (t)gsgs(η) – where the suffix sgs means sub-grid scale, and τ0 and τsgs
0 are

the reference values for the resolved and the sub-grid scale stress distributions (maximum
values) – and by inserting the similarity trasformation in (3), it is possible to deduce that
the temporal spreading is proportional to the stress modified by the sub-grid contribution

dδ

dt
= (

dδ

dt
)nc

τ0 + τsgs
0

τ0
(4)

where index nc (non corrected) indicates the spreading obtained from the simulation before
the insertion of the sub-grid terms. Now, the subgrid scale contribution to the turbulent
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stress, that is shown in figure 6a, depends on the value of tω. From (2) and (4), it is possible
to estimate the correction to the spreading rate due to the setting off of the sub-grid terms
in the simulation. We have here used the Intrinsic Angular Momentum Model (Iovieno and
Tordella, 2002), which is a differential model suitable to higly dishomogeneous turbulent
fields. Figure 6b shows the correction obtained varying tω and varying the simulation res-
olution. It is observed that the corrected values of the spatial spreading rate are closer to
the value extrapolated from the ”Langley curve”, at Mach 5, than the original raw data and
that the improvement is higher if the resolution of the simulation is lower.

4. FINAL COMMENTS

As far as the shock localization is concerned, a sensor can be conceived for example in
the form of a function

s = αβ, α =
(∇ · 〈u〉)2

(∇ · 〈u〉)2 + 〈ω〉2 , β =

∣
∣
∣
∣
∣

〈p〉j+1 − 2〈p〉j + 〈p〉j−1

〈p〉j+1 + 2〈p〉j + 〈p〉j−1

∣
∣
∣
∣
∣

(5)

that should multiply the explicit artificial dissipation terms in the discretized balance equa-
tions (Ducros et al. 1999). The identification of the regions where the shocks are present
will then coincide with the setting off of the numerical artificial dissipation.

By coupling the method of small scales localization here described to the above proce-
dure of shocks localization, a description of the interaction between shocks and large-scale
turbulence structures can be obtained. Furthermore, sensors (1) and (5) are not limited by
the mesh structure and could be of help to obtain a dynamic adaptation of the mesh to
the flow. The implementation of sensors that are able to effectively detect subgrid scales
and shocks would enable accurate LES of complex flows to be obtained without any a priori
assumption on the flow structure. The local character of such functionals should allow easy
parallelization.
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Figure 4: Contour plot of the functional f given by equation (1), x = 5πa, t = 13 time units.
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Figure 5: Visualization of the regions where subfilter scales are present according to a
selected threshold tω on the functional f : (a) tω = 0.2, (b) tω = 0.5
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Figure 6: (a) Transversal distributions of the Reynolds stress, without and with the subgrid
scale contribution, (b) Dependence of the correction on the spatial growth rate on tω, two
different resolutions: circles 2563, triangles 1283. For ”Langley curve” data see Smits and
Dussauge (1996).
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