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Dipartimento di Elettronica, Politecnico di Torino

{last name}@mail.tlc.polito.it

Abstract— We focus on the identification and definition of
“Web user-sessions”, an aggregation of several TCP connec-
tions generated by the same source host on the basis of TCP
connection opening time. The identification of a user session
is non trivial; traditional approaches rely on threshold based
mechanisms, which are very sensitive to the value assumed for
the threshold and may be difficult to correctly set. By applying
clustering techniques, we define a novel methodology to identify
Web user-sessions without requiring an a priori definition of
threshold values. We analyze the characteristics of user sessions
extracted from real traces, studying the statistical properties of
the identified sessions. From the study it emerges that Web user-
sessions tend to be Poisson, but correlation may arise during
periods of network/hosts anomalous functioning.

Keywords: Network Measurements

I. INTRODUCTION

The identification of user-session plays an important role
both in Internet traffic characterization and in the proper
dimensioning of network resources. We concentrate on the
identification of web sessions generated by a single user,
as WWW is the most widely used interactive service. We
assume that only a single user runs a browser on each host,
a reasonable assumption today given the vast majority of PC
based hosts. The informal definition of a user session can be
obtained by describing a typical behavior of a user running a
Web browser: an activity period, when the user browses the
Web, alternates with a silent period over which the user is not
active on the Internet. This activity period, named session in
this paper, may comprise several TCP connections, opened by
the same host toward possibly different servers.

Unfortunately, the identification of active and silent periods
is not trivial. Traditional approaches [9], [8] rely on the
adoption of a threshold η: TCP connections are aggregated
in the same session if the inter-arrival time between two TCP
connections is smaller than the threshold value; otherwise, a
new session is identified. This approach works well if the
threshold value is correctly matched to the average value of
connection and session inter-arrival time; however, to know
these values in advance is unrealistic in practice. If the thresh-
old value is not correctly matched to user session statistical
behavior, threshold based mechanisms are highly error prone
in session identification.

Clustering techniques [4] are used in many areas to partition
a given data set in “similar subsets”, by defining a proper
notion of similarity. Typically, several metrics over which

a distance measure can be defined are associated to points
(named samples in this paper) in the data set; informally, the
partitioning process tries to put in the same subset neighboring
samples and in different subsets distant samples. The main
advantage of using such approach is that there is no need to
define a priori any threshold value. Thus, this methodology
should be less error prone than simpler threshold based mech-
anisms.

The contributions of this paper are the following: first, we
adapted classical clustering techniques to the described sce-
nario, a non-trivial task that requires a lot of ingenuity to opti-
mize the performance of user session identification algorithms
both in terms of speed and precision. In [1], the proposed
methodology was tested using artificially generated traces to
assess the error performance of the proposed technique and
to compare it with traditional threshold based mechanisms,
proving the strength of clustering approaches versus threshold
based algorithms. In this paper, the defined algorithms are run
over real traffic traces, to obtain statistical information on user
sessions, such as distributions of i) session duration, ii) amount
of data carried over a single session, iii) number of connection
within a single session. A study of the inter-arrival times of
Web user-sessions is also presented, from which it emerges
that Web user-sessions tend to be Poisson, but correlation may
arise during network/hosts anomalous functioning.

II. CLUSTERING TECHNIQUES

In this section we briefly describe two clustering techniques,
which will be used in the next sections as key tools. Clustering
is a general framework which can be applied to many different
areas to infer some sort of similarity among subsets of data,
typically on a large size repository. More details on clustering
techniques can be found in [4].

Let us consider a metric space X , which we refer to as a
sampling space, and a set of samples A = {x1, . . . , xN | xi ∈
X} which have to be clustered into K subsets: we wish
to find a partition C = {C1, . . . , CK}, such that ∪iCi =
A and Ci ∩ Cj �=i = ∅, with K possibly being unknown
a priori. The subsets in the partition are named clusters.
They contain “similar” samples, whereas samples associated
to different clusters should be “dissimilar”, the similarity
being measured via the sample-to-sample and cluster-to-cluster
distances. Depending on the dataset, ad hoc distance definition
must be provided on the basis of a trial and error procedure.
From now on, we assume that: X = R

n, xk
i represents the
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k-th component of sample xi, the sample distance d(xi, xj) =√∑n
k=1(x

k
i − xk

j )2 is the classical Euclidean metric; the
distance between two clusters Ci,Cj is defined as

d(Ci, Cj) =
min

x∈R(Ci),y∈R(Cj)
d(x, y) (1)

where R(C) ⊆ C is a set of selected points representing the
whole cluster C.

A. The hierarchical agglomerative approach

At the beginning of the procedure, each sample is associated
to a different cluster, i.e., Ci = {xi}, thus the number of
cluster Nc is equal to N = |A|. Then, based on a definition
of a cluster-to-cluster distance, the nearest clusters are merged
to form a new cluster. Iterating this step, the procedure ends
when all samples belong to the same cluster C = A =
{x1, . . . , xN}, and Nc = 1. This procedure defines a merging
sequence based on minimum distance between clusters. At
each step i = 1, . . . , N , the quality indicator function γ(i)

is evaluated. The set A is finally clustered by selecting the
number of clusters Nc = N − (i − 1) such that γ(i) − γ(i−1)

is maximized. Intuitively, the quality indicator function γ(i)

measures the distance between the two closest cluster at step
i. A sharp increase in the value of γ(i) is an indication that
the merging procedure is merging two clusters which are too
far apart, thus suggesting to adopt the previous partition as
the best cluster configuration. Refer to [1] to see a typical
behavior of γ.

This approach can be rather time consuming, especially
when the data set is very large, given the need of starting
with an initial number of clusters equal to Nc = |A|.
B. The partitional approach

This technique is used when the number K of final clusters
is known. The procedure starts with an initial configuration
comprising K clusters, selected according to some criteria;
the cluster configuration’s procedure is iterated. Cluster Ci is
represented by a subset of samples R(Ci) in Eq. (1). When
the cluster representative is the so called centroid ĉi, defined
as the mean value of the cluster samples, i.e.,

ĉk
i =

1
|Ci|

∑
x∈Ci

xk k = 1, . . . , n

the algorithm is named K-means algorithm in the literature.
At the beginning, K clusters are created, with cluster

centroids positioned according to a given rule in the measure
space, e.g., randomly positioned or partitioning the measured
space in K + 1 equi-spaced areas. Each sample is associated
to the closest cluster, according to the distance between the
samples and the centroid of each cluster. When all samples
are assigned to a cluster, new centroids are computed and
the procedure is iterated. This algorithm ends when either a
prefixed number of iterations is reached, or the number of
samples which are moved to a different cluster is negligible
according to a predefined threshold.

III. USING CLUSTERING TECHNIQUES ON MEASURED

DATA SET

We start by giving some details about the dataset of traces
that will be analyzed, to define the variables that will be used
by the clustering algorithm.

A. Traffic trace description

Traffic traces were collected on the Internet access link
of Politecnico di Torino, i.e., between the border router of
Politecnico and the access router of GARR/B-TEN[10], the
Italian and European Research network. Within the Politecnico
campus LAN, there are approximately 7,000 hosts; most of
them are clients, but several servers are also regularly accessed
from the outside. The backbone of the campus LAN is based
on a switched Fast Ethernet infrastructure. It behaves as a stub
Internet subnetwork, which is connected to the public Internet
via a single 28Mbps link. A strict regulation of the network
facilities is imposed by means of a firewall architecture which
blocks (most of) the peer-to-peer traffic. Thus, still today the
majority of our Internet traffic is built by Web browsing.
Details on the measurements setup and traffic characteristics
can be obtained from [6], [7].

Since 2001, several traces have been regularly collected.
Among the available data, we selected the time period from
from 04/29/2004 to 05/06//2004 (named APR.04), which
comprises more than a week of continuously traced data.
We performed the analysis by considering only the working
period, i.e., traffic from 8AM to 8PM, Monday to Friday. The
APR.04 dataset includes two working days (the 5th and 6th
of May) during which terminals in our campus were attacked
and infected by the so called “Sasser.B” worm [11]. The worm
infection does not affect our measurement campaign, because
the spreading of the worm itself is not based on the HTTP
protocol. Nonetheless, the drawbacks of the network and host
malfunctions and subsequent requirements to download worm
removal tools and Operating System patches have quite a large
impact on the properties of the user session, as we will show
later in this paper.

Bidirectional packet level traces have been collected using
tcpdump [5], and then later processed by Tstat [7] to obtain a
TCP level trace. Tstat is an open source tool developed at the
Politecnico di Torino for the collection and statistical analysis
of TCP/IP traffic. In addition to standard and recognized
performance figures, Tstat infers TCP connection status from
traces. For the purpose of this paper, we used Tstat to track:

• fid = (CIP , SIP , CTCP , STCP ): the 4-tuple identifying
the flow, i.e., IP addresses and TCP port numbers of client
and server (when the IP protocol field is set to TCP).

• t: the flow start time, identified by the time stamp of the
first client SYN message.

• td: the time instant in which the last segment carrying
data is observed (either from the client or form the
server).

• te: the flow end time, identified by the time instant in
which the tear-down procedure is terminated.
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• Bc and Bs: the byte-wise amount of data sent from the
client and server respectively (excluding retransmissions).

B. Clustering definition

The first fundamental choice regards the n statistical vari-
ables used to define the metric space X = R

n to be used in the
clustering analysis; this implies also to select the metric space
that best fits our problem. The typical and easiest approach is
to let the clustering algorithm to run over a very large number
of statistical variables, typically including the vast majority of
available data (in our example, potential statistical variables
may be IP source address, TCP destination port, TCP flows
starting and ending time, etc).

However, after several trials, an accurate pre-filtering of
data available in traces both improves algorithmic speed and
provides more accurate results. Recalling that we wish to
identify a Web user-session, i.e., a group of TCP connections
corresponding to the activity period of a user running a Web
browser, we used the opening time t of a TCP connection
as the only statistical variable for the clustering process; thus
n = 1, and X = R.

Before running the clustering algorithm on this variable,
traces are preprocessed. We assume that a “user” is identified
by its client IP address CIP , and only connections having TCP
server port STCP equal to 80 (HTTP protocol) are considered
to be Web connections. To consider only significant IP (users),
we selected the most active hosts, i.e., the top 1500 campus
LAN IP addresses with respect to the number of generated
TCP connections. Each user trace is preprocessed according
to the following steps: i) data are partitioned day by day, ii)
only working hours of working days are considered to obtain
a set of statistically homogeneous samples and iii) opening
times of two subsequent flows separated by more than half
an hour are a priori considered as two independent data sets.
Thus, for a given host IP, the set of samples

A(IP) = {t | CIP = IP, STCP = 80, ti − ti+1 < 1800s}
represents the opening times of TCP connections within a
given time-frame. The intuition behind this is to allow the
clustering algorithm to concentrate only on TCP connections
created by a single user.

After the metric space definition, we need to select a cluster
analysis method. To take the advantages and to avoid the
drawbacks of hierarchical and partitional clustering methods,
we use a mix of them. Thus, for each A(IP), the following
3-step algorithm is run to identify sessions relative to a given
user:

1) an initial smart clustering is obtained by selecting a
number of clusters large enough but smaller than the
number of samples of A

2) a hierarchical agglomerative algorithm is used to aggre-
gate the clusters and to obtain a good estimation of the
final number of them Nc

3) a partitional algorithm is used to obtain a fine definition
of the Nc clusters.

1) Initial clustering selection: We use a partitional method
with K clusters, where K is large enough, but significantly
smaller than the total number of samples (a study of the
impact of K is presented in [1]). To efficiently position the
K centroids at the first step, in our uni-dimensional metric
space, we evaluate the distance between any of two adjacent
samples ti, ti+1. According to the distance metric d(ti, ti+1) =
|ti−ti+1|, we take the farthest (K−1) couples and determine
K intervals. Let ti,inf , ti,sup be the inferior and superior
bounds of interval i, the centroid position of each cluster is
set to ĉi = (ti,sup + ti,inf )/2, and the partitional method is
run for up to 1000 iterations: therefore, we define K initial
clusters.

At this step, we represent each cluster C with a small subset
R(C) of samples; |R(C)| ≤ 2 is enough in our case, since
the metric space is R. Possible choices for R(C) are: (i) the
cluster centroid, which gives the name “centroid method” (or
K-means) to the procedure; (ii) the g-th and (100 − g)-th
percentiles, which yields the so-called (iii) “single linkage”
procedure when g = 0.

2) The hierarchical agglomerative procedure: A hierarchi-
cal method is iteratively run using only the representative
samples {R(C)} to evaluate the distance between two clusters,
and starting with K initial clusters, therefore enormously
reducing the number of steps of the hierarchical method.
At each iteration, the hierarchical procedure merges the two
closest clusters; distances among clusters are recomputed.
After K − 1 iterations, the process ends.

To decide which is the optimal number of clusters among
those determined in the iterative process, we define the clus-
tering quality indicator function γ(i). Denote the j-th cluster
at step i as C

(i)
j ; at each step, we evaluate the function γ(i):

γ(i) =
d
(i)
min − d̄

(i)
min

d̄
(i)
min

where

d
(i)
min =

min
j, k �= j

d
(
C

(i)
j , C

(i)
k

)
, d̄

(i)
min =

∑i−1
l=1 d

(l)
min

i − 1

and d
(
C

(i)
j , C

(i)
k

)
is defined according to Eq.( 1)

A sharp increase in the value of γ(i) is an indication that the
merging procedure is artificially merging two clusters which
are too far apart. The optimal number of clusters Nc is the
one that correspond to the sharpest increase in γ(i) (the first
one is chosen in case of multiple occurrences):

Nc = N −
[

argmax
i ≥ 1

(
γ(i) − γ(i−1)

)
− 1

]

3) Final clustering creation: Finally, a partitional clustering
procedure is run over the original dataset which includes all
samples, using the optimal number of clusters Nc determined
so far, therefore using the same procedures adopted in the
first step (either the centroid, g percentile or single linkage
methods). Then a fixed number of iterations of the partitional
approach are run, to permit a final refinement on the clustering
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Fig. 1. PDF (and Complementary CDF in the inset) of the session length.

definition. This third phase is not strictly required, given that
at the end of the hierarchical procedure a partition is already
given. However, it produces clusters of real points instead
of centroids (which may not coincide with any data point).
In addition, the computational cost of this phase is almost
negligible compared to the previous one.

The complete clustering algorithm has been implemented
by a number of Perl scripts, and by using the “R-Project for
Statistical Computing” tool [2], which efficiently implements
many clustering algorithms.

IV. PERFORMANCE ANALYSIS OF TRACE DATA SET

In this section we summarize the results obtained by running
the clustering algorithm for each user separately, according to
the trace pre-processing algorithm previously described.

A. Web user-session characterization

In Figs. 1, 2, and 3 the major characteristics of the Web
user-session identified during APR.04 are shown. We plot
Probability Density Functions (PDFs) using a linear/log scale:
since the support is quite large, the PDF is represented only for
a limited range of values, and the complementary Cumulative
Distribution Function (CDF) is shown using a log/log scale
in an inset to highlight the characteristics of the distribution’s
tail.

Fig.1 shows the probability density function for the duration
of the identified sessions. The two different distributions
shown in Fig. 1 represent the effect of different definitions for
the Web user-session. Considering TCP connections belonging
to the same session, we define the session duration as the time
between the first SYN segment of the first connection and: (i)
for “protocol session”, the last segment observed during the
last connection tear-down (solid line); (ii) for “user” session,
the last segment carrying payload of the last connection (dotted
line). Therefore, using the notation introduced in Sec. III, for
a given session/cluster C, we can define

∆Te = max
fid∈C

(te(fid)) − min
fid∈C

(t(fid))

∆Td = max
fid∈C

(td(fid)) − min
fid∈C

(t(fid))

 0
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Fig. 2. PDF (and Complementary CDF in the inset) of the client-to-server
and server-to-client data sent in each session.

in which ∆Te and ∆Td are the protocol and user session
duration respectively. The first definition is relevant for exam-
ple when either web server or client resources are considered,
since TCP connections must be managed until the tear-down
procedure has ended. The second definition on the contrary is
relevant to model the user behavior, since users are satisfied
when all data have been sent/received.

Clearly, the distribution of the protocol session duration
shows longer duration, but also biased peaks at 20s, 60s
and 3600s, corresponding to application layer timers imposed
by Web browsers or HTTP servers which trigger connection
tear-down procedure after idle periods. For example, due to
HTTP protocol settings, servers may wait for a timer to expire
(usually set to 20 seconds) before closing the connection;
similarly, HTTP 1.1 and Persistent-HTTP 1.0 protocols use
an additional timer, usually set to a multiple of 60 seconds.
Therefore, for protocol session duration, the bias induced by
those timers is evident. The same bias disappears when the
session duration is evaluated considering user session duration.

Notice that the session duration distributions have a quite
large support, showing a great variability in users behavior.
Indeed, there is a percentage of very short sessions (less
than few seconds), but also users whose activities last for
several hours. Indeed, the tail of the complementary CDF
shown in the inset underlines the heavy-tailed distribution of
session duration, which can be a possible cause of Long Range
Dependence (LRD) at both the connection and packet layers.

In Fig. 2 we have the PDF for the volume of data exchanged
during each session in the client-server (dashed lines) and the
server-client (solid lines) directions : for a given session/cluster
C, Dc =

∑
fid∈C(Bc(fid)) and Ds =

∑
fid∈C(Bs(fid))

define the session data volumes. As expected, much less data
are transfered from clients to servers and the distribution
tail is shorter; the number of sessions transferring more than
10 Mbytes in the server-client direction is not negligible. A
peculiar number of peaks are present in the initial part of both
PDFs. Investigating further, we discovered that those peaks are
due to the identification of sessions which are not generated by
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users, but instead by automatic reload procedure imposed by
the Web page being browsed. For example, news or trading on
line services impose periodic updates of pages which causes
the client to automatically reload the pages. If the automatic
reload is triggered periodically, the clustering algorithm tends
to identify for each connection a separate session, thus causing
a bias in the session data distribution.

This is clearly evident also from Fig. 3, which reports the
number of TCP connections per session |C|. Indeed, more
than 25% of sessions count for only one connection. Moreover,
most of the identified sessions is built by very few connections
(about 50% by 4 connections or less), indicating also that i) the
client is usually able to obtain all the required data over few
TCP connections, ii) the number of external objects required is
limited, and iii) the time spent by the users over one web page
is large enough to define each web transaction as a session.

The complementary distribution of the number of TCP
connections per session reported in the inset of Fig. 3 shows a
linear trend, highlighting that the distribution has an heavy tail.
This could be one of the possible causes of LRD properties
at the flow level, as already known.

Fig. 4 reports the CDF of the average user flow inter-arrival
Tarr and average user session OFF period Toff , i.e., for each
user, we evaluated the average Tarr and Toff , and then derived
the corresponding distribution over users. As expected, Tarr

assumes smaller values than Toff , but the two distributions
overlap as underlined by the two vertical lines. This shows
the variability in user behavior.

Notice that the overlapping of the two distributions would
have not appeared if a threshold methodology had been
applied, whichever adopted threshold. Moreover the variability
of the mean Toff and mean Tarr makes it very difficult to
select an appropriate values for η. This confirms the limits of
threshold based approaches and the need of using clustering
approaches that automatically adapt to different scenarios.

B. Statistical properties of session arrival process

Finally, statistical properties of the aggregate session inter-
arrival times are investigated. We obtained a trace of session
arrivals by multiplexing all sessions identified for each IP
source address (user) during the same time period, i.e, by
considering the Web user-session arrival process to the access
router of our institution.

Fig. 5 reports the Q-Q plot of the aggregate session inter-
arrival distribution with respect to the best fitted Weibull
distribution over the same data set. This distribution has been
recognized as a good model for TCP inter-arrival times [3].
The parameters a, b of the Weibull distribution represent the
so called “shape” and “scale” parameters. When the shape
parameter is set to 1, the Weibull distribution degenerates into
an exponential distribution. When it is smaller than 1, the tail
of the distribution tends to be heavier, while for values of a
larger than 1 the shape of the distribution tends to assume
a dumbbell form. The classical maximum likelihood method
was used to obtain the best a and b parameters for the fitting
procedure.

The upper plot of Fig. 5 refers to a typical measurement
day and shows a good matching of the data samples with
the indicated Weibull distribution. Being a = 0.93, it also
shows that the distribution is also very close to an exponential
distribution, therefore hinting that the arrival process of Web
user-session tends to be Poisson as pointed out by previous
studies [8]. The Q-Q plot shows also that the tail of the
distribution is in general less heavy than the tail of the fitted
Weibull distribution. There is therefore a bias toward small
values of session inter-arrivals, with large inter-arrivals which
are rare. The Q-Q plot of the same data with respect to the
best-fitted exponential distribution showed almost the same
behavior.

On the contrary, the lower plot in Fig. 5, which refers to
the samples collected on May 5th, 2004, shows a distribution
that cannot be fitted by a Weibull distribution. The best fit is
obtained by a shape parameters a = 0.67 indicating an heavy
tailed distribution. Moreover, the best fit Weibull distribution
deviates from the measured dataset on large quantiles, showing
that the tail of the real distribution is heavier than the one of
the best fit distribution. The anomalous behavior is due to
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Fig. 5. Fit of user session inter-arrivals to a Weibull distribution: normal day
in the top plot and during a worm attack on the bottom plot.

the spreading of the Sasser.B worm [11] in our institution, as
previously described, and to the subsequent download of the
needed OS patches and Anti-virus updates, which introduced
correlation in the arrival process of sessions, being driven by
the (large) download time of files.

Fig.6 finally reports the autocorrelation function evaluated
on the session inter-arrival obtained during a typical day on top
plot, while bottom plot refers to the autocorrelation estimated
during the anomalous day during the worm attack. Top plot
confirms that Poisson assumption holds for normal day, being
the autocorrelation function almost negligible except that in the
origin. Similarly, the autocorrelation function among session
inter-arrivals can be quite relevant on days during which user
activities is driven by external factors, as shown by the bottom
plot which refers to the day of the worm infection.

V. CONCLUSIONS

We propose an application of clustering techniques to a
large set of real Internet traffic traces to identify Web user-
sessions. The proposed clustering method has been applied to
measurement trace data sets to study the characteristics of Web
user-sessions, showing that session arrival process tends to be
Poisson distributed. Moreover, the analysis of the identified
user-sessions shows a wide range of behavior that cannot be
captured by any threshold based method. Finally, we think that
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Fig. 6. Auto correlation function of the inter-arrival process of sessions:
normal day in the top plot and during a worm attack on the bottom plot.

the clustering algorithms proposed in this paper can be helpful
in studying other traffic properties. We intend to apply them
to different types of traffic, and to extend the study on the
statistical properties of the identified sessions arrival process.
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