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Minisimposio: Wavelets e analisi multiscala

Wavelet-based adaptive solution of the
Nonuniform Multiconductor Transmission Lines

Soluzione adattativa basata sulle ondine per le
linee multiconduttore non uniformi

Stefano Grivet Talocia
Dip. Elettronica, Politecnico di Torino
C. Duca degli Abruzzi 24, 10129, Torino

grivet@polito.it

Electrical interconnects like wires, cables, or traces on printed circuit
boards provide the basic link between different parts of any electronic sys-
tem. For low speed systems these structures have an ideal behavior, and do
not introduce distortions on the carried signals. However, as the clock fre-
quencies of digital systems increase, the effects of parasitic electromagnetic
couplings become more and more important. Some distortions are intro-
duced due to the mutual interaction between different conductors. There-
fore, the simulation of these structures has become an important step for
the analysis and design of high-speed electronic systems.

We define here an interconnect as a set of P 4+ 1 conductors, one of
which is the reference for voltages and the return for currents, forming a
structure with a small cross-section with respect to the smallest wavelength
of the surrounding electromagnetic fields. There is no restriction on the
length of the conductors. Many interconnects of practical interest are char-
acterized by cross-sections which are not translation-invariant. Examples
can be impedance matching networks or cables in complex structures, like
automobiles or airplanes. The Nonuniform Multiconductor Transmission
Lines (NMTL) equations [1] constitute an appropriate model for such struc-
tures. In their non-dimensional and time-explicit form, these equations can
be expressed as

0. d .

al(fb,t) = —F(.’L‘)%V(Zb,t) —FR(.’L‘)I(ZB,t), (1)
0 0.
EV(ZE,t) = —S(ZE)%I(ZE,t) - SG(ZE)V(ZE,t), (2)

where v and i are arrays of length P and represent voltage and current on
each conductor as functions of the normalized longitudinal coordinate z €
[0,1] and time ¢. The P x P matrices I'(z), S(z), F’R(z), and SG(z) depend
on the cross-sectional geometry of the structure. The first two matrices are
symmetric and positive definite Vz € [0, 1].



The set of equations to be solved is complete once the initial and the
boundary conditions are specified. In this work we assume zero initial con-
ditions and use linear and resistive terminations,

v(0,t) = vg(t) — rsi(0, 1), v(1,t) = vn(t) + rLi(l,1), (3)

where rg and rr, are P x P nonsingular matrices and vg(t), vy, (¢) are arrays
with the source voltage generators launching the signals on the interconnect.
These travelling signals are often characterized by isolated singularities in
the first derivative, being regular elsewhere. For this reason, it is convenient
to represent them by using adaptive spatial wavelet expansions.

We will work with the construction of biorthogonal wavelets on the unit
interval of [2]. This construction is derived from an underlying biorthogo-
nal multiresolution on IR by introducing some modified scaling functions and
wavelets at the borders. The “internal” scaling functions and wavelets, char-
acterized by a support strictly included in [0, 1], remain unchanged. This is
obviously only possible when the refinement level is larger than a minimum
level jo. It is shown in [2] that the features of the underlying multiresolu-
tion on IR, like stability and approximation properties, are inherited by the
multiresolution on [0, 1]. In addition, at any refinement level j, there is only
one scaling function and only one wavelet with a nonvanishing value at each
border.

Starting from the minimum level jg up to a maximum level J, we have
the usual multilevel decomposition for primal and dual spaces

J-1 J-1
Veve B, Ti=The O W 0
j:jo ]:]0

where the scaling functions and the wavelets spaces are, respectively,
V; = span{gp;x, k = 0,...,dimV; — 1}, W, = span{¢;x, k = 0,...,2/ —1},

and similarly for duals. We use the primal hierarchical bases to expand the
solution,

dimVjOfl J—12-1
v(z,t) = Z Do ke (T) Vo (1) + Z Z V(@) V5 (1),
k=0 Jj=jo k=0
dimVjofl J—192 -1
i(z,t) = Z Dok (T)1jok (t) + Z Z bk ()ik(2),
k=0 Jj=jo k=0

and we test the NMTL equations with the dual hierarchical basis functions.
Due to the biorthogonality between primal and dual functions, the result-
ing system is explicit in the time derivatives of the unknowns, and can be

formally expressed as
d | I I
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where the arrays I and V collect the scaling function and wavelet coefficients
of current and voltage. The matrix A is obtained through integrals of scaling
functions and wavelets. These integrals are computed with the algorithm
described in [3].

We turn now to the implementation of the boundary conditions in Eq. (3).
We will only treat explicitely the left boundary condition, because the same
procedure can be applied without modifications for the right one. We begin
to note that if we use the canonical bases of V; and VJ as trial and test
functions, the inclusion of the boundary conditions is rather simple. This is
due to the fact that only one scaling function (with £ = 0) is nonvanishing
at the border. Therefore, Eq. (3) translates into a relation involving only
one coefficient, .

Vo= vs(t) — rsisp.

Defining now the new coefficients
a0 = Vo +rsijo, bjo = V0 —rsijp,

we see that the boundary conditions are simply expressed as Dirichlet-type
conditions on the new coefficient & ;. The implementation of this conditions
is trivial.

The above procedure cannot be applied directly to the system obtained
with the hierarchical bases, because more than one trial function is nonvan-
ishing at the border. However, there is only one nonvanishing border scaling
function or wavelet at a fixed refinement level (labelled with £ = 0). Let
us collect all these functions in a border space VJO, of which we give two
alternative representations,

0 d d
VJ = Spa’n{(pjo,Oa z/)]'0,03 ce 71/)J—1,0} = Span{@J,Oa ;ﬁ?{] 5. a'(/)tI]nEI,O . (5)

The modified border wavelets are defined as

T =10 — (50, 80000, J=Jos--sd — 1,

they are linearly independent, and vanish at the border. In addition, the
basis changes between the two representations are expressed by simple ma-
trices that can be evaluated in a closed form. The only nonvanishing border
function in the modified representation is ¢ 0. Therefore, the implemen-
tation of the boundary conditions becomes trivial. In addition, the system
in the modified hierarchical basis is fully equivalent to the system in the
canonical basis, and can be expressed as

d mod mod
lI ]:Bll + Cvs + Dvy,

a Vmod Vmod

A standard time integration routine for ODE’s can be used to solve the
above equations. In addition, we have included in our scheme, at any fixed



time step, an absolute cutoff of the wavelet coefficients with magnitude below
a given threshold . This operation is justified by the theory of wavelet-based
nonlinear approximations. As a result, the representation of the solution is
sparse, and the time integration can be implemented by performing only the
operations that involve nonvanishing coefficients. On one hand the time-
stepping routine determines automatically the minimal set of coefficients
needed to represent the solution for a given maximum level J and threshold
€. On the other hand, only these significant coefficients are used to compute
the solution at the next time step. In conclusion, the numerical scheme
allows to save computation time at no loss of accuracy.

We finish by showing a numerical example. Let us consider a scalar
transmission line (P = 1) with no losses (i.e., TR = SG = 0) and with
T'(z) =4* S =1. It is easy to show that in this case the signals propagate
with a nonuniform speed v(z) = 27%. The figure depicts the location of the
wavelet coefficients larger than a threshold e = 10~* used to calculate the
solution forced by a step voltage generator with rise time equal to 7 = 0.3.
This waveform has two singularities in the first derivative. The figure shows
that the significant wavelet coefficients track the location of the singularities
as they propagate along the characteristic curves. The slope of these curves
is exactely 1/v(z). This solution was generated by using biorthogonal B-
spline wavelets and setting jo = 5, J = 8.
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