
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A multiprocessor based packet-switch: performance analysis of the communication infrastructure / Tota, S.; Zamboni,
Maurizio; Casu, MARIO ROBERTO; RUO ROCH, Massimo. - ELETTRONICO. - (2005), pp. 172-177. (Intervento
presentato al convegno IEEE Workshop on Signal Processing Systems Design and Implementation. tenutosi a Athens,
Greece nel 2-4 November 2005) [10.1109/SIPS.2005.1579859].

Original

A multiprocessor based packet-switch: performance analysis of the communication infrastructure.

Publisher:

Published
DOI:10.1109/SIPS.2005.1579859

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1536864 since: 2018-03-26T14:42:15Z

IEEE

A Multiprocessor based packet-switch: performance
analysis of the communication infrastructure

Sergio Tota, Mario R. Casu, Massimo Ruo Roch, Maurizio Zamboni
VLSI Lab

Dipartimento di Elettronica
Politecnico di Torino

{sergio.tota, mario.casu, massimo.ruoroch, maurizio.zamboni}@polito.it

Abstract— The intra-chip communication infrastructures are
receiving always more attention since they are becoming a
crucial part in the development of current SoCs. Due to the
high availability of pre-characterized hard-IP, the complexity of
the design is moving toward global interconnections which are
introducing always more constraints at each technology node.
Power consumption, timing closure, bandwidth requirements,
time to market, are some of the factors that are leading to the
proposal of new solutions for next generation multi-million SoCs.
The need of high programmable systems and the high gate-count
availability is moving always more attention on multiprocessors
systems (MP-SoC) and so an adequate solution must be found
for the communication infrastructure. One of the most promising
technologies is the Network-On-Chip (NoC) architecture, which
seems to better fit with the new demanding complexity of such
systems. Before starting to develop new solutions, it is crucial to
fully understand if and when current bus architectures introduce
strong limitations in the development of high speed systems. This
article describes a case study of a multiprocessor based ethernet
packet-switch application with a shared-bus communication in-
frastructure. This system aims to depict all the bottlenecks which
a shared-bus introduces under heavy load. What emerges from
this analysis is that, as expected, a shared-bus is not scalable
and it strongly limits whole system performances. These results
strengthen the hypothesis that new communication architectures
(like the NoC) must be found.

I. INTRODUCTION

In the recent years always more attention has been dedicated
to the development of new solutions for intra-chip communi-
cations. This is happening for a number of reasons. Starting
from the 130 nm technology node, global wires are becoming
a critical issue in the success of a design. Crosstalk analysis is
a task that can not be neglected anymore and its computation
is getting always more complex at each new node. Current
EDA tools give the designer the capability of a complete
design exploration, but this is a time consuming operation and
problems always appear at a late stage of the design getting
the timing closure a dangerous task. The probability of a re-
spin of the design is very high, and with the increasing cost
of a mask-set, this leads always more companies to go out of
the business. Furthermore, clock speed is getting such high [1]
that a signal could not be propagated across the chip in a single
clock cycle anymore. Latency Insensitive Protocols (LIP) [2]
have been recently proposed. They aim at de-correlating the
functionality of the computational blocks from the clock speed
of the communication infrastructure so that any IP, with the

introduction of a wrapper called shell, will have the capability
of working in the presence of signal propagation more than
one clock cycle long.

For more complex systems, with an high bandwidth demand
and the need for a certain level of reconfigurability, a com-
pletely new approach was proposed ([3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16]). The idea is to build
a number of micro-networks inside the chip and let each IP
communicate with the others using a message-passing scheme.
Packets will be the basic data unit that will be routed from
the source to the destination. This Network-On-Chip (NoC)
architecture could bring to a number of advantages. First, since
interconnections can be dynamically configured, it would be
possible to create programmable architectures which each user
can customize according to his/her needs. A chip may then
contain several IP blocks like processors, memories, FPGAs,
DSPs, custom-logic etc, and the final user will decide how to
logically interconnect them in the final design. This means that
a single product can be used for a domain of applications by
simply reconfiguring the communication traffic. This concept
is similar to the Sea of gates one, in which gates are already
placed in the chip, and only interconnections must be set.
Another advantage of the NoC approach is its regular structure
(e.g. a mesh topology). This could lead to early characterize all
the physical parameters of the communication infrastructure
with a great impact in design productivity.

As mentioned before, programmable elements like micro-
processors seem the ideal companion for this infrastructure,
and since the multiprocessor arena is recently becoming a
hot topic, the development of a scalable, programmable, high-
speed backbone for such systems would be the key for next-
generation Multiprocessors System-On-Chip (MP-SoC). In
order to show the real need for such new communication archi-
tectures, which are still in a development stage, it is important
to fully understand the limits of current communication sys-
tems used in SoC, which are on the contrary well consolidated
in the SoC design practice. Moreover, it is crucial to evalu-
ate which are the real-life application domains which could
benefit from a high speed communication infrastructure. This
application-driven heuristical approach, we believe, though not
so appealing from a theoretical point of view, is more adapted
to evaluate the real need for a high-bandwidth system then
traffic models borrowed from the computer networks domain.

0-7803-9333-3/05/$20.00 ©2005 IEEE SIPS 2005172

Currently, the most used communication typology for SoC
systems is the shared-bus which has been implemented in
several on-chip communication protocols like AXI [17], OCP
[18], DTL [19], CoreConnect [27], STBus [20], etc. Since this
scheme is so popular in SoCs, a correct knowledge of its char-
acteristics, performances, fields of applications and limitations
is essential as a preliminary analysis before developing new
communication architectures like the NoC.

Communication requirements have been analyzed in several
previous works. In [21], [22], [23] and [24], traditional param-
eterized statistic traffic generators were used, that, in spite of
their generality, prevent designers from assessing performance
in presence of real-life workloads and make it difficult to
account for dynamic effects such as bus contentions. In
[25] a simulation environment that models all hardware and
software components of a multiprocessor system is proposed,
but the applications that were mapped on such system do not
represents a real-life case study. Our work is based on a 8-
processor system mapped on a FPGA, in which a distributed
ethernet packet-switch application was implemented, in order
to provide realistic performance estimates and statistics. The
aspect of packets managing inside the chip also represents
a first outline of a future network-on-chip multiprocessor
environment.

The article is structured as follows. Section II outlines the
problem and makes some theoretical considerations. Section
III describes the hardware and the software system used for
the test. Section IV presents the results. In section V the results
are commented, conclusions are drawn and a perspective of
our future work is this field is given.

II. POINT-TO-POINT CHANNELS VS. SHARED-BUSES

We can divide communication channels mainly into two
opposite fields:

• Point-to-Point links
• Shared links
Each of them has advantages and drawbacks. Point-to-Point

(P2P) links are fast, they do not require any arbitration protocol
and permit full I/O concurrency (in the presence of other P2P
links). But they require that each peripheral has as much I/O
interfaces as the number of other peripherals to talk with. If
there are 2N peripherals and each needs a link with each other,
a total of 2 × N × N P2P unidirectional links are required,
as it shown in Fig. 1.a. This situation can easily bring to wire
routing congestion and so it is inapplicable when the number
of blocks to be connected becomes significant.

On the other hand, shared-buses are easy to use, and each
block, with just one I/O interface, can virtually communicate
with every other block connected to the same shared- bus as
shown in Fig. 1.b.

Wire routing of such infrastructure is also definitely easier.
But in this case only one resource can drive the bus at a
time and an arbiter is required to handle contentions. For this
reason an handshake protocol is also required (Request-Grant
scheme) and this introduces an extra overhead. Since the bus

2

3

N

1

2

3

N

1

2

3

N

1

2

3

N

1

(a) (b)

Fig. 1. a) Point-to-Point configuration . b) Shared-Bus configuration.

is now shared with other N peripherals, each one uses the bus
N times less frequently than the P2P case, as long as a fair
bus arbitration is performed. So, the right choice of a P2P bus
versus a shared-bus depends on several aspects, primarily cost
and performances, which strongly depend on the application
at stake.

If W is the parallelism of the bus, fclock the clock frequency,
and α ≤ 1 is a corrective factor which takes into account
the bus protocol overhead (e.g. arbitration, handshake for
write/read cycles, et cetera), when all the resources want to
access to the same shared-bus, the bandwidth B in bit/sec of
each resource is:

B = α(W × fclock)/N (1)

So for example, if we consider a read cycle, we would
likely have a valid data every 4 clock cycles (Request-Grant-
Address-Data) and this leads to a value of α = 1/4 which
strongly cuts the real bandwidth down.

A. System Architecture

Our aim is to provide realistic performance estimates and
statistics on the communication infrastructure of SoCs based
on shared bus. Traditional parameterized statistic traffic sim-
ulator do not offer an adequate solution for this purpose
because it is difficult to account for dynamic effects such as
bus contentions. Instead, we believe, a realistic test has to be
performed on the field with realistic applications.

For these motivations we built a multiprocessor architec-
ture to perform an ethernet packet-switch. All the ethernet
controllers and the microprocessors were linked to the same
bus.

When a packet arrives at the port i of the switch, the ethernet
controller i generates an interrupt to the microprocessor i
which reads the packet. At this point the destination address
of each packet is analyzed to calculate the output port j and
the packet is sent to the ethernet controller j.

To be as much flexible as possible, we made use of proces-
sors also to generate the traffic for the switch and to monitor
the packets which were coming out from the switch. With this
environment we had the possibility to test the performances

173

of a real-life application and at the same time to control and
monitor each parameter of the whole system.

The architecture is organized as follows.

• 4x4 ports ethernet packet-switch. It is composed of 4
processors and 4 ethernet controllers (10/100 Mb/s). Each
resource is connected to the same shared-bus as it is
shown in Fig. 2.

• 4 traffic generators. Each traffic generator is composed of
a processor and an ethernet controller. It also acts as a
traffic monitor for the incoming packets (Fig. 2).

• A timer. It has been configured to generate an inter-
rupt each second so that the number of transmitted
and received packets per second for each port is easily
computed.

• An interrupt-controller for each processor. A total of 8
interrupt-controllers are presents. Each controller receives
interrupts from the timer and from the ethernet controller
(a packet has arrived or a packet has been sent).

u−Processor 1 u−Processor 2 u−Processor 3 u−Processor 4

Ethernet Port 1 Ethernet Port 2 Ethernet Port 3 Ethernet Port 4

OPB Bus

Ethernet Port 2 Ethernet Port 3 Ethernet Port 4

4x4 Packet−Switch

Ethernet Port 1

u−Processor 1
(Traffic Generator)

u−Processor 2 u−Processor 3 u−Processor 4
(Traffic Generator) (Traffic Generator) (Traffic Generator)

Fig. 2. System architecture

A first method to evaluate the system performances consists
in sending a number of packets to each port and monitor
the number of packets that exit from each port after one
second of operation. If the total number of output packets
is less than the total number of packets that were injected
into the switch, apart from small differences due to the abrupt
interruption when one second of count is reached, it means
that a performance loss occurred somewhere.

The first cause of packets loss is the bandwidth of the bus
that must be at least equal to the aggregate bandwidth of the
ports. In our case the speed of each port was set to 25 Mb/s
so with a maximum of four ports the aggregate bandwidth is
100 Mb/s which is far below the theoretical bandwidth of the
bus, calculated according to equation (1).

Another possibility of loosing packets occurs when the inter-
frame gap between two consecutive incoming packets is less
than the time of the interrupt service routine to read the packet
and make the input buffer ready to receive the next incoming
packet. This situation could lead to a systematic loss of packets
even without any bus contention.

Considering the ethernet channel when the traffic generator
is continuously sending packets; we define Tsend as the time
in which the channel is busy transmitting a packet, and Tidle

as the time where the channel is not used.
To fully use the bandwidth of the channel we should have

Tidle = 0 but this is not possible because the ethernet protocol
requires an inter-frame gap which depends on the ethernet
speed. We have also to consider another aspect. If we call TTx

the time to write a packet in the ethernet Tx buffer (which is
equal to TRx, the time to read a packet from the ethernet Rx
buffer), this time is composed of the time spent to run the
Interrupt Service Routine and all the others software routines,
let us call it TTx,Sw, and the time spent to write or read the
entire packet through the bus, which we define as TTx,Hw.

So, after a packet is sent from the ethernet controller, before
sending a new packet, some time is spent by the software
routine to execute the firmware and some time is spent by the
processor to write the entire packet into the ethernet buffer.
This means that in first approximation:

Tidle = TTx,Sw + TTx,Hw (2)

Lets now suppose to have a number N of data as 32 bits
words to send through the channel. If we want to send this
payload in M packets, the duration of each packet will be:

Tsend ∝ N/M (3)

If we now define M
′

a number of packets so that M
′
< M ,

we have that:

T
′
send ∝ N/(M

′
) (4)

With T
′
send > Tsend. Since Tidle = TTx,Hw+TTx,Sw, if we

consider that the time spent to run the software is independent
from the value of N and M , and that the time spent to write
or to read a packet is considerably less in comparison with the
software time which requires thousands more clock cycles to
be executed, if we express the bandwidth usage Bu like:

Bu = (Tsend)/(Tsend + Tidle) (5)

we see that if the packet length increases (Tsend), with
Tidle nearly constant in first approximation, the bandwidth
usage increases. So, if we have TRx < Tidle, we are in the
condition of no packet loss.

Now, let us define the condition in which packets are lost.
If we have Tidle < TRx < 2Tidle + Tsend, this means that we
are loosing 1/2 of the packets systematically. This happens
because when a packet arrives, the time spent to read it is
longer than the idle time, so when the packet source sends
another packet, the Rx buffer of the ethernet controller is still
busy due to the reading procedure of the previous packet. This
means that for each packet we read, the following packet will
be inevitably lost.

174

Logic Analyzer RS−232 Terminal Linux Host Computer

Xilinx ML−310 Board

 PRO

VIRTEX−III/O

Serial Line

JTAG Interface

Number of Processors: 8
Type of Application: Packet Routing

Port 1: Number of Tx packets 34576
Port 2: Number of Tx packets 56345

...............

ISE 6.3 EDK 6.3 Modeldim 6.0c

Fig. 3. Configuration of the test environment.

III. TEST PLATFORM

The test system is composed of two parts, the hardware one
and the software one.

A. The hardware subsystem

All the hardware was mapped in a XilinX FPGA, the Virtex-
2-Pro [26], in order to build a prototype architecture and have
the possibility to run all the tests at full speed instead of
spending much time simulating the design. The development
board was the XilinX ML-310 [26]. The only feature we
were not able to use in this board is the possibility of fully
exploit its big I/O pin count. There are two high-speed Tyco
connectors but we were not able to find the Tyco adapters all
across Europe and in the US. We then limited our probing to
a limited number of I/O’s that, fortunately, were sufficient for
our purposes. As for the other features, we found it a good
development platform.

We used a logic analyzer to debug the system during the
development process bringing out all the necessary signals.
Fig. 3 explains how we set-up the experiments.

The Xilinx MicroBlaze was chosen as soft microprocessor,
and Xilinx Ethernet evaluation core as the ethernet controller.
Microblaze uses the OPB Bus (OnBoard-Peripherals-Bus) of
the IBM CoreConnect standard [27]. Each Microblaze has a
dual port local memory for Instructions and Data. Also a timer
and 8 interrupt controllers were added. An RS-232 controller
was also instantiated so that all the results were printed on a
console. The equivalent gate count reported by XST was of
about 2.8 million. The clock frequency of the whole system
was 60 MHz and the Ethernet speed was 25 Mb/sec. These
values have been chosen to obtain an adequate comparison of
the impact that a variable number of master between 1 and 4
may have on the shared-bus performance. Differences on the
system clock speed will only lead to a move of the threshold
of performances loss, but all the considerations can be made
independent from the system frequency.

B. The software subsystem

The entire system was developed using the Xilinx ISE 6.3i
and EDK 6.3i, both for the Linux OS. EDK is a co-design
tool which helps to quickly develop both the hardware and
the software part of a system. Even if we experienced some
instability, our system was very complex, so we believe that
in more “common situations” its behavior should be more
reliable.

On a P4-2.8GHz running Linux, the synthesis, P&R and
mapping phase took about 1 hour. As for the development
time, we found that the availability of a high number of IPs,
even if in a evaluation version, really helps to quickly develop
complex systems in weeks.

IV. TEST RESULTS

We ran two type of applications, a level two ethernet packet-
reply and a level two ethernet packet-routing.

The packet-reply application consists in sending back the
packet just read to the same port it was coming from. This
means that in the packet-reply application each processor
always reads and writes from and to a fixed ethernet controller.
Therefore no resource contentions were present because in no
case two (or more) processors try writing or reading from the
same ethernet port.

In the packet-routing application each traffic generator sends
a packet to an uniformly random generated destination address.
This means that in this case resource contentions are possible.
Apart from a possible performance degradation, the contention
in accessing an ethernet peripheral may result in malfunctions.
This might happen when a processors has started filling an
ethernet input buffer and eventually another processor, which
aims at writing to the same buffer, receives a grant to access
the bus. If the second one starts writing before the first one has
completed its packet write operation, the packet in the input
ethernet buffer will be jammed. Therefore a mechanism of
resource locking was introduced using the Bus-Lock feature
of the OPB bus which is also supported by the Microblaze
processor [28]. For this purpose we wrote two small assembler
routines to enable and disable bus-locking. When the bus-
locking is enabled, the master that was granted will always
own the bus until it put the bus-lock down. Therefore the
problem of packet jam is avoided as long as each processors
leaves the bus grant when it has finished writing an entire
packet.

Even if not necessary because contentions are avoided by
construction in the packet-reply case, we also made use of
this feature in that application to see if there were some
performance changes.

For each application we varied the size of sent packets
from 44 bytes to 704 bytes. Every test was performed with
1, 2, 3 and 4 processors contemporary active on the bus. The
results are reported in Fig. 4 for the packet-reply case, where
two different situations, bus-lock disabled and enabled, are
reported, in Fig. 4.a and Fig. 4.b respectively.

With one processor (Fig.4(a), × dotted line) we noticed the
presence of missing packets starting from a packet length of

175

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700

M
b/

se
c

Packet Lenght (Bytes)

Packet-Reply (Bus-Lock Disabled)

Traffic Port Bandwith
Managed Port Bandwith (1x1 Switch)
Managed Port Bandwith (2x2 Switch)
Managed Port Bandwith (3x3 Switch)
Managed Port Bandwith (4x4 Switch)

(a) Packet-Reply with Bus Lock Disabled

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700

M
b/

se
c

Packet Lenght (Bytes)

Packet-Reply (Bus-Lock Enabled)

Traffic Port Bandwidth
Managed Port Bandwidth (1x1 Switch)
Managed Port Bandwidth (2x2 Switch)
Managed Port Bandwidth (3x3 Switch)
Managed Port Bandwidth (4x4 Switch)

(b) Packet-Reply with Bus Lock Enabled

Fig. 4.

276 bytes, as predicted in Section II. For packet lengths from
0 to 276 bytes, as the packet length increases, the bandwidth
usage of the channel increase as predicted in equations (3),
(4) and (5).

We also noticed that in the same configuration, using the
bus-lock mechanism, the threshold above which we begin
losing packets increases up to 400 bytes. This is shown in
Fig. 4(b). This behavior was expected since in this case the bus
arbitration protocol occurs only one time per packet instead
of every word.

With two processors things start changing. With the bus-lock
disabled, the bus subsystem is capable of supporting the traffic
until a packet length of 120 bytes. Slightly above this value and
until a packet length of about 350 bytes, the packet loss rate
increases dramatically. This was not an expected behavior and
must be further investigated. What we suspect is that a kind of
synchronization occurs between packets arrival and bus request
and this leads to that high packet loss. These behavior also
manifests with three and four processors as Fig. 4(a) clearly
reveals.

With bus-lock enabled the same application shows a high
improvements in the usage of the bus bandwidth, with a peak
when the packet length is around 400 bytes (Fig. 4(b)). This
case would correspond to the minimum level of synchroniza-
tion between the masters of the bus.

The packet-routing application gives the possibility to make
further considerations on the fact that bus usage strongly
depends on traffic statistic and synchronization. The results of
our tests on this application are reported in Fig. 5. In theory,
the same performances should emerge between packet-routing
and packet-reply (with bus-lock enabled) with a shared-bus
configuration. However, this would be true if no resource
contentions appear. In the packet-reply application, when a
packet arrives in the ethernet controller, the probability to find
the Tx buffer of the same ethernet controller free is almost 1,
so the packet can be successfully sent back. On the contrary,

 0

 5

 10

 15

 20

 25

 30

 100 200 300 400 500 600 700

M
b/

se
c

Packet Lenght (Bytes)

Packet-Routing (Bus-Lock Enabled)

Traffic Port Bandwith
Managed Port Bandwith (1x1 Switch)
Managed Port Bandwith (2x2 Switch)
Managed Port Bandwith (3x3 Switch)
Managed Port Bandwith (4x4 Switch)

Fig. 5. Packet-Routing Application

in the packet-routing application, this is not true anymore.
Even if a processor wins the bus arbitration and is capable of
reading an incoming packet from the ethernet controller, now
it is possible to find the Tx buffer of the destination ethernet
controller busy and this leads to a high performance loss in
the bus bandwidth usage.

As a consequence, the results in Fig. 5 compared to those
in Fig. 4(b), both with bus-locking enabled, show the relevant
performance degradation of the packet-routing case. Clearly,
when there is not contention, and this is the case of 1
microprocessor, the behavior is identical.

V. CONCLUSION

This work intended to evaluate the performance of a shared-
bus configuration in a Multiprocessor-SoC configuration when
a real-life application is run. As a case study, we mapped a
packet-switch application on our system. Our intention was to

176

stress as much as possible our communication infrastructure
and not to propose an efficient networking-application.

What emerges from this set of tests is that the theoretical
supported bandwidth of a bus is not the only parameter to
be considered in the development of a multiprocessor system
based on shared-bus. This is evident in our test environment
where, with a system frequency of only 60 MHz and a
bus width of 32 bit, a theoretical throughput of 1.92 Gb/s
was available. Nevertheless, with a traffic of 25 Mb/s per
port, which gives a maximum aggregate bandwidth of only
100 Mb/s with 4 ports, the communication infrastructure was
unable to sustain the traffic rate.

This means that a correct statistics of the bus access of each
resource is crucial in the development of a complete system. In
some case this is possible, especially when the complexity of
the whole architecture is not so high. But in future multimillion
gate designs, with the need of reconfigurable systems, where
hundred of Processing Elements (PEs) will work in parallel,
each executing different tasks depending on the state of others
PEs, it will be not so easy anymore to accurately predict the
intra-chip communication statistics.

We believe that there is and there will be always more need
of having flexible, scalable and programmable communication
infrastructures, and the NoCs seem attractive for these aspects.
This is the first of future works which aim at better clarifying
the domains in which current communication solutions are
adequate, and subsequently individuate the domains where
instead new solutions, like NoCs, are required. We believe
that the multiprocessor arena, which already is a hot topic
in the SoC domain, is among the applications which require
to develop new high performance on-chip communication
systems.

VI. ACKNOWLEDGMENT

We would to thank Kaushik Ravindran from Berkley Uni-
versity and Mark Harvey from Xilinx for their kindness in
helping us to solve some problems which emerged during the
building of our system.

REFERENCES

[1] International Technology Roadmap for Semiconductors,
http://public.itrs.net/

[2] Luca Carloni at al., “A Methodology for Correct-by-Construction Latency
Insensitive Design”, IC-CAD 1999.

[3] William J. Dally and Brian Towles, “Route Packets, Not Wires: On-Chip
Interconnection Networks”, DAC 2001.

[4] A. Adriahantenaina, H. Charley, A. Greiner, L. Mortiez, and C.A.
Zeferino, “SPIN: A scalable, packet-switched, on-chip micro-network”,
in Proc. Design Automation Test Eur., 2003.

[5] N. Banerjee, P.Vellanki, and K,S,Chata, “A power and performance model
for networks-on-chip architectures”, in Proc. Design Automation Test Eur.,
Feb. 2004.

[6] L. Benini and G. De Micheli, “Powering networks on chips”, in Proc.
ISSS., 2001.

[7] —–, “Networks on chips: a new SoC paradigm”, IEEE Comput., vol. 35,
no.1, pp. 70-80, Jan. 2002.

[8] E. Bolotin, I. CIdon, R. Ginosar, and A. Kolodny, “QNoC: QoS archi-
tecture and design process for network on chip”, J. Syst. Architec., vol.
50, pp. 105-128, Jan. 2004.

[9] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage, “Networks
on silicon: combining best-effort and guaranteed services”, in Proc.
Design Automation Test Eur., 2002.

[10] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-
switched interconnections”, in Proc. DATE, 2000.

[11] F. Karim, A. Jantsch, J.P. Soininen, M. Forsell, M. Millberg, J. Oberg,
J. Tiensyrja, and A. Hemani, “A network on chip architecture and design
methodology”, in Proc. ISVLSI, 2002.

[12] J. Liang, S. Swaminathan, and R. Tessier, “aSOC: A acalable, single-
chip communication architecture”,in Proc. PACT, 2000.

[13] J. Liu, L.-R. Zheng, and H. Tenhunen, “Interconnect intellectual property
for network-on-chip (NoC)”, J. Syst. Architec., vol. 50, no.1, pp.65-79,
2004.

[14] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch, “Guaranteed band-
width using looped containers in temporally disjoint networks within the
Nostrum network on chip”, in Proc. Design Automation Test Eur., Feb.
2004.

[15] E. Rijpkema, K. Goossens, A. Radulescu, J. Dielissen, J. van Meerber-
gen, P. Wielage, and E. Waterlander, “Trade offs in design of a router
with both guaranteed and best-effort services for networks on chip”, in
Proc. Design Automation Test Eur., 2003.

[16] D. Wiklund, and D. Liu, “SoCBUS: Switched network on chip for hard
real time embedded systems”, in Proc. IPDPS, 2003.

[17] ARM, AMBA AXI Protocol Specification, Mar. 2004
[18] OCP International Partnership, Open Core Protocol Specification. 2.0

Release Candidate, 2003.
[19] Philips Semiconductors, Device Transaction Level (DTL) Protocol Spec-

ification. Version 2.2, Jul. 2002.
[20] www.st.com
[21] K. Lahiri, A. Raghunathan, and S. Dey, “Evaluation of the traffic per-

formance characteristics of system-on-chip communication architectures”,
2001.

[22] V. Lahtinen, E. Salminen, K. Kuusilinna, and T. Hamalainen, “Com-
parison of synthesized bus and crossbar interconnection architectures.”,
ISCAS, pages V433-V436, May 2003.

[23] Y. Zhang and M. Irwin, “Power and performance comparison of cross-
bars and buses as on-chip interconnect structures”, Asilomar Conference
on Signals, Systems and Computers, 1:378-383, Oct. 1999.

[24] K. K. Ryu, E. Shin, and V.J. Mooney, “A comparison of five different
multiprocessor soc bus architectures”, EUROMICRO, pages 202-209,
September 2001.

[25] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon, “
Analyzing On-Chip Communication in a MPSoC Environment”, in Proc.
Design Automation Test Eur., 2004.

[26] http://www.xilinx.com.
[27] IBM CoreConnect Bus Architecture,

http://www-3.ibm.com/chips/techlib/techlib.nsf/productfamilies/
CoreConnect Bus Architecture.

[28] Xilinx MicroBlaze resource page,
http://www.xilinx.com/ipcenter/processor central/microblaze/
microblaze user resources.htm.

177

