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Abstract

A new lattice Boltzmann model for simulating ideal mixtures has been developed
by means of the multiple-relaxation-time (MRT) approach. If compared with the
previous single-relaxation-time (SRT) formulation of the same model, based on the
continuous kinetic theory, the new model offers the possibility to independently
tune the mutual diffusivity and the effects of cross collisions on the effective stress
tensor. The additional degrees of freedom, due to the increased set of relaxation time
constants used for modeling the cross collisions, allows us to match the experimental
data on macroscopic transport coefficients. Two different integration rules, i.e. the
forward Euler and the modified mid-point integration rule, were used in order to
numerically integrate the developed model. Unfortunately the simpler forward Euler
integration rule violates the mass conservation and there is no way to fix the problem
by changing the definition of the macroscopic velocity. On the other hand, a small
correction has been purposely designed for compensating this error by means of the
mid-point integration rule. Some numerical simulations are reported for proving
the effectiveness of the proposed corrective factor. For the considered application,
the asymptotic analysis, recently suggested as an effective tool for analyzing the
macroscopic equations corresponding to the lattice Boltzmann schemes, offers a
remarkable advantage in comparison with the classical Chapman-Enskog technique,
because it easily deals with leading terms in the distribution functions, which are
no more Maxwellian.
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1 Introduction

In the last years, the lattice Boltzmann method (LBM) has become very pop-
ular among the discretization techniques for solving simplified kinetic models.
Starting from some pioneer works [1–3], the method has reached a more sys-
tematic fashion [4,5] by means of a better understanding of the connections
with the continuous kinetic theory [6,7] and by widening the set of applica-
tions, which can benefit from this numerical technique. When complex ge-
ometries are considered and the inter-particle interactions must be taken into
account, the discretized models derived by means of the lattice Boltzmann
method offer some computational advantages over continuum based models,
particularly for large parallel computing. A more complete and recent cov-
erage of various previous contributions on LBM is beyond the purposes of
the present paper, but can be found in some books [8–10] and some review
papers [11,12].

A promising application for lattice Boltzmann models seems to be the anal-
ysis of reactive mixtures in porous catalysts [13,14]. For this reason, a lot of
work has been performed in recent years in order to produce reliable lattice
Boltzmann models for multi-component fluids and, in particular, for mixtures
composed by miscible species. The problem is to find a proper way, within the
framework of a simplified kinetic model, for describing the interactions among
particles of different types, i.e. cross collisions. Once this milestone is defined,
the extension of the model to reactive flows is straightforward [15,16] and it
essentially involves additional source terms in the species equations according
to the reaction rate.

Unfortunately, most existing lattice Boltzmann models for mixtures are based
on pseudo-potential interactions [17–20] or heuristic free energies [21–24] in
order to realize the so-called single-fluid approach [25,26]. Essentially, the av-
eraged effect due to both self-collisions and cross-collisions is described by
means of a total BGK-like collisional operator. Considering some special kind
of mixture properties in the Maxwellian distribution function of the BGK-like
collisional operator, each species will be forced to evolve towards the mixture
equilibrium conditions. For almost a decade now, diffusions driven by con-
centrations, pressure, temperature and external forces have been studied by
this kind of models for arbitrary number of components with non-ideal in-
teractions. Even though the single-fluid approach proved to be an accurate
numerical tool for solving some macroscopic equations in a large number of
applications, it provides a mesoscopic picture of the phenomena which shows
some limits.

On the other hand, some models based on the two-fluid approach have been
proposed. According to this approach, each species relaxes towards its equilib-
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rium configuration according to its specific relaxation time and some coupling
must be considered in order to describe the collisions among different species.
Some models [27,28] adopt a force coupling in the momentum equations, which
derives from a linearized kinetic term, while other models [29,30] adopt a vis-
cous coupling, which is an additional coupling effect in the effective stress
tensor.

In particular, the Hamel model [31–33], originally developed within the frame-
work of the continuous kinetic theory, implies that cross collisions realize both
an internal coupling force, proportional to the diffusion velocity, and an ad-
ditional coupling effect in the effective stress tensor. For this reason, Hamel
model is the natural forerunner of all linearized models and allows us to de-
scribe mixtures at different limiting regimes consistently. An LB discrete for-
mulation of the continuous kinetic model proposed by Hamel has been recently
proposed [30]. Unfortunately in the original LB formulation, the macroscopic
mutual diffusivity and the mixture kinematic viscosity could not be indepen-
dently tuned because only a single cross-collision relaxation time was available.
Tuning strategies based on diffusivity or on mixture kinematic viscosity were
proposed, but it is worth pointing out that in that formulation the viscous
relaxation process and the diffusion process were inseparable.

The goal of this paper is twofold:

(1) to extend the previous LB formulation of the Hamel model by means
of the multiple-relaxation-time [34,35] (MRT) approach in order to inde-
pendently tune both mutual diffusivity and mixture kinematic viscosity,
which, according to the experimental data, differs from the elementary
mass averaged kinematic viscosity;

(2) to prove that, for the considered application, the asymptotic analysis [36],
recently suggested as an effective tool for analyzing the macroscopic equa-
tions corresponding to LB schemes, offers some advantages if compared
with the classical Chapman-Enskog expansion.

Even though the MRT formulation represents a remarkable progress, the well-
known drawback of Hamel model of the Boltzmann system for gas mixtures
is the lack of differentiability. The indifferentiability principle [37] prescribes
that, if a BGK-like equation for each species is assumed, this set of equations
should reduce to a single BGK-like equation, when mechanically identical com-
ponents are considered. This essentially means that, when all the species are
identical, one should recover the equation governing the single component gas
dynamics. This principle can be considered one of the basic physical proper-
ties in the design of simplified kinetic models for mixture modeling [38]. From
the macroscopic point of view, the consequences due to the lack of differen-
tiability will be discussed (see Section 4 for details). However this paper still
considers the original formulation of the Hamel model. The development of an
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MRT model for mixture modeling fully consistent with the indifferentiability
principle is discussed in another paper [39].

This paper is organized as follows. Section 2 summarizes the previous single-
relaxation-time formulation of the Hamel model. Section 3 generalizes the
previous formulation by means of the multiple-relaxation-time approach for
the continuous case. Section 4 recovers the macroscopic equations which corre-
spond to the continuous model by means of the asymptotic analysis. Section 5
recovers the macroscopic equations for the discrete model based on the forward
Euler integration rule. Since this simple implementation does not satisfy the
continuity equation, Section 6 discusses a modified integration scheme based
on the modified mid-point integration rule for ensuring the mass conservation.
Section 7 reports some numerical simulations for proving that the modified in-
tegration scheme is effective and, finally, Section 8 summarizes the conclusions
of this work.

2 Single-relaxation-time (SRT) formulation of the Hamel model
on the D2Q9 lattice

According to the Hamel model [31–33], the distribution function gσ for the
generic species σ satisfies the following equation,

∂tgσ

∂t
+ v · ∇gσ =

1

τσ

(ge
σ − gσ) +

1

τm

(ge
σ m − gσ) , (1)

where ge
σ = ge

∗(uσ), ge
σ m = ge

∗(u) and ge
∗(u∗) is defined as

ge
∗(u∗) =

ρσ

mσ (2πeσ)D/2
exp

[
−(v − u∗)

2

2 eσ

]
. (2)

In particular uσ is the single species velocity and u is the barycentric velocity,
defined as the mass average of the single species velocities, i.e. u =

∑
σ xσuσ

where xσ is the generic concentration. The relaxation time constants τσ and
τm describe the equilibration process due to self collisions and cross collisions,
respectively. Introducing a proper two-dimensional lattice (D2Q9) for the mi-
croscopic velocity and considering the limiting case U/c � 1, where U is a
characteristic macroscopic flow speed and c is the lattice speed, yield to the
single-relaxation-time (SRT) formulation of the Hamel model [30], namely

∂f i
σ

∂t
+ vi · ∇f i

σ = λσ

(
f e i

σ − f i
σ

)
+ λm

(
f e i

m − f i
σ

)
, (3)

4



where f e i
σ = f e i

σ (uσ) is the equilibrium distribution function centered on the
species velocity and f e i

m = f e i
m (u) is the equilibrium distribution function

centered on the barycentric velocity, defined as the mass average of the species
velocities.

It is possible to reformulate the previous equation in a more simple way,

∂f i
σ

∂t
+ vi · ∇f i

σ = (λσ + λm)
(
f e i

σ m − f i
σ

)
, (4)

where f e i
σ m = (1 − ασ)f e i

σ + ασf
e i
m and ασ = λm/(λσ + λm). The modified

equilibrium distribution function is defined as

f e i
σ m = ρσ ς i

{
(9− 5 sσ)

4
− 3

2 c2

[
(1− ασ)u2

σ + ασ u2
]}

, (5)

for i = 0,

f e i
σ m = ρσ ς i

{
sσ +

3

c2
vi · [(1− ασ)uσ + ασ u]

+
9

2 c4

[
(1− ασ) (vi · uσ)2 + ασ (vi · u)2

]
− 3

2 c2

[
(1− ασ)u2

σ + ασ u2
]}

, (6)

for 1 ≤ i ≤ 8 and sσ = 3 eσ/c
2. The constants ς i are the usual weight factors

for this lattice [5] and eσ is the internal energy. The previous equations can
be written in vectorial form, namely

∂fσ
∂t

+ V · ∇fσ = (λσ + λm) I (f e
σ m − fσ) , (7)

where V is defined as

VT = c

 0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

 . (8)

It is possible to consider an equivalent moment system of the previous model
by defining a proper set of moments. The lower-order moments are the con-
served hydrodynamic moments, but the higher-order non-hydrodynamic mo-
ments are unknown. Since the final goal of the moment formulation is to
decouple the different moments in order to differently relax them, it seems
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natural to consider an orthogonalization procedure: in the following, the well-
known Graham-Schmidt procedure will be considered. For this procedure two
elements are needed: the generalized scalar product and the starting non-
orthogonal basis. Concerning the first issue, it has been shown that the scalar
product, which includes the weight factors, namely

< x1,x2 >=
8∑

i=0

ς i xi
1 xi

2, (9)

generates orthogonal basis clearly separating the terms in the distribution
function according to the power of macroscopic velocities [36]. Concerning
the starting non-orthogonal basis, it is essentially a matter of convenience:
for simplicity, a simple monomial basis will be considered {1, v̂x, v̂y, } and{
v̂x v̂y, v̂

2
x, v̂

2
y , v̂x v̂2

y , v̂y v̂2
x, v̂

2
x v̂2

y

}
, where v̂x = vx/c and v̂y = vy/c. These as-

sumptions yield the following linear mapping

MA =



1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1

−1/3 2/3 −1/3 2/3 −1/3 2/3 2/3 2/3 2/3

−1/3 −1/3 2/3 −1/3 2/3 2/3 2/3 2/3 2/3

0 −1 0 1 0 2 −2 −2 2

0 0 −1 0 1 2 2 −2 −2

1 −2 −2 −2 −2 4 4 4 4



, (10)

which allows us to define the full set of equilibrium moments for self collisions

me
σ = MA f e

σ = ρσ [1, ûσ x, ûσ y, ûσ xûσ y,

(sσ − 1)/3 + û2
σ x, (sσ − 1)/3 + û2

σ y, 0, 0, 1− sσ

]T
, (11)

and cross collisions

me
m = MA f e

m = ρσ [1, ûx, ûy, ûxûy,

(sσ − 1)/3 + û2
x, (sσ − 1)/3 + û2

y, 0, 0, 1− sσ

]T
. (12)
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The same mapping MA can be used in order to define the generic non-
equilibrium moments, namely

mσ = MA fσ =
[
ρσ, ρσ ûσx, ρσ ûσy, T̂σxy, T̂σxx, T̂σyy, q̂σx, q̂σy, ĥσ

]T
, (13)

where all the previous quantities were rescaled by means of the lattice speed
in order to ensure that all the moments have the physical dimensions equal to
those of the density. Finally, the equivalent moment system corresponding to
Eq. (7) is

∂mσ

∂t
+ MA V ·

(
M−1

A ∇mσ

)
= (λσ + λm) I (me

σ m −mσ) , (14)

where me
σ m = (1− ασ)me

σ + ασ me
m.

These preliminary results, which are equivalent to those reported in the paper
discussing the SRT formulation of the Hamel model [30], will be generalized
in the following section.

3 Multiple-relaxation-time (MRT) formulation of the Hamel model
on the D2Q9 lattice

The previous vectorial equation (7) can be formally generalized as

∂fσ
∂t

+ V · ∇fσ = Aσ (f e
σ − fσ) + Am (f e

m − fσ) , (15)

where Aσ = M−1
D DσMD, Am = M−1

D DmMD and MD defines a proper or-
thonormal basis. In particular, Dσ and Dm are diagonal matrices,

diag(Dσ)T = [λ0
σ, λ

I
σ, λ

I
σ, λ

II
σ 1, λ

II
σ 2, λ

II
σ 3, λ

III
σ , λIII

σ , λIV
σ ]

diag(Dm)T = [λ0
m, λI

m, λI
m, λII

m 1, λ
II
m 2, λ

II
m 3, λ

III
m , λIII

m , λIV
m ], (16)

collecting the generalized relaxation time constants for self and cross collisions.

In the equivalent moment space, the previous equation can be reformulated
as

∂mσ

∂t
+ MA V ·

(
M−1

A ∇mσ

)
= Eσ (me

σ −mσ) + Em (me
m −mσ) , (17)
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where Eσ = MAAσM
−1
A and Em = MAAmM−1

A . The choice of MD strongly
effects the coupling among the moments and the final system of macroscopic
equations. The easiest choice is obviously MD = MA, because in this case
Eσ = Dσ and Em = Dm. Unfortunately this choice does not allow one to
freely tune the bulk viscosity of the fluid, which can strongly effect the stabil-
ity of the calculation when the diffusion phenomena are considered. For this
reason, a slightly different choice was adopted and the practical consequences
will be discussed by the asymptotic analysis discussed in the next paragraph.
Assuming MD as

MD =



1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1

0 1/2 −1/2 1/2 −1/2 0 0 0 0

−2/3 −1/6 −1/6 −1/6 −1/6 1/3 1/3 1/3 1/3

0 −1 0 1 0 2 −2 −2 2

0 0 −1 0 1 2 2 −2 −2

1 −2 −2 −2 −2 4 4 4 4



, (18)

implies

Eσ =



λ0
σ 0 0 0 0 0 0 0 0

0 λI
σ 0 0 0 0 0 0 0

0 0 λI
σ 0 0 0 0 0 0

0 0 0 λII
σ 1 0 0 0 0 0

−µ3m0 0 0 0 µ3p2 µ3m2 0 0 0

−µ3m0 0 0 0 µ3m2 µ3p2 0 0 0

0 0 0 0 0 0 λIII
σ 0 0

0 0 0 0 0 0 0 λIII
σ 0

0 0 0 0 0 0 0 0 λIV
σ



, (19)

where µ3m0 = (λII
σ 3 − λ0

σ)/3, µ3p2 = (λII
σ 3 + λII

σ 2)/2 and µ3m2 = (λII
σ 3 − λII

σ 2)/2.
In order to reduce the truncation errors, some relaxation time constants will
be assumed equal to zero: λ0

σ = λI
σ = 0 because me i

σ = mi
σ for i = 0, 1, 2 and
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λ0
m = 0 me i

m = mi
σ for i = 0 respectively.

As previously done for the SRT formulation, it is possible to search for a more
compact form. In particular, let us introduce the matrix Xσ, defined as

Xσ = MA M−1
D X0

σ MD M−1
A , (20)

where X0
σ is a diagonal matrix such as

diag(X0
σ)T = [1, 1, 1, αII

σ 1, α
II
σ 2, α

II
σ 3, α

III
σ , αIII

σ , αIV
σ ], (21)

and αk
σ j = λk

m j/(λ
k
σ j +λk

m j) for k ≥ 2. It is possible to prove that the following
equivalences hold

Eσ = (Eσ + Em) (I−Xσ), (22)

Em = (Eσ + Em)Xσ. (23)

Introducing the previous relations in the Eq. (17) yields

∂mσ

∂t
+ MA V ·

(
M−1

A ∇mσ

)
= (Eσ + Em) (me

σ m −mσ) , (24)

where me
σ m = (I−Xσ)me

σ + Xσ me
m. Coming back in the discrete velocity

space, the compact form becomes

∂fσ
∂t

+ V · ∇fσ = A∗ (f e
∗ − fσ) , (25)

where A∗ = M−1
A (Eσ + Em)MA and

f e
∗ =

(
I−M−1

D X0
σ MD

)
f e
σ + M−1

D X0
σ MD f e

m. (26)

The matrix A∗ is singular, then a pseudo-inverse has been defined as

A†
∗A∗ = A∗A

†
∗ = I−Q, (27)

where Qij = 1/9. This definition differs from that reported in the paper by
Junk et al. [36], because the kernel of the generalized matrix A∗ is smaller,
since the single species momentum is not conserved (at least for λI

m > 0).

In the next paragraph, the asymptotic analysis will be applied in order to
recover the macroscopic equations, which derive from the generalized MRT
formulation of the Hamel model.
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4 Asymptotic analysis of the MRT Hamel model by the diffusive
scaling

For most of the diffusion phenomena, the characteristic velocities are usually
much smaller than the sound speed. For this reason, the diffusive scaling [40]
can be properly applied.

There are three characteristic time scales in this system: the time scale TC ,
which properly describes the collision phenomenon, i.e. O(τσ/TC) = 1; the
time scale TF , which properly describes the particle dynamics on the lattice,
i.e. O[(L/c)/TF ] = 1 where L is the system size and, finally, the time scale TS,
which properly describes the slow fluid dynamics, i.e. O[(L/U)/TS] = 1. The
fast fluid dynamics (acoustic waves) was neglected. Since a lot of collisions
are needed in order to travel across the system, then TC/TF = ε, where ε is a
small number. Moreover since U/c � 1, then TF /TS = ε and then consequently
TC/TS = ε2. Once the characteristic time scales are defined, the basic idea is
to express the previous equation in terms of some normalized quantities, in
order to analyze the slow fluid dynamics only. Applying the diffusive scaling
to Eq. (25) yields

ε2 ∂fσ

∂t̂
+ ε V̂ · ∇̂fσ = Â∗ (f e

∗ − fσ) , (28)

where x̂ = x/L, t̂ = t/TS, Â∗ = TC A∗ (which implies Êσ = TC Eσ and
Êm = TC Em) and V̂ = V/c. Let us introduce the following regular expansion

fσ =
∞∑

k=0

εk f (k)
σ , (29)

and then consequently

mσ =
∞∑

k=0

εk m(k)
σ . (30)

In particular, for the density and the momentum

ρσ =
∞∑

k=0

εk ρ(k)
σ , (31)

ĵσ =
∞∑

k=0

εk ĵ(k)
σ , (32)
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where ĵσ = ρσ ûσ. Consequently it is possible to define a regular expansion for
the velocity, namely

ûσ =
jσ
ρσ

=

∑∞
k=0 εk ĵ(k)

σ∑∞
k=0 εk ρ

(k)
σ

=
ĵ(0)
σ

ρ
(0)
σ

+ ε

(
ĵ(1)σ

ρ
(0)
σ

− ĵ(0)σ

ρ
(0)
σ

ρ(1)
σ

ρ
(0)
σ

)
+ O(ε2). (33)

In the following, the coefficients of the regular expansion for the momentum ĵ(k)
σ

will be considered as functions of the coefficients of the regular expansions for
the density and the velocity, i.e. ρ(k)

σ and û(k)
σ . This means that the expansion

given by Eq. (32) means

ĵσ = ρσ ûσ =

( ∞∑
k=0

εk ρ(k)
σ

)( ∞∑
k=0

εk û(k)
σ

)
=

∞∑
k=0

εk

 ∑
p+q=k

ρ(p)
σ û(q)

σ

 . (34)

Introducing the previous expansions in the Eq. (28) yields

∂f (k)
σ

∂t̂
+ V̂ · ∇̂f (k+1)

σ = Â∗ f
e0
∗

[
ρ(k+2)

σ

]
+ Â∗

∑
p+q=k+2

f e1
∗

[
ρ(p)

σ , û(q)
σ

]
+ Â∗

∑
p+q+r=k+2

f e2
∗

[
ρ(p)

σ , û(q)
σ , û(r)

σ

]
− Â∗ f

(k+2)
σ , (35)

where the equilibrium distribution vector f e
∗ was split by grouping together

the same monomial terms with regards to the velocity, i.e. f e
∗ = f e0

∗ + f e1
∗ + f e2

∗ .
In particular f e j

∗ = M−1
A me j

∗ and

me 0
∗ = ρσ [1, 0, 0, 0, (sσ − 1)/3, (sσ − 1)/3, 0, 0, (1− sσ)]T , (36)

me 1
∗ = ρσ [0, ux, uy, 0, 0, 0, 0, 0, 0]T , (37)

me 2
∗ = ρσ



0

0

0

(1− αII
σ 1) uσ x uσ y + αII

σ 1 ux uy

(1− β3p2) u2
σ x − β3m2 u2

σ y + β3p2 u2
x + β3m2 u2

y

−β3m2 u2
σ x + (1− β3p2) u2

σ y + β3m2 u2
x + β3p2 u2

y

0

0

0



, (38)
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where β3p2 = (αII
σ 3 +αII

σ 2)/2 and β3m2 = (αII
σ 3−αII

σ 2)/2. Conventionally the de-
pendence on the single species velocity was explicitly reported, even when the
barycentric velocity appears in the previous expressions, because the barycen-
tric velocity is the mass average of the species velocity. Since U/c � 1, then
O(|u|/c) = ε and consequently û(0)

σ = 0. It has been proved [36] that the
expansion coefficients of the moments satisfy the following property

ρ(2 n+1)
σ = 0, û(2 n)

σ = 0, (39)

for n ≥ 0. Taking into account this property, Eq. (35) for k = −2 yields
f (0)
σ = f e0

∗ [ρ(0)
σ ] = ρ(0)

σ s0, where s0 is defined as

s0 = [(1− 5/9 sσ), sσ/9, sσ/9, sσ/9, sσ/9, sσ/36, sσ/36, sσ/36, sσ/36]T ,(40)

and ρ(0)
σ is unknown. In order to find what macroscopic equation the function

ρ(0)
σ must satisfy, the equivalent moment formulation with the diffusive scaling

will be considered, namely

ε2 ∂mσ

∂t̂
+ εMA V̂ ·

(
M−1

A ∇̂mσ

)
= (Êσ + Êm) (me

∗ −mσ) . (41)

In particular, introducing the usual expansions in the equations for the lower
order moments and separating the scales yields

∂ρ(k)
σ

∂t̂
+ ∇̂ ·

∑
p+q=k+1

ρ(p)
σ û(q)

σ = 0, (42)

∂ ĵ(k)
σ

∂t̂
+ ∇̂ · T̂(k+1)

σ = λ̂I
m

∑
p+q=k+2

ρ(p)
σ

[
û(q) − û(q)

σ

]
, (43)

where the tensor T̂(k+1)
σ can be considered as the result of a proper operator

T working on f (k+1)
σ , i.e. T̂(k+1)

σ = T
[
f (k+1)
σ

]
where

T
[
f (k+1)
σ

]
=

∑8
i=0 M5i f

(k+1)
σ i

∑8
i=0 M4i f

(k+1)
σ i∑8

i=0 M4i f
(k+1)
σ i

∑8
i=0 M6i f

(k+1)
σ i

 , (44)
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and

M =



1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 1/2 1/2 1/2 1/2 1 1 1 1

0 1/2 0 −1/2 0 1 −1 −1 1

0 0 1/2 0 −1/2 1 1 −1 −1



. (45)

According to the general property given by Eqs. (39), the Eqs. (42) for k =
−1, +1 are meaningless. For k = 0, +2, the same equation yields

∂ρ(0)
σ

∂t̂
+ ∇̂ ·

[
ρ(0)

σ û(1)
σ

]
= 0, (46)

∂ρ(2)
σ

∂t̂
+ ∇̂ · ĵ(3)

σ = 0. (47)

According to the general property given by Eqs. (39), the Eqs. (43) for k =
−2, 0 are meaningless. The equations for k = −1, +1 can be recovered

∇̂ · T̂(0)
σ = λ̂I

mρ(0)
σ

[
û(1) − û(1)

σ

]
, (48)

∂

∂t̂

[
ρ(0)

σ û(1)
σ

]
+ ∇̂ · T̂(2)

σ = λ̂I
m

[̂
j(3) − ĵ(3)σ

]
, (49)

Recalling the definition of f (0)
σ , then T̂(0)

σ = sσ/3 ρ(0)
σ I and consequently

sσ/3 ∇̂ρ(0)
σ = −λ̂I

mρ(0)
σ ŵ(1)

σ , (50)

where ŵ(1)
σ = û(1)

σ − û(1) is the diffusion velocity. Hence in general the leading
term of the density field is due to the sum of a constant value ρ0

σ and a proper
field due to the diffusion velocity ρD

σ (x̂) satisfying the previous equation, i.e.
ρ(0)

σ = ρ0
σ + ρD

σ (x̂). Eqs. (35) for k = −1 yields

f (1)
σ = f e1

∗

[
ρ(0)

σ , û(1)
σ

]
− Â†

∗ V̂ · ∇̂f (0)
σ , (51)
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and recalling the definition of f (0)
σ ,

f (1)
σ = 3 ρ(0)

σ V̂ ·
[
sI ⊗ û(1)

]
− Â†

∗ V̂ ·
[
s0 ⊗ ∇̂ρ(0)

σ

]
, (52)

where sI is defined as

sI = [4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36]T . (53)

It is easy to prove that if sσ = 1 then s0 = sI . Applying Eq. (50) yields

f (1)
σ = 3 ρ(0)

σ V̂ ·
[
sI ⊗ û(1)

]
+ 3 ρ(0)

σ

λ̂I
m

sσ

Â†
∗ V̂ ·

[
s0 ⊗ ŵ(1)

σ

]
, (54)

and consequently

f (1)
σ = 3 ρ(0)

σ V̂ ·
[
sI ⊗ û(1)

σ

]
. (55)

This result is identical to that obtained by Junk et al [36]. Recalling Eq. (35)
for k = 0 and taking into account the general property given by Eq. (39), the
last expansion coefficient can be recovered

f (2)
σ = ρ(2)

σ sI + f e2
∗

[
ρ(0)

σ , û(1)
σ , û(1)

σ

]
− Â†

∗

{
∂f (0)

σ

∂t̂
+ V̂ ·

[
∇̂f (1)

σ

]}
. (56)

Assuming λ̂II
σ 2 = λ̂II

σ 1 and λ̂II
m 2 = λ̂II

m 1 yields

T̂(2)
σ =

[
sσ

3
ρ(2)

σ +
(2− sσ)

3 (λ̂II
σ 3 + λ̂II

m 3)

∂ ρ(0)
σ

∂t̂

]
I

+(1− αII
σ 1) ρ(0)

σ u(1)
σ ⊗ u(1)

σ + αII
σ 1 ρ(0)

σ u(1) ⊗ u(1)

− 1

3 (λ̂II
σ 1 + λ̂II

m 1)

{
∇̂
[
ρ(0)

σ û(1)
σ

]
+ ∇̂

[
ρ(0)

σ û(1)
σ

]T
− ∇̂ ·

[
ρ(0)

σ û(1)
σ

]
I
}

+β3m1 ρ(0)
σ

{[
û(1)

]2
−
[
û(1)

σ

]2}
I, (57)

where β3m1 = (αII
σ 3−αII

σ 1)/2. In order to ensure the Galilean invariance of the
pressure, β3m1 = 0 is assumed and this implies

λ̂II
m 1

λ̂II
σ 1

=
λ̂II

m 3

λ̂II
σ 3

. (58)

The asymptotic analysis allows to define some constraints in the relaxation
time constants in order to ensure the desired structure of the macroscopic

14



equations. Taking into account these assumptions, the Eq. (49) explicitly be-
comes

∂

∂t̂

[
ρ(0)

σ û(1)
σ

]
+ ∇̂ ·

[
(1− αII

σ 1) ρ(0)
σ û(1)

σ ⊗ û(1)
σ + αII

σ 1 ρ(0)
σ û(1) ⊗ û(1)

]
+ sσ/3 ∇̂ρ(2)

σ = ∇̂ ·
{
ν̂σ m ∇̂

[
ρ(0)

σ û(1)
σ

]
+ ν̂σ m

[
ρ(0)

σ ∇̂û(1)
σ

]T}
+ ∇̂

{
η̂σ m ∇̂ ·

[
ρ(0)

σ û(1)
σ

]}
+

sσ

3 D̂σ

[̂
j(3) − ĵ(3)σ

]
, (59)

where D̂σ, ν̂σ m and η̂σ m are respectively the diffusivity, the kinematic viscosity
and the second coefficient of the kinematic viscosity for the generic species in
the mixture, defined as

D̂σ =
sσ

3 λ̂I
m

, (60)

ν̂σ m =
1

3 (λ̂II
σ 1 + λ̂II

m 1)
, (61)

η̂σ m =
2− sσ

3 (λ̂II
σ 3 + λ̂II

m 3)
− 1

3 (λ̂II
σ 1 + λ̂II

m 1)
. (62)

The following simplifications yield

∇̂
[
ρ(0)

σ û(1)
σ

]
= ρ(0)

σ ∇̂û(1)
σ − 3 ρ(0)

σ

λ̂I
m

sσ

û(1)
σ ⊗ ŵ(1)

σ ≈ ρ(0)
σ ∇̂û(1)

σ , (63)

∇̂ ·
[
ρ(0)

σ û(1)
σ

]
= ρ(0)

σ ∇̂ · û(1)
σ − 3 ρ(0)

σ

λ̂I
m

sσ

û(1)
σ · ŵ(1)

σ ≈ ρ(0)
σ ∇̂ · û(1)

σ , (64)

because the neglected terms are of the same order of magnitude of the inertial
terms and the latter are much smaller than the velocity gradients in the low
Mach number limit. Collecting the previous results yields

ε2 ∂

∂t̂

[
ρ(0)

σ + ε2 ρ(2)
σ

]
+ ε ∇̂ ·

[
ε ρ(0)

σ û(1)
σ + ε3 ĵ(3)σ

]
= 0, (65)

ε2 ∂

∂t̂

[
ε ρ(0)

σ û(1)
σ

]
+ ε ∇̂ ·

[
ε2 (1− αII

σ 1) ρ(0)
σ û(1)

σ ⊗ û(1)
σ + ε2 αII

σ 1 ρ(0)
σ û(1) ⊗ û(1)

]
+ ε sσ/3 ∇̂

[
ρ(0)

σ + ε2 ρ(2)
σ

]
= ε ∇̂

[
ρ(0)

σ η̂σ m ε ∇̂ · ε û(1)
σ

]
+ ε ∇̂ ·

{
ρ(0)

σ ν̂σ m ε ∇̂ε û(1)
σ + ρ(0)

σ ν̂σ m

[
ε ∇̂ε û(1)

σ

]T}
+

sσ

3 D̂σ

[
ρ(0)

σ ε û(1) − ρ(0)
σ ε û(1)

σ + ε3 ĵ(3) − ε3 ĵ(3)σ

]
. (66)
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Coming back to the original quantities expressed in physical units, it is easy to
verify that, if terms O(ε3) are neglected, then ρ̃σ = ρ(0)

σ +ε2 ρ(2)
σ and ũσ = εu(1)

σ

satisfy the Navier-Stokes system of equations, namely

∂ρ̃σ

∂t
+∇ · (ρ̃σ ũσ) = 0, (67)

∂

∂t
(ρ̃σũσ) +∇ ·

[
(1− αII

σ 1) ρ̃σ ũσ ⊗ ũσ + αII
σ 1 ρ̃σ ũ⊗ ũ

]
=−sσ/3∇ρ̃σ +∇ (ρ̃σ ησ m∇ · ũσ)

+∇ ·
[
ρ̃σ νσ m∇ ũσ + ρ̃σ νσ m (∇ ũσ)T

]
− sσ

3 Dσ

ρ̃σ (ũσ − ũ) , (68)

where Dσ = TC c2 Dσ, νσ m = TC c2 ν̂σ m and ησ m = TC c2 η̂σ m.

From the macroscopic point of view, the consequences due to the lack of
differentiability of the Hamel model are evident in Eq. (68). As a matter of
fact, if one sums over the single species momentum equations, then the mixture
momentum equation is not recovered. This is due to the additional quadratic
term appearing in the left hand side of Eq. (68), which depends on the single
species velocities. Sometimes this undesired feature of the Hamel model (and
consequently of the Sirovich model) is omitted by considering this additional
quadratic term negligible in comparison with that depending on the mixture
velocity [41]: however, this is clearly not correct by taking into account the
considerations discussed in the asymptotic analysis. The development of an
MRT model for mixture modeling fully consistent with the indifferentiability
principle is discussed in another paper [39].

In the next paragraph, some integration rules will be compared in order to
analyze the performance of the numerical implementations of the previous
model.

5 Asymptotic analysis of the MRT Hamel model integrated by the
forward Euler integration rule

The easiest way to integrate the previous model is by means of the forward
Euler integration rule. According to this technique, the operative formula is

fσ(t̂ + ε2, X̂ + ε V̂)− fσ(t̂, X̂) = Â∗
[
f e
∗ (t̂, X̂)− fσ(t̂, X̂)

]
. (69)
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The difference in the left hand side is transformed in differential operators by
means of the Taylor expansion, namely

∞∑
k=1

εk Dk(∂/∂t̂, V̂ · ∇̂) fσ = Â∗ (f e
∗ − fσ) , (70)

where Dk(x1, x2) are polynomials defined as

Dk(x1, x2) =
∑

2a+b=k≥1

xa
1 xb

2

a! b!
. (71)

Introducing the previous expansions in the Eq. (70) yields

∑
p+q=k+2

Dp(∂/∂t̂, V̂ · ∇̂) f (q)
σ = Â∗ f

e0
∗

[
ρ(k+2)

σ

]
+ Â∗

∑
p+q=k+2

f e1
∗

[
ρ(p)

σ , û(q)
σ

]
+ Â∗

∑
p+q+r=k+2

f e2
∗

[
ρ(p)

σ , û(q)
σ , û(r)

σ

]
− Â∗ f

(k+2)
σ , (72)

or explicitly

f (k+2)
σ = f e0

∗

[
ρ(k+2)

σ

]
+

∑
p+q=k+2

f e1
∗

[
ρ(p)

σ , û(q)
σ

]
+

∑
p+q+r=k+2

f e2
∗

[
ρ(p)

σ , û(q)
σ , û(r)

σ

]
− Â†

∗
∑

p+q=k+2

Dp(∂/∂t̂, V̂ · ∇̂) f (q)
σ . (73)

Even though we are using the simple forward Euler integration rule, the same
expansion coefficients are recovered for f (0)

σ and f (1)
σ , while for the f (2)

σ the
following relation holds

f
(2)
σ d = f (2)

σ − 1

2
Â†
∗V̂ · ∇̂

[
V̂ · ∇̂f (0)

σ

]
. (74)

In the moment space, the system of equations becomes

∞∑
k=1

εk MA Dk(∂/∂t̂, V̂ · ∇̂)M−1
A mσ = (Êσ + Êm) (me

∗ −mσ) , (75)

Introducing the usual expansions in the equations for the lower order mo-
ments and separating the scales yields that for k = 0 the contribution to the
continuity equation is

∂ρ(0)
σ

∂t̂
+ ∇̂ ·

[
ρ(0)

σ û(1)
σ

]
+

sσ

6
∇̂2ρ(0)

σ = 0, (76)

17



and for k = −1 the contribution to the momentum equation is identical to
that given by Eq. (48). Unfortunately this means that the continuity equation
is no more satisfied. In order to solve this problem, a modified vector me 1

∗ d and
consequently f e1

∗ d can be introduced, where

me 1
∗ d = ρσ [0, ux + dwσ x, uy + dwσ y, 0, 0, 0, 0, 0, 0]T . (77)

The reason to choose such modification is due to the undesired term appearing
in Eq. (76). This additional term is the divergence of the density gradient, but
the last gradient is proportional to the diffusion velocity wσ. Hence it is rea-
sonable to try to delete the undesired term by modifying the definition of the
macroscopic momentum, since this quantity will appear in the divergence part
of the continuity equation. Moreover this correction should be proportional to
the diffusion velocity for producing a term identical to that we want to delete.

For this reason, the second expansion coefficient will be modified

f
(1)
σ d = f e1

∗ d

[
ρ(0)

σ , û(1)
σ

]
− Â†

∗ V̂ · ∇̂f (0)
σ , (78)

and then consequently

Â∗
{
f
(1)
σ d − f e1

∗ d

[
ρ(0)

σ , û(1)
σ

]}
= −V̂ · ∇̂f (0)

σ . (79)

Calculating the zero-order moment of the previous expression yields

sσ/3 ∇̂ρ(0)
σ = −λ̂I

m (1− d) ρ(0)
σ ŵ(1)

σ , (80)

which generalizes the Eq. (50). Introducing Eq. (80) into Eq. (76) yields

∂ρ(0)
σ

∂t̂
+ ∇̂ ·

[
ρ(0)

σ û(1) + d ρ(0)
σ ŵ(1)

σ − sσ

3 λ̂I
m

∇̂ρ(0)
σ

]
+

sσ

6
∇̂2ρ(0)

σ = 0, (81)

which is equivalent to Eq. (76). There is no way to tune d, in such a way to
restore the continuity equation.

For this reason, in the next paragraph a proper corrective factor will be dis-
cussed.
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6 Asymptotic analysis of the MRT Hamel model integrated by the
modified mid-point integration rule

Let us suppose to modify the operative formula due to the forward Euler
integration rule by adding a proper corrective factor. Recalling the Eq. (73),
it is easy to prove that any corrective factor taken from the kernel of Â†

∗ does
not effect the expansion coefficients of the discrete models. A generic vector
from the kernel of Â†

∗ is proportional to

sII = [0, 1/6, 1/6, 1/6, 1/6, 1/12, 1/12, 1/12, 1/12]T . (82)

When the definition of the moments are considered, the generic vector sII

produces an unit source term in the continuity equation and a zero source in
the momentum equation. The corrected equation will be

fσ(t̂ + ε2, X̂ + ε V̂)− fσ(t̂, X̂) = ε2 sσ

6
∇̂2ρ(0)

σ sII + Â∗ (f e
∗ − fσ) . (83)

Taking into account the following property

sT
III ·

{
V̂ · ∇̂

[
V̂ · ∇̂f (0)

σ

]}
=

sσ

3
∇̂2ρ(0)

σ , (84)

where sIII is

sIII = [3, 3/2, 3/2, 3/2, 3/2, 0, 0, 0, 0]T , (85)

it is possible to express the Eq. (83) in terms of the discrete distribution
function

fσ(t̂ + ε2, X̂ + ε V̂)− fσ(t̂, X̂) =
1

2
ε2 sII ⊗ sIII

{
V̂ · ∇̂

[
V̂ · ∇̂f (0)

σ

]}
+ Â∗ (f e

∗ − fσ) . (86)

Finally, neglecting the terms O(ε4) yields

fσ(t̂ + ε2, X̂ + ε V̂) = fσ(t̂, X̂) + Â∗ (f e
∗ − fσ)

+ 1/2 sII ⊗ sIII

[
fσ(t̂, X̂ + ε V̂)− 2 fσ(t̂, X̂) + fσ(t̂, X̂− ε V̂)

]
. (87)

The modified scheme satisfies Eq. (46), as the continuous model does. The
contribution to the continuity equation for k = +2 can be expressed by means
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of the following operator ĵ(k+1)
σ = j

[
f (k+1)
σ

]
, where

j
[
f (k+1)
σ

]
=

∑8
i=0 M2i f

(k+1)
σ i∑8

i=0 M3i f
(k+1)
σ i

 . (88)

In particular, the discrete flux is

ĵ
(3)
σ d = ĵ(3)

σ + j
{
1/2 V̂ · ∇̂f (2)

σ + ∂f (1)
σ /∂t̂ + 1/6 V̂ · ∇̂

(
V̂ · ∇̂f (1)

σ

)
+ 1/24 V̂ · ∇̂

[
V̂ · ∇̂

(
V̂ · ∇̂f (0)

σ

)]}
. (89)

Summing the contributions for k = 0 and k = +2 to the continuity equation,
an expression similar to Eq. (65), but involving the discrete flux, is recovered.
Since the discrete flux produces some terms O(ε3), it can be neglected and
this ensures that the continuity equation is satisfied with second order spatial
accuracy.

The contribution to the momentum equation for k = −1 is identical to that of
the continuous model, given by Eq. (50). This means that if the terms O(ε3)
are neglected, the discrete model produces a diffusion velocity which is pro-
portional to the concentration gradient by means of the diffusion coefficient.
The contribution to the momentum equation for k = +1 can be expressed by
means of a modified tensor T̂

(2)
σ d, namely

T̂
(2)
σ d = T̂(2)

σ +T
{
−1/2 Â†

∗ V̂ · ∇̂
[
V̂ · ∇̂f (0)

σ

]
+ 1/2 V̂ · ∇̂f (1)

σ + ∂f (0)
σ /∂t̂

1/6 V̂ · ∇̂
[
V̂ · ∇̂f (0)

σ

]}
. (90)

After some simple algebra, the final expression is recovered

T̂
(2)
σ d = T̂(2)

σ +
1

6
∇̂ ·

[
(1− 2 sσ) ρ(0)

σ û(1)
σ − 1

3
λ̂I

m ρ(0)
σ ŵ(1)

σ

]
I

+
λ̂I

m

6 (λ̂II
σ 1 + λ̂II

m 1)

{
∇̂
[
ρ(0)

σ ŵ(1)
σ

]
+ ∇̂

[
ρ(0)

σ ŵ(1)
σ

]T
− ∇̂ ·

[
ρ(0)

σ ŵ(1)
σ

]
I
}

+
1

6

{
∇̂
[
ρ(0)

σ û(1)
σ − 1

3
λ̂I

m ρ(0)
σ ŵ(1)

σ

]
+ ∇̂

[
ρ(0)

σ û(1)
σ − 1

3
λ̂I

m ρ(0)
σ ŵ(1)

σ

]T}
. (91)

Summing over all the species and assuming that the mixture velocity based on
the volumetric concentration [

∑
σ eσρσû

(1)]/
∑

σ eσρσ does not differ too much
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from the barycentric velocity, i.e. [
∑

σ eσρσû
(1)]/

∑
σ eσρσ ≈ û(1) =

∑
σ xσû

(1)
σ

yields

T̂
(2)
d =

∑
σ

T̂
(2)
σ d =

∑
σ

T̂(2)
σ +

1

6

(
1− 2

∑
σ

sσ xσ

)
∇̂ ·

[
ρ(0) û(1)

]
I

+
1

6

{
∇̂
[
ρ(0) û(1)

]
+ ∇̂

[
ρ(0) û(1)

]T}
, (92)

and consequently

T̂
(2)
d =

1

3

∑
σ

sσρ
(2)
σ I− η̂m d ∇̂ ·

[
ρ(0) û(1)

]
I

+
∑
σ

[
(1− αII

σ 1) ρ(0)
σ u(1)

σ ⊗ u(1)
σ + αII

σ 1 ρ(0)
σ u(1) ⊗ u(1)

]
−ν̂m d

{
∇̂
[
ρ(0) û(1)

]
+ ∇̂

[
ρ(0) û(1)

]T}
, (93)

where ν̂m d and η̂m d are defined as

ν̂m d =
∑
σ

ν̂σ m − 1

6
, (94)

η̂m d =
∑
σ

η̂σ m − 1

6

(
1− 2

∑
σ

sσ xσ

)
. (95)

Collecting the previous results, the final system of equation is

∂ρ̃σ

∂t
+∇ · (ρ̃σ ũσ) = 0, (96)

ρ̃σ w̃σ = −Dσ ∇ρ̃σ, (97)

∂

∂t
(ρ̃ũ) +∇ ·

∑
σ

[(
1− αII

σ 1

)
ρ̃σ ũσ ⊗ ũσ + αII

σ 1 ρ̃σ ũ⊗ ũ
]

=−1/3∇(
∑
σ

sσρ̃σ) +∇ (ρ̃ ηm d∇ · ũ)

+∇ ·
[
ρ̃ νm d∇ ũ + ρ̃ νm d (∇ ũ)T

]
, (98)

where νm d = TC c2 ν̂m d and ηm d = TC c2 η̂m d.

In the next paragraph, some numerical results are reported in order to prove
that the modified integration scheme is effective for ensuring the mass conser-
vation.
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7 Numerical simulations

In this section, some numerical results are reported for the suggested dis-
crete lattice model. Some carefully conducted benchmarking computations
were performed in order to verify the transport coefficients of the proposed
lattice Boltzmann model and to verify the mass conservation.

The transient method [18] is a very popular method for measuring the effective
numerical diffusivity. Essentially by combining Eq. (97) and Eq. (96), the
following equation can be recovered

∂ρ̃σ

∂t
+∇ · (ρ̃σ ũ) = Dσ ∇2ρ̃σ. (99)

Let us consider a one dimensional concentration field. In the case ũx is a
constant and Dσ is a constant as well, a solution of the Eq. (99), describing a
decaying sine wave flowing along in the x direction with velocity ũx, is given
as

ρ̃σ[x, t] = ρ̃0
σ + (ρ̃′σ − ρ̃0

σ) exp [−k2 Dσ t] sin [k (x− ũx t)], (100)

where ρ̃0
σ is the constant averaged density of the σ species, ρ̃′σ is the maximum

value of the initial perturbation applied to the density and 1/k is the wave
length of the perturbation. Since periodic boundary conditions were used, the
ratio between the computational domain length along x axis and the wave
length was an integer. Assuming ũx = 0 (this can be done by starting with a
proper initial concentration field), the numerical diffusivity can be measured
by considering the sine wave maximum decay, namely

DMT
σ =

1

k2 t
ln

{
ρ̃σ[π/(2 k), 0]− ρ̃0

σ

ρ̃σ[π/(2 k), t]− ρ̃0
σ

}
. (101)

This is not the only way to numerically measure the actual diffusivity. Another
way is to directly apply the definition, namely

DMF
σ = − ρ̃σ (ũσ x − ũx)

∂ρ̃σ/∂x
= − ρ̃σ ũσ x

∂ρ̃σ/∂x
. (102)

The previous numerical experiments allow us to appreciate the limits of the
forward Euler integration rule for the present application. The key point is
that it is always possible to tune d in Eq. (81) in such a way that DMT

σ

recovers the theoretical result, i.e. DMT
σ = Dσ. However this implies DMF

σ 6=
Dσ and consequently the mass is not conserved. A numerical implementation
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will satisfy the desired transport coefficient and the mass conservation, if and
only if DMT

σ = DMF
σ = Dσ at the same time.

The results of the numerical simulations are reported in Fig. 1 and Fig. 2 for
the transient technique [18] and for the direct application of flux definition,
respectively. The modified mid-point integration rule proves to be an effective
way to ensure both the desired transport coefficient Dσ and the mass con-
servation. In particular, satisfying the condition given by Eq. (102) is more
difficult, particularly for small λI

m, i.e. for decoupled species dynamics. This
is consistent with the previous analysis which assumed that O(λI

m) = 1 and
this is no more valid for small λI

m.

Fig. 1. Comparison between numerically measured diffusivity, obtained by means
of the transient technique given by Eq. (101), and the theoretical diffusivity, given
by Eq. (60).

8 Conclusions

In this paper, a new lattice Boltzmann model for simulating ideal mixtures has
been developed by means of the multiple-relaxation-time (MRT) approach. If
compared with the previous single-relaxation-time (SRT) formulation of the
same model, based on the Hamel work, the new model offers the possibility
to independently tune the mutual diffusivity, driven by the relaxation param-
eter λI

m, and the effects of cross collisions on the effective stress tensor, in
terms of additional kinematic viscosity νσ m− νσ and additional bulk viscosity
(νσ m + ησ m) − (νσ + ησ), driven by the relaxation parameter λII

m 1 and λII
m 3
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Fig. 2. Comparison between numerically measured diffusivity, obtained by means
of the direct application of flux definition given by Eq. (102), and the theoretical
diffusivity, given by Eq. (60).

respectively. However an additional constraint, given by Eq. (58), must be
taken into account in order to ensure the Galilean invariance.

For the considered application, the asymptotic analysis [36], recently suggested
as an effective tool for analyzing the macroscopic equations corresponding to
LB schemes, offers the possibility to easily deal with leading terms in the dis-
tribution functions, which are no more Maxwellian. This represents a remark-
able advantage in comparison with the classical Chapman-Enskog technique.
In fact the Chapman-Enskog approach can be generalized for the present ap-
plication [30], by using some heuristic assumption about the fact that, if the
leading terms are no more Maxwellian, higher order terms of the expansion
only effect the conserved quantities in order to ensure the conservation laws.
The results obtained by the asymptotic analysis does not seem to confirm
this assumption. In fact the higher order terms of the expansion effect the
conserved quantities in order to ensure the conservation laws, as recovered
for the expansion coefficient f (1)

σ given by Eqs. (54, 55), but they also effect
the non-conserved quantities like the stress tensor components, as proved by
Eq. (56).
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[41] M.E. McCracken, J. Abraham, “Lattice Boltzmann methods for binary mixtures
with different molecular weights”, Phys. Rev. E 71, 046704 (2005).

27


