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Abstract

A numerical model based on Artificial Neural Networks (ANN) was developed
to simulate the dynamic behaviour of a three reactors network (or ring reactor),
with periodic change of the feed position, when low pressure methanol
synthesis is carried out. A multilayer, feedforward, fully connected ANN was
designed and the History Stack Adaptation (HSA) algorithm was implemented
and tested with quite good results both in terms of model identification and
learning rates. The influence of the ANN parameters was addressed, leading to
simple guidelines for the selection of their values. A detailed model was used to
generate the patterns adopted for the learning and testing phases. The
simplified model was finalised to develop a Model Predictive Control (MPC)

scheme in order to maximise methanol yield and to fulfil process constraints.
Keywords
Artificial Neural Network, History Stack Adaptation, Forced unsteady-state

chemical reactor, Methanol synthesis, Mathematical modelling, Dynamic

simulation.



1. Introduction

Forced unsteady-state operation of catalytic reactors has been discussed in the
chemical engineering literature since the mid Sixties. Virtually, almost all
reactor inputs can be forced periodically in order to produce a transient
operation, but variations in flow rate, feed composition and flow direction are
generally considered. The last case, usually referred to as periodically reversed
flow operation, was developed by Boreskov & Matros (1983), who firstly
described the behaviour of a catalytic fixed bed reactor under transient
conditions forced by a periodic reversal of the gas flow.

Two are the major advantages of unsteady-state operation: first, the
possibility of exploiting the thermal storage capacity of the catalyst bed, which
acts as a regenerative heat exchanger, thus allowing auto-thermal behaviour
even at low reactants concentration (Kolios, Frauhammer & Eigenberger, 2000);
second, an approach toward optimum temperature distribution, which makes
possible the creation of favourable thermodynamic conditions for exothermic
equilibrium-limited reactions. It was shown (Vanden Bussche & Froment, 1993)
that the application of reverse flow operation to methanol synthesis could be
economically attractive in comparison with steady-state technology.
Nevertheless, the reverse-flow reactor presents the problem of wash-out, i.e. the
drop in product concentration upon flow reversal, due to the removal of
unconverted gas immediately after the reversal of the flow direction. Vanden
Bussche & Froment (1996) proposed the concept of STAR reactor, which can
operate in a transient mode giving practically constant exit concentrations and
higher conversion than the reverse flow apparatus. Velardi & Barresi (2002)
investigated the feasibility of carrying out the low pressure methanol synthesis
in a network of three catalytic fixed bed reactors with periodic change in the
feeding position: advantages and limitations in comparison with the previously
proposed reverse-flow reactor were highlighted, pointing out that a cyclic-
steady-state condition and auto-thermal behaviour are possible but they are
attainable only when the switching time is chosen in two narrow ranges. Out of
these regions, complex steady-states of high periodicity, with low conversion or
extinction of the reactors, may occur (Velardi et al, 2003). For low values of the
switching time, the establishing of optimal temperature profiles in the network
produces significantly higher conversions than in the reverse-flow reactor.

Furthermore, the performance of the network is weakly atfected by wash-out.



In order to exploit the higher yield and selectivity, which may be achieved
in such a device, and to deal with unexpected external perturbations in the feed
temperature and flow rate, which may lead to reactor extinction or conversion
decrease, an advanced process control has to be designed.

Model Predictive Control (MPC) seems to be attractive for this kind of
process in order to maximise methanol yield and to fulfil process constraints.
The on-line optimisation requires the use of a simplified model since the time,
which is usually required for the solution of a detailed model is not compatible
with the control time. For this reason, Artificial Neural Networks (ANNs) were
used to simulate the process, as they require few milliseconds to evaluate the
dynamic behaviour of the system and the response of the process to external
disturbances.

ANNs are nowadays extensively employed in different branches of
science and technology in such diverse fields as modelling, time series analysis,
pattern recognition, signal processing, and control by way of an important
property: an ANN may be thought of as a black box that can accept a series of
input data and produce one or more outputs. The transformation of the data is
performed by several basic processing units, called artificial neurons or simply
neurons, which perform identical tasks. The neurons are connected into
networks by synapses or connecting links. The problems handled by ANNs
may be quite assorted. One of the most important is modelling, i.e. the search
for an analytical function or a procedure that gives a specified n-variable output
for any m-variable input. Standard modelling techniques require the
mathematical function to be known in advance. Conversely, the ANN does not
require the knowledge of such a function: the nonlinearity of a single unit
transformation and a sufficiently large number of variable parameters (weights
and biases) ensure enough “freedom” to adapt the neural network to any
relation between input and output data (see for example Haykin, 1999; Zupan
& Gasteiger, 1999).

To create a conventional model of a chemical process all phenomena
present in the process have to be identified and properly described.
Mathematical description of the process - usually containing conservation laws,
chemical, physical and chemical-physical processes — is expressed by a set of
deterministic (algebraic, differential or integral) equations. In a neural model,
the ANN replaces some portions of the conventional model and two general
methods can be distinguished: a global neural model (GNM), in which the
whole model is represented with a single ANN, and a hybrid neural model



(HNM), in which only the unknown part of the model is replaced by the ANN.
The first approach (GNM), since its introduction in the early nineties (Bhat &
McAvoy, 1990), is commonly used mainly for control and regulation purposes.
This approach makes possible the modelling of the reactor based on the chosen
input-output signals only, without any fundamental knowledge about the
system being modelled. Nevertheless, in most practical cases a lot of
information is known about the modelled system and only some elements are
not sufficiently documented. From this observation, an idea of neural hybrid
model has been derived by Psichogios & Ungar (1992), in which the ANN is
used to approximate those unknown elements. In the present work a GNM was
used as this approach is more convenient for rapid modelling of the reactor.
The main disadvantage is the poor ability to generalise the results of modelling,
which will be valid in the range of input values used in the training phase.

The aim of this work is to apply for the first time ANN to simulate the
dynamic behaviour of forced unsteady-state reactors and to give general
guidelines for the design of the ANN. Low-pressure methanol synthesis in a
three reactors network will be used as a case study. The real process behaviour
is dynamically simulated by using a detailed non-linear time domain model.
The History Stack Adaptation algorithm (Tadé, Mills & Zomaya, 1996) is used
for the training phase and the influence of the main parameters of the algorithm
is discussed.

2. Neural network architecture and learning algorithm

The architecture of the ANN is variable depending on the complexity of each
individual process and the objectives for using them. In this work a
feedforward multilayer network will be used (Figure 1); 4 layers are present:
the first (input) layer contains n1 nodes corresponding to the actual net inputs;
two hidden layers contain respectively n2 and ns nodes and the fourth (output)
layer contains ns nodes that correspond to the number of monitored state
variables. Cybenko (1989) showed that neural networks implementing one,
sufficiently large, hidden layer can uniformly approximate any continuous
function of n real variables to any desired accuracy. In this work two hidden
layers have been used with the aim of improving the performance of the ANN.
The number of input and output nodes is governed by the functional

requirements of the ANN. No general guideline is available for the number of



hidden nodes on each layer: as a consequence the training process was repeated
for different numbers of hidden nodes and little, if any, improvement in ANN
performance was observed. This ANN is fully connected as every node in each
layer of the network is connected to every other node in the adjacent forward
layer. No back connections or recycles were implemented.

Figure 2 shows the model of a neuron, which forms the basis for designing
ANN:Es. It is possible to identify three basic elements of the neuronal model:

1. a set of synapses or connecting links, each characterised by a weight.
Specifically, a signal u; at the input of the synapse j connected to a neuron k is
multiplied by the synaptic weight wy, which may lie in a range that includes

negative as well as positive values;

2. an element for summing the input signals, weighted by the respective

synapses of the neuron and corrected by a bias value;
3. an activation function for defining the amplitude of the output of a neuron.

Actually, the neuronal model of Figure 2 also includes an externally applied
bias, denoted by br whose effect is increasing or lowering the net input of the
activation function, depending on whether it is positive or negative,
respectively. The use of a bias has the effect of applying an affine

transformation to the output of the linear combiner in the model of Figure 2:
G = U + by 1)

The activation function defines the output of a neuron in terms of g and can
take several forms. In this study, according to Tadé, Mills & Zomaya (1996) two
different activation functions, sigmoid and linear, were used for the hidden and

output layers respectively:

g output layer

= 2
#(4) L — hidden layers @)
1+e™

Learning of the input-output mapping is accomplished by repeated
presentations of a sequence of patterns consisting of the input and
corresponding target or desired output belonging to a fixed training set. A
robust learning heuristic for multilayered feedforward ANNSs is the generalised
delta rule (GDR) or backpropagation: this method is a supervised learning



method as the weights are corrected so as to produce prespecified target values
for as many inputs as possible (Zurada, 1992). This algorithm was used because
of its simplicity and ease of use. The weights and bias of each node are
initialised to small random values at the start of the learning procedure. The
correction of weights and biases is made after each new input is proposed to the
ANN.

During learning, the input vector U is presented to the neural network and
the output vector s is immediately compared with the target vector
S (5,%, ..., 5,) thatis the correct output for U. Once the actual error produced
by the network is evaluated, this is used to modify the weights and biases
throughout the entire ANN:

I ol 1-1 I( previous)
ij'i = Oz(SJ-Si + ﬂAwﬂ

. 3)
ADL = aslsi™ + gap! e

where [ is the index of the current layer, j identifies the current neuron and i is
the input source, i.e. the index of the neuron in the upper layer. In this equation
65-, the error introduced by the corresponding neuron, is calculated in two

ways, depending on whether the last (output) layer or one of the hidden layers
is under consideration:

6§ast _ <§j . séast)séast (1 o S;ast) (4)
ot [z 5,g+iw,1;1]s; f-s) 5
k=1

According to eq. (3) the correction of the weights in the [-th layer comprises two
terms that pull in opposite directions: the first one tends towards a fast
“steepest-descent” convergence, while the second is a longer-range function
that prevents the solution from getting trapped in shallow local minima. The
learning rate is o, whilst £ is the momentum factor. By taking into account the
correction made on the previous cycle, § can prevent sudden changes in the
direction in which corrections are made: this is particularly useful for damping
oscillations. The value of the learning rate and momentum constant is generally
obtained by trial and error. Some guidelines can be found in the literature
(Tadé, Mills & Zomaya, 1996; Haikin, 1999). The expressions (4) and (5) can be
derived from the delta rule (see for example Zupan & Gasteiger, 1999) and
correspond to a discrete-time gradient descent rule that minimises a function of

the error between target output and network output for each output element



and pattern in the training set. The procedure is then repeated with the other
input-output pairs.

The convergence of the ANN may be strongly improved by using the
history-stack adaptation (HSA) method instead of the single pattern
presentation (SPP) described above. When each pattern is presented to the
ANN the weights and biases are updated in order to minimise the error for that
individual pattern. The variation is determined by the learning rate, o, which is
generally set to a small value. Consequently, the information contained in a
single pattern cannot be assimilated completely in a single presentation and
part of the information value is discarded and not absorbed by the learning
procedure. Since the patterns are not fully learned in one presentation, this
suggests that a method using several replications of each pattern is most
appropriate. The HSA method operates by means of a First-In-First-Out stack
(containing 1, patterns), which, at each time step, accepts a new pattern from
the process and discards the oldest pattern from the stack. The elements of the
stack are each used in nc cycles to update the weights and biases at each
time-step. Consequently, each pattern is used nyn. times before it is discarded,
thereby improving the potential adaptation performance achieved at each time-
step. Tadé, Mills & Zomaya (1996) have suggested a few design guidelines for
the parameters 1, and . of the stack procedure.

3. Neural network modelling of the reactors network

Velardi & Barresi (2002) pointed out that in the three reactors network a
maximum value of carbon to methanol conversion of 58% may be obtained
when tc =40 s, Tc, in = 130°C, with vc = 0.021 m s?. This value is higher than the
conversion of 30-40% that may be achieved in the traditional multi-bed
adiabatic reactors. Nevertheless, changes in the inlet gas flow rate and
temperature may lead either to lower conversions or to reaction extinction or
pseudo-periodic behaviours. Moreover, a tighter control on the outlet methanol
conversion is needed to maximise methanol conversion. Because of these
requirements as well as the complexity of the dynamics of the process, a Model
Predictive Control (MPC) scheme should be adopted. Dufour, Couenne &
Touré (2003) designed a MPC algorithm to control a catalytic reverse-flow
reactor where the combustion of lean mixtures of volatile organic compounds is

carried out: the analogy with the countercurrent reactor when the switching



frequency approaches infinity was used to obtain a simple model to be solved
on-line. As a consequence, the switching time could not be used as a
manipulated variable and an external heating device was introduced for control
purposes and, specifically, to prevent reaction extinction. Contrarily to this
approach, in the case of methanol synthesis the control algorithm has to vary
the switching time to maximise the selectivity of the reactor, as there are no
other parameters that can be manipulated. Actually, it was shown that such a
parameter is effective in controlling the process.

As far as the output variables of the ANN are concerned, they are chosen
as the system variables to be controlled, i.e. methanol outlet molar fraction.
Since the GNM approach was adopted, the input variables are both the process
disturbances (gas temperature and flow rate) and the manipulated variable
(switching time). Application of the feedforward neural network (which is a
static structure) to describe a dynamic behaviour of the reactor, is possible due
to the introduction of a pseudo-dynamic structure (Levin & Narendra, 1995):

S(t+1)=f(S(),S(t-1),...,S(t—t;),U(t),U(t-1),..,.U(t-t,)) (6)

where S and U are respectively the output and input vectors, #1 and t: are the
appropriate time delays and the unknown nonlinear function f is approximated
by the ANN. In this work the output at time ¢ is given by the input at time #-1, ¢-
2 and t-3 as it is sketched in Figure 3; each pattern is made up of the input
variables (switching time, inlet flow rate and temperature) evaluated at t, t-1
and t-2, while the output variable is evaluated at t-1, t-2 and #-3 to take into

account the time delay of the input on the system response.
3.1 Patterns generation

Training of the ANN was performed with data produced by the numerical
simulation of a detailed first principles model of the process. Actually, the
detailed model cannot be used for control purposes in the MPC procedure,
since its numerical structure is too time consuming and not so robust as the
ANN one. A one-dimensional heterogeneous model was used to simulate the
behaviour of the reactor. The pressure loss inside the network of adiabatic
reactors is neglected and a plug flow condition is assumed for the gas phase
with dispersive transport of mass and energy. The transient term is taken into
account in the gas phase equations and in the energy equation for the solid

phase, whilst the solid catalytic surface is considered in pseudo-steady state



condition. The effect of the intraparticle mass transport was included in the
model by estimation of the effectiveness factors, using the linearization method
proposed by Gosiewski, Bartmann, Moszczynski & Mleczko (1999). Thus, the
dynamics of the process can be described by the following set of differential-
algebraic equations (DAE):

- Continuity equation for the gas phase:

Ocg O o kg ity
-G+ - = E ’ Y 7

- Continuity equation for component j in the gas phase:

Y, 32.’/@ ' e, kga
1 —D L o=y 2Ly —yo )+
ot o ox | cge (¥ =¥, ©
M k iav . .
Yo, = Ys, —Yo,) with j=T..(n,—1)
i1 CG¢
- Energy balance for the gas phase
T, kg &°T. oT, ha,
ot QGCP,G ox ox QGCP,GS
- Mass balance for the solid phase:
Ny
k=1
- Energy balance for the solid phase:
oT. X O°T. ha,
S - AS 25_ A (TS_TG)+
Ot ostps Ox™  osCps(l—e) an
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Danckwerts boundary conditions were assumed for the gas phase in each
reactor and the continuity of gas temperature and concentration profiles was
imposed among the reactors of the network, i.e. in sections at x = K¢, with
K =1,2. In the following we refer to L as the total length of the network and to
¢ =1L as the length of a single reactor of the sequence. The origin of the x-axis

corresponds to the inlet section to the network. Consequently, it translates from

the first reactor of the sequence to the second one when the switching time is



reached. At that time, the boundary conditions are switched in order to
simulate the variation of the inlet position. Initially, gas and solid phase
temperatures are considered equal and constant along the reactors; the initial
reactants concentration is null.

The model is completed by the kinetic equations by Graaf, Stamhuis &
Beenackers (1988), corresponding to a dual-site Langmuir-Hinshelwood
mechanism, based on three independent reactions: methanol formation from

CO, water-gas-shift reaction and methanol formation from COx:

(A) CO+2H, = CH,OH (12)
(B) CO,+H, = CO+H,0 (13)
(C) CO,+3H, = CH,OH+H,0O (14)

The reaction rates for methanol and water from reactions (A), (B) and (C) are
given by the following equations, according to Graaf, Sijtsema, Stamhuis &
Joosten (1988):

k;,s,AKco [Pcopi{f -P CHaoH/ (P %/IfKV'A )]

o . (15)
CH,OH, A (15 Keopeo + Koo, Peo, )[P;/If 1 (KHZO / Kllf)PHzo}
o _ kps,sKco, (Pco2 PH, — PH,0PCco/ KpB) (16)
s (1 + KcoPco +Keo, Peo, )[p 11*/13 + (KHZO/ K%f)pHZO]
kps,cKco, [pCOz Pﬂf ~ Pch,onP Hzo/ (p %22 K )} (17)

R} = Riyo,c =
CHOH, € L0, € (1 +Kcopco +Keo, Peo, )[Pllf T (KHzO/ Kgf)szo]

Transport and dispersion parameters were evaluated similarly to previous
works, adopting the same correlations of Velardi & Barresi (2002).

The partial differential equation system (7)-(11) was solved by discretising
the domain of the spatial variable x thus obtaining a DAE system. For the
algebraic part, given by the mass balances (10) for the solid phase, the non-
linear equations solver HYBRID1 from the FORTRAN package MINPACK (Moré€,
Garbow & Hillstrom, 1981) was used, while the routine LSODE from ODEPACK
library (Hindmarsh, 1983) was adopted to solve the differential portion of the
system.

The conditions adopted in the simulations are given in Table 1. They are
the same as those previously considered for the unsteady state operation of

methanol synthesis in a reverse-flow reactor by Vanden Bussche, Neophytides,
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Zolotarskii & Froment (1993) and in the three reactors network by Velardi &
Barresi (2002).

We have assumed that the disturbances in the inlet gas temperature are in
the range +30 K and for the inlet gas flow rate in the range +20% around the
values corresponding to the optimal configuration. Finally, the value of the
switching time in bounded in the interval 40 + 15 s. The input patterns were
generated according to a Generalised Random Sequence that randomly changes
the values of Ti, vcin and tc in the above indicated intervals. Figure 4 shows an
example of the values of the inlet gas temperature that have been considered for
the pattern generation. Firstly 3000 random values of the switching time and of
the inlet gas temperature were generated, then a time series has been built in
with the sequence of the switching times and each time that f. is changed also
Tin takes a different value. Such data were partitioned into two sets of 1500
values, used respectively for training and testing. The patterns were organised
into a stack according to the HSA algorithm. A value of 1n,=100 for the patterns
in the stack and n=10 for the number of repetitions of the stack were
implemented, according to Tadé, Mills & Zomaya (1996), due to the complexity
and variety of the dynamics of the reactor.

3.2 Results and discussion

Since the ANN is intended for control purposes, the sampling time corresponds
to the control time, i.e. the time interval between two subsequent control
actions. Working with the MPC technique it is necessary to check if an
exhaustive search of the optimum of the control objective function can be
performed within such an interval. The sampling time has also to be lower than
15 s, which is the lower limit of the switching time: a value of 10 s was chosen
as an initial guess. The influence of the parameters o, f and x and of the
number of patterns used during the training was firstly investigated. The
results are summarised in Figure 5, where the normalised mean square error
between the prediction of the model and that of the ANN (Erwms) is plotted
versus the number of patterns used for the learning. It is immediately evident
that few hundreds of patterns are sufficient to reach negligible values of the
Ervs. On the contrary, the traditional approach, based on the single pattern
presentation, requires tenths and even hundreds of thousands of patterns. With
reference to the influence of the parameters: the higher is «, the lower is Erwms

(graph A). The optimal range of values of f1is often poorly understood, despite
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its apparent simplicity: even if in the literature values of £in the range 0.7-0.99
are suggested, in this process small values of S produce better results. The
choice of the gain u has clearly an influence on the effective learning rate of the
weights of the output node (see eq. (2)). Even if a value of 4 =1 is generally
suggested as a starting guess, this parameter can be more rigorously optimised:

the gain of the sigmoid function is a quadratic function of the activation ¢:

Op__ e’

———=9(1-9) (18)
aq (1 +e )
and this function has a maximum at:
2
g—f:0:—2¢+1 - =05 (19)
q

The aim is to have a similar gain for the linear node. Obviously it is impossible
to have the two gains matching for all the values of a. However, approximately,
similar gains over the useful range may improve learning. As a consequence,
given the range of the input values to the sigmoid function in a trained
network, it is possible to calculate the (integral) average gain over this interval
and to assume u equal to this value. For our process, an optimal value of x of
0.1 was obtained from this calculus, even if lower values may lead to better
performance. In conclusion the “best” choice of the network parameters is o =
0.95, f=0.1 and x=0.1.

Beyond the set of patterns generated for testing the performance of the
ANN, further tests were accomplished, comparing the predictions of the ANN
with those of the model in presence of different disturbances of the inlet
parameters of the RN. Figure 6 shows the results of this comparison when the
inlet gas temperature is increased (ATc,» = + 30°C, upper graph) and decreased
(ATcin = -20°C, lower graph): different dynamic behaviours may occur, but in
both cases considered the agreement between the model and the ANN is
excellent, and the percentage error is always less than 1%. Predictions and
actual values are even closer when variations in the flow rate are considered as
it is shown in Figure 7 (Avc,in = + 10%, upper graph; Avcin = - 10%, lower graph).
The predictions of the ANN and that of the model were also compared when
the switching time is changed, as this is the parameter used by the MPC
algorithm for control purposes. Figure 8 shows the result of this comparison
when the switching time is increased (At = + 10s, upper graph) and decreased

(Atc=-10s, lower graph).
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From these results it is evident that the ANN is able to correctly predict
the dynamics of the system even when a pseudo-periodic state and complex
dynamics are present with a total CPU time of some milliseconds. This is in our
opinion the keynote that makes ANN so appealing for advanced control
purposes. Evidently, the performance of the ANN worsens when the input
parameters fall outside the range used for the learning. In this case it is
necessary to repeat the learning, but the choice of the parameters (o, f ny, nc
and number of patterns used during the learning) remains the same; only u

should be changed according to the previous discussion.
5. Conclusions

A multilayer, feedforward, fully connected ANN was designed and trained to
simulate the performance of a three reactors network where low-pressure
methanol synthesis is carried out. A complete and detailed model was used to
generate the patterns for the learning procedure. The influence of the main
parameters on the ANN was investigated and discussed, giving some general
guidelines for their tuning. The HSA algorithm was preferred to the more
conventional Single Pattern Presentation procedure, leading to faster
convergence and better representation of the process. The ANN will be used in
a future work to implement a MPC system for the process.

13



Notation

ke[f

8 < v = <

external particle surface area per unit volume of reactor, m-!
bias

molar concentration, mol m?

specific heat at constant pressure, | kg K-!
effective mass dispersion coefficient, m? s
pellet diameter, m

superficial inlet flow rate, mol m= s

molar enthalpy of formation, ] mol!
gas-solid heat transfer coefficient, ] m?2 K s
adsorption equilibrium constant, bar
chemical equilibrium constant based on partial pressure
effective heat dispersion coefficient, ] m! K 5!
gas-solid mass transfer coefficient, mol m=2s-!
reaction rate constant

total network length, m

single reactor length, m

number of reactions

number of repetitions of the whole stack
number of patterns in the stack

number of components in the mixture
pressure, bar

input of a neuron (with bias)

universal gas constant, ] mol! K

reaction rate, mol s kg!

output of a neuron

temperature, K

clock time, s

switching time, s

interstitial velocity, m s

unbiased input signal to a neuron

axial reactor coordinate, m

molar fraction

synaptic weight

14



Greeks

learning rate

momentum constant

error between the prediction of the ANN and the target value
variation

void fraction of the catalytic bed
effectiveness factor

thermal conductivity, ] m* K s
gain of the linear activation function
stoichiometric coefficient

density, kg m3

activation function of a neuron

® WV =T " NI M D> O™ R

Subscripts and superscripts

A indicates CH,OH from CO reaction
B indicates CH,OH from CO, reaction
C indicates water-gas-shift reaction

G gas phase

S solid phase or solid surface

in inlet condition

out outlet value

15



References

Bhat, N., & McAvoy, T. J., (1990). Use of neural nets for dynamic modelling and
control of chemical process systems, Computers and Chemical Engineering,

14, 573-583.
Boreskov, G. K., & Matros, Y. S., (1983). Unsteady-state performance of
heterogeneous catalytic reactions. Catalysis Reviews — Science and

Engineering, 25(4), 551-590.

Cybenko, G, (1989). Approximation by superpositions of sigmoidal function.
Mathematics of control, Signals and Systems, vol. 2, 303-314.

Dufour, P., Couenne, F., & Touré, Y., (2003). Model predictive control of a
catalytic reverse flow reactor. IEEE Transaction on Control System
Technology, 11(5), 705-714.

Gosiewski, K., Bartmann, U., Moszczynski, M., & Mleczko, L., (1999). Effect of
the intraparticle mass transport limitation on temperature profiles and
catalytic performance of the reverse-flow reactor for the partial oxidation
of methane to synthesis gas. Chemical Engineering Science, 54(20), 4589-
4602.

Graaf, G. H,, Sijtsema, P. J. J. M., Stamhuis, E. J., & Joosten, G. E., (1986). Chemical
Equilibria in methanol synthesis. Chemical Engineering Science, 41(11), 2883-
2890.

Graaf, G. H., Stamhuis, E. J., & Beenackers, A. A. C. M., (1988). Kinetics of low-
pressure methanol synthesis. Chemical Engineering Science, 43(12), 3185-3195.

Haykin, S., (1999). Neural networks — A comprehensive foundation, Prentice Hall,
London.

Hindmarsh, A. C., (1983). ODEPACK, a systematized collection of ODE solvers.
Stepleman R. S. et al. Eds., Scientific Computing, Amsterdam.

Kolios, G., Frauhammer, J. & Eigenberger, G., (2000). Autothermal fixed-bed
reactor concepts. Chemical Engineering Science, 55, 5945-5967.

Levin, A. U, & Narendra, K. 5., (1995). Identification using feedforward
networks. Neural Computation, 7(2), 349-356.

Moré, J. J., Garbow, B. S. & Hillstrom, K. E., (1980). User guide for MINPACK;
ANL-80-74, Argonne National Laboratory.

Psichogios, D. C., & Ungar, L. H., (1992). A hybrid neural network-first
principle approach to process modelling, AIChE Journal, 38, 1499-1511.

Tadé, M. O., Mills, P. M., & Zomaya, A. Y., (1996). Neuro-adaptive process control:
a practical approach, John Wiley & Sons.

16



Vanden Bussche, K. M., & Froment, G. F., (1996). The STAR configuration for
methanol synthesis in reversed flow reactors. The Canadian Journal of
Chemical Engineering, 74(5), 729-734.

Vanden Bussche, K. M., Neophytides, S. N., Zolotarskii, I. A., & Froment, G. F,,
(1993). Modelling and simulation of the reversed flow operation of a fixed-
bed reactor for methanol synthesis. Chemical Engineering Science, 48(19),
3335-3345.

Velardi, S. A., & Barresi, A. A., (2002). Methanol synthesis in a forced unsteady-
state reactor network, Chemical Engineering Science, 57, 2995-3004.

Velardi S. A., Barresi A. A., Manca D., & Fissore D., 2004. Complex Dynamic
Behaviour of Methanol Synthesis in the Ring Reactor Network, Chemical
Engineering Journal, 99, 117-123.

Zupan, J., & Gasteiger, ]., (1999). Neural networks in chemistry and drug design,
Wiley-VCH, Weinheim.

Zurada, J. M., (1992). Introduction to artificial neural systems. West Publishing
Company.

17



Table 1 Conditions used in the simulations (base case).

Total length L 0.5 m
Void fraction £ 0.4
Catalyst density 0s 1750 kg m?
Catalyst void
fraction 0>
Pellet diameter dp 0.0054 m
Total pressure 5 MPa
Superficial inlet
Fin 32.65 mol m?s!
flow rate
Feed composition
CO 4.5 % mol
CO2 2.0 % mol
CH;OH 0.0 % mol
H2O 0.0 % mol
H> 93.5 % mol
Kinetic and equilibrium constants
ps A 2.69-107 -exp[—~109900/ (RT)|
bsB 7.31-10% - exp[—123400/ (RT)]
ps.C 4.36-10° -exp[—65200/ (RT)|
Keo 7.99-1077 -exp[58100/ (RT)]
Keo, 1.02:10"7 -exp|67400/ (RT)|
Kiro/Kif 4.13-107"- exp[104500/ (RT)]
log1g Ky a 5139/T —12.621
logyo K}, 5 —2073/T —2.029
logo K, c 3066/ T —14.650

18



List of figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Feedforward multilayer neural network architecture.
Nonlinear model of a neuron.
Structure of the ANN used for the identification of the RIN.

Time series of the values of the inlet gas temperature that have

been used for pattern generation.

Eruvs vs. the number of patterns used in the learning phase as a
function of the learning parameters: graph (A) shows the influence
of the learning rate (#= 0.1, #=0.1); graph (B) shows the influence
of the momentum factor rate (= 0.95, u=0.1).

Comparison between the methanol outlet molar fraction predicted
by the model (solid line) and by the ANN (dashed line, with
a=0.95, f=0.1 and x=0.1) when the inlet gas temperature is
increased (ATcin =+ 30°C, upper graph) and decreased

(ATcin =-20°C, lower graph).

Comparison between the methanol outlet molar fraction predicted
by the model (solid line) and by the ANN (dashed line, with
a=0.95, f=0.1 and = 0.1) when the inlet flow rate is increased
(Avcin =+ 10%, upper graph) and decreased (Ave,in = - 10%, lower

graph).

Comparison between the methanol outlet molar fraction predicted
by the model (solid line) and by the ANN (dashed line, with
a=0.95, f=0.1 and ¢ =0.1) when the switching time is increased
(Ate=+10s, upper graph) and decreased (At. = - 10s, lower graph).

19



Figure 1

i

Input First hidden ~ Second hidden Output
layer layer layer layer

20




Figure 2

(U1

Input signals
A —

Bias

Synaptic Summing
weight function

@ (.)

Activation
function

Output

21




Figure 3

1 2 3 4 5 6 7 8 9 10 11 12
Tein VG.in te YcH3oH Taiin VG,in te YcHsoH Te,in VG,in te YcHsoH
k-2 k-2 k-2 k-3 k-1 k-1 k-1 k-2 k k k k-1

ANN

Y cHzoH
k+1

22



Tim K

480

460

440

420

400

380

Figure 4

training testing
| 1 +30 K
RN Y f! vV ' L 1 O O YL S
30K
0 20000 40000 60000 80000 100000 120000 140000

23

t,s



Figure 5

i MWn o (A)
I AT
.
Wb ®
: Jll I Rl
e MWWWWW\ M‘Mv‘ i

| Mo

0 300 600 900 1200 1500 1800

24



ZCH30H

ZCH30H

Figure 6

0.045

0.041 |

0.037 }

0.033

0.044

0.042 |

0.040 |

0.038

40000

40100

40200

25

40300

t,s

40400

40500

40600



ZCH30H

ZCH30H

0.042

Figure 7

0.041

0.040 |

0.039

0.038
0.044

0.042 |

0.040 |

0.038

40000

40100

40200

26

40300

t,s

40400

40500

40600



ZCH30H

ZCH30H

Figure 8

0.043

0.040 |

0.037 }

0.034
0.047

0.043

0.039 }

0.035

40000

40100 40200 40300 40400

t,s

27

40500

40600



