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Abstract

For better understanding of genetic mechanisms underlying clinical observations, and better defining a

group of potential candidates to protein family-inhibiting therapy, it is interesting to determine the correlations

between genomic, clinical data and data coming from high resolution and fluorescent microscopy. We introduce a

computational method, called joint co-clustering, that can find co-clusters or groups of genes, bioimaging parameters

and clinical traits that are believed to be closely related to each other based upon given empirical information. As

bioimaging parameters, we quantify the expression of growth factor receptor EGFR/erb-B family in non-small cell

lung carcinoma (NSCLC) through a fully-automated computer-aided analysis approach. This immunohistochemical

analysis is usually performed by pathologists via visual inspection of tissue samples images. Our fully-automated

techniques streamlines this error-prone and time-consuming process, thereby facilitating analysis and diagnosis.

Experimental results on several real-life datasets demonstrate the high quantitative precision of our approach. The

joint co-clustering method was tested with the receptor EGFR/erb-B family data on non-small cell lung carcinoma

(NSCLC) tissue and identified statistically significant co-clusters of genes, receptor protein expression and clinical

traits. The validation of our results with the literature suggest that the proposed method can provide biologically
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meaningful co-clusters of genes and traits and that it is a very promising approach to analyze large-scale biological

data and to study multi-factorial genetic pathologies through their genetic alterations.

Keywords: Image processing, gene clustering, protein activities, clinics.

I. INTRODUCTION

For better understanding of genetic mechanisms underlying clinical observations, it is interesting to determine

which genes and clinical traits are interrelated. In the last few years a consistent amount of research in genomics

has been done concerning correlation of gene expression to multi-factorial genetic pathologies. Microarray data

analysis, as well as real-time PCR, are useful techniques exploited so far to this purpose [1] [2]. Despite this effort,

results obtained are strongly limited by the poor informative content provided by clustering techniques applied to

gene expression data [3].

At the same time, in the field of biomedical and molecular imaging, new techniques have been shown to be

effective in extracting clinical and functional biological information from images of molecules and tissues [4] [5].

By observing processes as they happen within the cell, these techniques add an important extra dimension to

the understanding of cell behavior and functioning for early disease detection and drug response. In clinics, new

applications of conventional imaging technologies are likely to play increasingly important roles, particularly in

oncology.

These two independent sources of information, namely gene expression mining techniques and fully-automated

bioimaging, can be correlated to enhance gene expression analysis and to increase the amount of confidence in the

hypothesized gene expression paths. For this purpose, we developed a joint co-clustering technique able to extract

clinical bioimaging parameters through a fully-automated computer-aided approach and to perform co-clustering

technique between clinical bioimaging parameters and gene expression data.

Our proposed method consists of two steps. As first step, we early developed a computational method that can

deterministically find all the co-clusters, between clinical traits and gene expression data, satisfying specific input

parameters in an efficient manner [6]. To measure correlation between a gene and a clinical trait, existing approaches

obtain a vector of the expression level of the gene over a number of samples and another vector of the value of
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the clinical trait over the same samples and then calculate statistical correlation between two vectors. By applying

this procedure to many genes, we can identify some genes correlated to the clinical trait of interest. Proceeding

one step further from prior methods that can reveal one-to-many relationships between a single trait and multiple

genes (or vice versa), we developed a method that can find many-to-many relationships between genes and traits

using a clustering technique called co-clustering. This method possesses clear advantages over heuristic methods

that can provide only partial solutions and other exact algorithms that are not scalable to large-scale problems [7]

[8].

As second step, we developed a fully-automated tissue image processing method, namely computer-aided protein

quantification tool, able to extract a set of clinical parameters that give a characterization of the pathology dynamics.

This tool was successfully tested on non-small cell lung carcinoma (NSCLC) tissue images in order to characterize

and quantify, in a standardized way, the activation of the EGFR/erb-B protein receptor family that plays an important

role in non small cell lung carcinoma growing [9]. This type of analysis aims at characterizing each pathological

cell, and on average the whole tissue, by performing a standardized quantitative and qualitative measurement of

protein activations.

This information can be treated as a clinical parameter, and can be finally correlated with the genetic expression

data on same lung carcinoma tissue in order to better define a group of potential candidates to protein family-

inhibiting therapy. For this purpose, we developed the proposed fully-automated joint co-clustering approach to

find correlations between genetic data and clinical and bioimaging parameters.

The tool was tested with the epidermal growth factor receptor EGFR/erb-B family data set in the non-small

cell lung carcinoma (NSCLC) tissue. The EGFR/erb-B family of receptors plays an important role for NSCLC

development. Quantifying and classifying the EGFR expression and activity in NSCLC with special regard to the

assessment of the prevalence of somatic EGFR mutations, as well as to ligand-receptor interactions, could lead to

new insights into the modulation of EGFR/erb-B in individual lung carcinomas. Thus, it is important to extract these

information by using methodologies that give quantifiable, standardized and precise measurements [9]. We quantified

the activity of the EGFR/erb-B receptors in NSCLC immunohistochemical images of 70 patients. Subsequently, we

correlated these bioimaging parameters with the expression of genes that regulate the transcription of the EGFR/erb-
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B protein family, measured on same tissues and on the same data sets of 70 patients and other clinical traits (e.g.

tumor classification, survival, follow-up etc.). Results show that there is a strong correlation between bioimaging

parameters quantifying EGFR/erb-B protein family activations and their gene regulative expression. To justify our

analyses, we present some supporting evidence of our results in the literature. Our experimental studies suggest that

joint co-clustering is a very promising approach to analyze large-scale biological data and to study multi-factorial

genetic pathologies through their genetic alterations. Moreover, this approach enables new opportunities for early

diagnosis and provides information in future strategies for therapy.

Section II explains the computer-aided protein quantification tool. Section III explains our method to find co-

clusters. Experimental results and discussions are presented in Section IV, followed by concluding remarks in

Section V.

II. COMPUTER-AIDED PROTEIN QUANTIFICATION TOOL: MEMBRANES DETECTION AND PARAMETERS

EXTRACTION

Direct monitoring the activity of proteins involved in the genesis and development multi-factorial genetic

pathologies is a very useful diagnostic tool. It leads to classify the pathology in a more accurate way, through its

particular genetic alterations, and to create new opportunities for early diagnosis as well as to provide information

in future strategies for therapy.

An approach for monitoring and quantifying the activity of proteins is to analyze their localization and the

intensity of their activity in pathological tissues by using, for example, images of the tissue where the localization

of proteins, as well as their ligands, is highlighted by fluorescent-marked antibodies that can detect and link the

target proteins. The antibodies are marked with a particular stain. The protein activity intensity is related to the

intensity of the stains. This procedure is called immunohistochemistry (IHC). Figure 1.a shows an example of

immunohistochemical image of lung cancer tissue.

What is interesting to extract from these images is not a specific coloured area, that is almost the standard

procedure with this kind of images [10] [11]. Rather, the focus is cell by cell localization of the coloured areas in

particular cellular regions (i.e. membranes or cytoplasm or nuclei). Similarly, the quantification of the percentages

of coloured areas at the location of interest is important because it relates to the activity of specific receptors. In



5

other words, it is important to quantify if the proteins have or not a membrane activity (or cytoplasm or nucleus

one), how much of that membrane is positive for the specific protein activity and, vice versa, if it is not active.

This type of analysis aims at characterizing each pathological cell, and in average the whole tissue, by performing

a standardized quantitative and qualitative measurement of protein activations.

In this section we describe a fully-automated procedure that provides standardized measures of protein activities,

and related ligands, involved in the development of a pathology. This goal is reached i) by identifying different

cellular regions, ii) quantifying the percentage of active areas with respect to each whole region, and iii) quantifying

the intensity of the protein activity. These analyses have traditionally been performed directly by pathologists in a

very subjective and time-consuming way. The major contribution of this research is to provide an automated, fast

and precise means for performing this kind of immunohistochemical image analysis. To the best of our knowledge

the methodology presented in this paper is the first completely automated approach to this purpose.

Much previous work in biomedical image processing focused on automated methods for segmentation of nuclei

and cells [12] [13] [14] [15]. Classical approaches, such as active contours or watersheds, are not effective when

the objects to be identified lack specific geometrical features or gradient variations. Unfortunately, these critical

conditions are very common in the images targeted by our work. Cancer tissue cells are characterized by not-

predictable variations in shape that lead to a non-trivial determination of an effective approach based on shape-based

segmentation. Moreover, in immunohistochemical cancer tissue images cells are not well separated and, in addition,

they are usually not characterized by variations gradient magnitude.

To address these issues, we developed a novel deterministic fully automated approach for the quantification of

protein activities and localization of molecular activities in tissue images.

Immunohistochemical lung cancer tissue images are characterized by a blue stain as background colour and a

brown stain where a receptor of the EGFR family is detected. We focus here on quantification of membrane receptor

activity. Cell membrane segmentation is a hard problem because those membranes that are negative to the EGFR

family of receptors, are generally not visible. In other words, they are not characterized by gradient magnitude

variation. It is also possible that a cell has only some parts of its membrane positive to receptor activity.

The automated procedure is composed by several sequential steps, as outlined in the following subsections. In
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(a) (b)

Fig. 1. a: example of lung cancer tissue immunohistochemical image; b: example of membranes detection, see big cell in the bottom-right
part of the image

this work, our description concentrates on the steps we customized.

A. Virtual cell membrane detection

To reconstruct the cell membrane locations we first detected nucleus membranes using standard morphological

segmentation approaches. For each nucleus, we detected seeds applying noise filtering, colour filtering to detect

nucleus regions, artifacts removing, filling of connected components and boundaries detection. These first steps lead

an approximate detection of nucleus boundaries. We used these nucleus boundaries as initial curves for the final

detection of nucleus membranes. We completed the detection of nucleus membranes by applying the active contour

algorithm presented on [16]. This algorithm was found very useful for nucleus membranes detection. Further details

on seed detection and active contours are beyond the scope of this paper because they are obtained and implemented

using standard approaches. The interested readers are directed to [16] and [14].

After detecting nucleus membranes, we implemented a procedure for virtual cell membrane detection. This is

an important step in our approach. In fact, to perform membrane cell segmentation, we use virtual membranes

as part of final-detected cell membranes in those regions that are negative to the EGFR family of receptors

and that are as a consequence not characterized by gradient magnitude variation. Virtual cell membranes are

computed as set of connected points equidistant from closest nucleus membranes. Since our analysis concerns cells

in tissues, the assumption that cellular membranes are equidistant from closest nucleus boundaries is reasonable as

first order approximation. Note that, we implemented a customized procedure for virtual cell membranes design

because alternative traditional methods, such as Voronoi tessellation [17], build curves equidistant from points. Since
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these alternative methods fix as center of tessellation a point instead of complex shape membranes (i.e. nucleus

membranes), they obtain virtual curves that have few edges and sharp angles between edges. These curves are thus

poor approximation of real cell membranes.

B. Color Filtering

To select the region that are positive to receptor activations, we filtered the image on Hue-Saturation-Intensity

(HSI) colour space. We chose the HSI space because the stains we used are well defined in (HSI) space. In particular,

looking at several Hue histograms of the tissue images, we noticed well-separated bi-modal value distributions. To

separate the two distributions there are several standard thresholding algorithms that can be successfully employed,

such as [18] [19] [20]. As expression of receptor activity we chose brown pixels with hue components minor than

a threshold automatically computed by using Ridler thresholding as detailed in [21].

C. Cellular membrane detection

The detection of cellular membranes is done in two steps. Beforehand, we perform membrane segmentation in

the brown areas one cell at a time and we connect them with the virtual cell membrane in those regions that are not

characterized by receptor reaction. To this purpose, we developed an ad-hoc procedure, as described later in this

section. The second step consists of a customized fitting procedure of the detected membrane points to complete

the cellular membrane segmentation.

The first step of cellular membrane detection is the Scanning procedure: to connect brown areas with the virtual

membrane in those regions where there was not receptor reaction, the area across the virtual membrane is dilated

in order to be able to reach, if they exist, brown regions of the cell. The level of dilation is an input parameter and

it depends on image resolution. We set this value to 18 (pixels) for images with a resolution of about 3nm. Then,

we scan the dilated area with a scan line having one end on the center of the nucleus and the other one on the

external border of dilated area.

At each step, the points of the membrane are computed as weighted barycentre B of brown pixels among the

scan line, as shown in Equation 1
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B =

∑
j cjIjj

∑
j cjIj

(1)

where j is the coordinate on the scan-line. This coordinate is 0 on the virtual membrane, negative in the inner part

of the dilated area and positive in the outer part. Ij is the value of the pixel jth and cj is a coefficient for barycentre

computation. The coefficient cj is 1 for pixels on scan line negative coordinate while for positive coordinates the

coefficient has a negative parabolic trend as function of coordinate j. In this way, when a brown region branches

off, the scanning procedure is forced to choose as points belonging to the membrane those pixels that lie on the

path closest to the nucleus.

Moreover, we assigned to pixels of the scan-line the value of 1 if they belong or precede to the virtual membrane

pixels. This has been done when there are not brown pixels in the scan-line, to choose as points belonging to

membrane those pixels that are close to the virtual membrane. Finally, we set to 0 the pixels that are neither brown

nor virtual membrane ones.

The second step in the detection of cellular membranes is the Fitting and complete membranes detection: to

complete the detection of cellular membranes, we implemented an iterative fitting procedure in which outlier pixels

are deleted at each step. We defined outliers pixels the pixels located far away from the fitting line more than

three-times the standard deviation. An example of membrane detection is shown in Fig. 1.b

D. Clinical parameter computation

We quantify the activity of membrane EGFR/erb-B receptors through the computation of percentage of active

areas with respect to each whole membrane region. Then, the final parameter is the average value of all single-cell

parameters on the image.

III. CO-CLUSTERING METHOD

The co-clustering approach finds groups of genes and clinical parameters that are believed to be closely related

to each other based upon given empirical information. In particular, it can find many-to-many relationships between

genes and traits using a clustering technique called co-clustering. Here the term co-clustering or refers to an
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unsupervised learning technique that performs simultaneous clustering of rows and columns in a matrix to find

(possibly) overlapping submatrices covering the matrix.

More specifically, given gene expression data and clinical parameter values, we first create a matrix called

correlation matrix that can collectively represent the degree of correlation between genes and clinical traits. Each

row and column of this matrix corresponds to a gene and a clinical trait, respectively. Then, our method searches

co-clusters or submatrices (with some semantics to be defined) covering the correlation matrix.

A. Definitions

Let S represent a set of clinical samples. For each sample in S, gene expression levels are measured by the

DNA microarray technology of choice. Let G be the set of genes in the measurement. Clinical traits are recorded

for each sample. Let T be the set of the recorded traits.

The input of the proposed approach is composed of two data matrices. One is a gene expression data matrix

denoted by pair A = (G,S), where, A ∈ R
|G|×|S|, and the element aik of the matrix A represents the expression

level of gene i for sample k. The other matrix is denoted by pair B = (T, S), and the element b jk of the matrix

B is the value of trait j for sample k. The columns of A and B are arranged in the same order. Depending upon

the type of trait j, bjk may be quantitative, categorical, or others.

The output is a set of co-clusters. A co-cluster is composed of a gene set I ⊆ G and a trait set J ⊆ T and

represents a group of genes and traits closely related to each other, given the input matrices A and B. A co-cluster

can formally be defined by the following series of definitions.

Definition 1: For V , a vector on R, the range of V , denoted by RANGE(V ), is the absolute difference between

the largest and the smallest elements of V .

Definition 2: Given V and W , two real vectors of the same dimension, the linear deviation of V and W , denoted

by LIN-DEV(V,W ), is defined as

min{RANGE(V − W ), RANGE(V + W )}. (2)

Definition 3: Given the input matrices A and B, a correlation matrix, denoted by C , is a matrix where the row

set and the column set of C are G and T , respectively, and the element c ij is the statistic indicating the degree of
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correlation between gene i and trait j and is defined in significance analysis of microarrays (SAM) [8], namely,

cij =
rij

sij + s0
, (3)

where rij is a score to measure the degree of correlation between the expression level of gene i and the value of

clinical trait j, sij is the “gene-specific scatter” or the standard deviation of repeated expression measurements, and

s0 is a “fudge” factor to prevent the computed statistic from becoming too large when s ij is close to zero [23].

Figure 2 shows the correlation matrix construction scheme.

A

B

C

samples

ge
ne

s
tra

its

gene i

trait j

traits

ge
ne

s

cij

samples

Fig. 2. Construction of the correlation matrix. A co-cluster appears as a submatrix of the correlation matrix C.

Definition 4: Given the correlation matrix C = (G,T ) and thresholds τ ≥ 0 and π > 0, a co-cluster is a matrix,

denoted by D = (I, J), satisfying the following conditions: (1) I ⊆ G and J ⊆ T ; (2) for any two column vectors

V and W of size |I| in D, LIN-DEV(V,W ) ≤ τ .

Condition (1) indicates that D is a submatrix of the correlation matrix C . Condition (2) is to require that every

pair of |I|-dimensional column vectors from D exhibit correlation with respect to the metric LIN-DEV.

B. Algorithm overview

As detailed in [6], the proposed co-clustering algorithm consists of three steps: First, an intermediate data matrix

called correlation matrix is constructed from the input matrices. Then, special co-clusters called pairwise co-clusters

are found in the correlation matrix. Finally, co-clusters are derived from the pairwise co-clusters. An overview of

the algorithm is presented below, and more details can be found in [6].

In the first step, each element cij of the correlation matrix is calculated using the SAM procedure. When
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calculating cij , we must follow a procedure for multiple comparisons, thus ensuring that too many falsely significant

ones are not declared [22], [23]. To this end, the false discovery rate (FDR) is estimated for each c ij by random

permutation of the data for gene expression among the different experimental arms. The SAM procedure can be

outlined as follows [8]:

1) For given j, compute statistic cij for i = 1, 2, . . . , |G|, where |G| is the number of genes in the gene expression

matrix.

2) Compute order statistics c(1) ≤ c(2) · · · ≤ c(|G|).

3) Take M sets of permutations of the vector associated with trait j. For each permutation m, compute statistics

c∗mij and corresponding order statistics.

4) From the set of M permutations, estimate the expected order statistics by c(i) = (1/M)
∑

m c∗m(i) for i =

1, 2, . . . , |G|.

5) Plot the values of c(i) versus the values of c(i).

6) For ∆, a fixed threshold, find the first i = i1 such that c(i) − c(i) > ∆, starting at the origin and moving up

to the right. All genes past i1 are called significant positive. Similarly, find significant negative genes. For

each ∆, define the upper cut-point cutup(∆) as the smallest cij among the significant positive genes, and

similarly define the lower cut-point cutlow(∆).

7) For a grid of ∆ values, compute the total number of significant genes (from the previous step), and the

median number of falsely called genes, by computing the median number of values among each of the M

sets of c∗m(i) (for i = 1, 2, . . . , |G|) that fall above cutup(∆) or below cutlow(∆).

8) Estimate P0, the proportion of true null (unaffected) genes in the data set (see [8] for details).

9) The median of the number of falsely called genes from Step 6 is scaled appropriately, according to the value

of P0 (see [8] for details).

10) A value of ∆ can be specified by the user and the significant genes are listed.

11) The FDR is computed as the median of the number of falsely called genes divided by the number of genes

called significant.

After having computed the correlation matrix, the next step is to find a special type of co-cluster called pairwise
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co-cluster. A pairwise co-cluster is a co-cluster with only two traits and can therefore be represented by a submatrix

(of the correlation matrix) with two columns. Pairwise co-clusters are used later as seeds to find (non-pairwise)

co-clusters. To find a pairwise co-cluster in the correlation matrix C = (G,T ), we first select two distinct columns

v,w ∈ T and construct from them two |G|-dimensional column vectors V = (c1v , c2v , . . . , c|G|v) and W =

(c1w, c2w, . . . , c|G|w). Then, we compare V and W to identify I , a set of dimensions over which V and W are

correlated (I ⊆ G). Finally, we remove all i ∈ I such that p-value of civ or ciw is greater a given threshold. By

definition, the matrix denoted by pair (I, {v,w}) represents a co-cluster, and this co-cluster with only a pair of

traits is called pairwise co-cluster.

In the last step of our method, co-clusters are derived from pairwise co-clusters. Recall that T is the set of clinical

traits or the set of column indices in the correlation matrix C = (G,T ). Our co-clustering method examines elements

J ∈ 2T in such an order that efficient enumeration is possible to find a co-cluster (I, J). To this end, a data structure

called prefix tree or trie [24] is employed to systematically represent the elements of the power set 2T . Each node

in the trie represents candidates for co-clusters, and using an efficient traversal method nodes are gradually merged

and pruned, resulting in co-clusters in their final form.

C. Remarks

To assess the degree of correlation, in Definition 2 we introduced a metric called linear deviation. This is not to

deny the effectiveness of a conventional statistic such as the Pearson correlation coefficient [22] but to transform

it to a computation-efficient form, minimizing loss in the detection power. It is possible to see the relationship

between LIN-DEV and the Pearson correlation coefficient, as shown in [6]: a lower value of LIN-DEV typically

corresponds to a higher level of either positive or negative correlation.

The specific definition of rij in Definition 3 varies depending upon the type of clinical trait j. For example, if

clinical trait j has quantitative values then rij is defined in terms of the Pearson correlation coefficient [22] between

the i-th row vector of the matrix A and the j-th row vector of the matrix B.
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D. Joint co-clustering method

The joint co-clustering approach is a fully-automated framework that aims to extract receptor and protein

expressions from tissue images and correlate these bioimaging parameters with other clinical traits and the gene

regulative expression of same receptors and proteins evaluated on same tissues. Thus, the joint co-clustering

framework consists on the co-clustering algorithm where clinical traits are obtained through the fully automated

protein quantification tool.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

Experimental results were separately obtained for the computer-aided protein quantification tool and the co-

clustering to demonstrate their accuracy and robustness. Afterwords, we present experimental results of joint co-

clustering method.

A. Computer-aided protein quantification results

We tested the algorithm on four data sets. All of them are composed by real lung cancer tissue immunohistochem-

ical images. For each data set, the images show different portions of same IHC tissue. The four data sets present

positive reactions at the EGFR/erb-B receptor activation. These reactions are localized in the cellular membranes.

The four data sets differ because of different levels of positivity intensity.

For each data set, we first localized each cellular membrane in the images, as described in Sec. II. Afterwords,

we computed for each cell the percentage of area characterized by positive activation of receptor EGFR/erb-B with

respect to the whole cellular membrane surface. At the end, we computed the final parameter as average value

of all single-cell parameters on each image. This final parameter is the clinical parameter that characterizes the

percentage of receptors that is active in the lung cancer tissue.

In order to evaluate the performance of our approach, positive protein reaction parameters have also been computed

on membranes drawn manually by pathologists for taking advantage of knowledge and skills of experts in that field.

Manual analysis has been performed on all the data sets. These manual measurements were thus compared with

the positive protein reaction parameters computed through our fully automated approach.



We show in this paper results on two of all data sets in order to demonstrate the accuracy and robustness of our

approach. On the other data sets, we obtained similar results and performance. Details can be found in [25].

Results are reported as follow. For each data set, we compute the average error and the root mean square error

(RMSE) incurred by our automated approach with respect to manual-trace measurements. We then computed the

coefficient of correlation between each set of automated results and the correspondent manual-trace measurements.

Finally, we performed a linear regression between automated manual-trace results to evaluate the level of confidence

of the regression coefficient through the Student t-test.

We first evaluate the correlation between the automated and the manual-trace measurements on the first

immunohistochemical lung cancer tissue image set. Our analysis shows that these two sets of measurements are

highly correlated, with a coefficient of correlation of 0.98. We then computed a linear regression of automated

measures on manual-trace ones. We performed the Student t-test under the null hypothesis on the regression

coefficients in order to estimate the confidence level of this regression. As a result, we rejected this hypothesis at

significance level less than 1% obtaining a coefficient of the regression line of 0.96 with a region of acceptance of

the hypothesis of the range -0.109 to 0.109. Thus, the two sets of measures are highly correlated with a confidence

level greater of 99%. Figure 3 shows results obtained for EGF-R protein activation measurements on the first

immunohistochemical lung cancer tissue image set. The figure shows the automated measurements versus the

manual-trace ones as well as the regression line.

Moreover, we computed the difference between automated and manual-trace measurements and we performed

the same Student t-test. We found that the difference between the two typologies of measurements is not significant

and the average of differences between automatic and manual measurements is of 0.773%. Finally, the RMSE of

our automated measurements is 3.3% (with a confidence of 99%), as shown in the first row of Table I. Table I

shows, in the first column, the computed percentage of receptor activation in the lung cancer tissue. In this first

data set that percentage is 58.65%.

We performed the same analysis also on the second and data set of immunohistochemical lung cancer tissue

images. On the second data set, our analysis showed that automated and manual-trace measurements were highly

correlated with a coefficient of correlation of 0.97. Performing the Student t-test under the null hypothesis on
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Fig. 3. Results on the first data set: the plot shows the automated procedure measurements versus the manual-trace ones and the regression
line
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Fig. 4. Results on the second data set: the plot shows the automated procedure measurements versus the manual-trace ones and the regression
line

the regression coefficients we finally rejected this hypothesis at significance level less than 1%. We obtained a

coefficient of the regression line of 0.85 with a region of acceptance of the hypothesis of the range -0.11 to 0.11.

Figure 4 shows these results for EGF-R protein activation measurements on the second immunohistochemical lung

cancer tissue image set. By performing the Student t-test on the difference between automated and manual-trace

measurements we found that the difference between this two typologies of measurement is not significant. Moreover,

the average of difference between automatic and manual measurements is of 0.25% and the RMSE of our automated

measurements is about 1.6%, as shown in second row of the Table I.

The percentage of receptors actives in this second lung cancer tissue set is 95.89%. In this data set the EGF-R

receptor is highly active in most of the cells on the tissue. Looking at Figure 4, we notice that almost all the

measurements are clustered around a very high value while only a few measures are slightly smaller. This leads

to a very little dispersion of the measures. At the same time, since the significance is computed with respect to

the dispersion, lower values on the data set slightly affect the slope of the regression line thus increasing the level

of the significance of the test. Nevertheless, also in this case, the automated and manual-trace measurements are
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correlated with a confidence level greater of 99%.

Positive Mem Reaction(%) Average Error (%) RMSE (%)
58.65 -0.77 3.3
95.89 -0.25 1.58

TABLE I

RESULTS ON PERCENTAGE COMPUTATION OF RECEPTOR EGFR FAMILY ACTIVATION ON THE THREE TISSUE IMAGE EXPERIMENTAL

DATA SETS: FIRST COLUMN SHOWS THE CLINICAL PARAMETER WHILE THE OTHER ONES INDICATE THE AVERAGE ERROR AND THE

ROOT MEAN SQUARE ERROR INCURRED BY THE AUTOMATED PROCEDURE.

B. Co-clustering and Joint co-clustering results

The co-clustering was first tested with the Acute Myelogenous Leukemia (AML) data set [7]. The AML data

set used included two matrices. One was a gene expression data matrix with 6283 genes and 119 samples. The

other was a matrix of 15 clinical parameters measured from the identical samples. We used the procedure described

in Section III to produce the correlation matrix. We identified 43 co-clusters. To justify the grouping of certain

genes and clinical traits by the co-clusters found from the AML data, we present some supporting evidence of

co-clustered genes and traits from the literature. In addition, we show that certain Gene Ontology terms annotating

genes in some co-clusters are significantly over-represented. Taken together, these experimental studies suggest that

our method can find biologically meaningful co-clusters. Details on these results can be found in [6].

The joint co-clustering was tested with the epidermal growth factor receptor EGFR/erb-B family data set in

the non-small cell lung carcinoma (NSCLC) tissue. The EGFR/erb-B family of receptors plays an important role

for NSCLC development. Quantifying and classifying the EGFR/erb-B expression and activity in NSCLC with

special regard to the assessment of the prevalence of somatic EGFR/erb-B mutations, as well as to ligand-receptor

interactions, could lead to new insights into the modulation of EGFR/erb-B in individual lung carcinomas. Thus,

it is important to extract these information by using methodologies that give quantifiable, standardized and precise

measurements. We quantified the activity of the EGFR/erb-B receptors in NSCLC immunohistochemical images of

70 patients. Subsequently, we correlated these bioimaging parameters with the expression of genes that regulate

the transcription of the EGFR/erb-B protein family, measured on same tissues and on the same data sets of 70

patients and other clinical traits (such as tumor type classifications, namely diagnosis, T, N, stage, size, survival,
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etc). Furthermore, we found supporting evidence of our results in the literature.

Note that results on EGFR/erb-B protein expression (i.e.quantification) have been already given in this section (see

Section IV-A). As result of joint co-clustering between EGFR/erb-B protein expression and the regulative expression

of the EGFR/erb-B protein transcripts, we found out significant correlations in about 83% of the studied cases.

Among this percentage, we found co-clusters chracterized by up-regulation of the transcripts and over-expression of

the proteins. Among tumors that did not exhibit over-expression, i.e., the tumors that showed low protein positivity

or negative staining, no gene up-regulation was observed. Moreover, high-level regulation was significantly more

frequent in tumors with highest staining than in tumors with medium staining. Similar results was reported in recent

studies [26] [27].

The remaining 17% of studied cases presents activation of EGFR protein family (visible through image analysis)

but no up-regulation of the expression of the protein transcripts. In these particular cases the 70% of the tumor was

squamous cell carcinoma (SqCa), while the 30% was adenocarcinoma (AdCa). Similar findings have been reported

not only in lung carcinomas but also in other tumors, such as renal, pancreatic, breast, and colon carcinomas.

Although protein overexpression in these tumors probably is caused by transcriptional or post-transcriptional

activation, various theories have been proposed to explain the underlying mechanisms [28] [26]. Post-translational

changes as well as changes in genetic enhancer elements [29] [30] were shown to be associated with an increased

EGFR expression. Recently, a polymorphic CA-repeat in intron 1 of EGFR has been shown to have an important

impact on EGFR transcription and expression, too and seems to be a major target of EGFR mutations [31] [27]. In

the literature it has been found that this mechanism can explain protein over-expression in about 18.7% of cases

[27], that is in accordance with our results.

We found out also that trait ”diagnosis” (e.g., SqCA, AdCa, LCa) is correlated with genes erb-1, erb-2 and

TGF-alpha with a FDR of 1%. Similarly, ”size” trait is correlated with erb-1 gene and ”survival” trait is correlated

with the erb-2 gene, as confirmed in [32] [33].

Finally, we identified co-clusters of erb-1 and erb-2 proteins. These co-clusters consisted of the 54% of the

studied cases and were characterized, in particular, by erb-1 and erb-2 protein expression, their genetic regulation

and SqCA/AdCA type classification of tumor. As results, it can be seen that the over-expression of erb-1 (EGFR)
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impacts the SqCa tumors more than AdCa ones (56% of cases vs. 32%) and vice versa for the expression of erb-2

protein and the AdCa tumors (63% vs. 26%). Evidence of our results was found in literature [34] [35]. We found

out also co-clusters that presented over-expression and gene up-regulation for erb-1 protein and did not exhibit gene

up-regulation nor over-expression for erb-2. These co-clusters were characterized by a percentage of SqCa tumors

higher than those of AdCa ones (67% vs. 0%). Vice versa was found for co-clusters that presented over-expression

and gene up-regulation for erb-2 protein and did not exhibit gene up-regulation nor over-expression for erb-1 (100%

of AdCa tumors). SqCA and AdCA tumors were found also in co-clusters characterized by either gene up-regulation

nor over-epression for both erb-1 and erb-2 (67% of AdCa and 27% SqCa). We found supporting evidence also

for these last analyses in the literature [27].

V. CONCLUSIONS

We presented a fully-automated framework for finding co-clusters of genes and clinical traits using microarray

data and bioimaging and clinical parameter information.

We first quantified the expression of receptors in carcinoma tissue images by using our fully-automated protein

quantification tool. This immunohistochemical analysis (IHC) is usually performed by pathologists via visual

inspection of tissue samples images. Our techniques streamlines this error-prone and time-consuming process,

thereby facilitating analysis and diagnosis. In particular, our method leads to classify protein reactions according

to a specific cell region and to quantify the percentage and the intensity of this protein activity. The effectiveness

of the proposed method has been tested using immunohistochemical non-small cell lung carcinoma tissue images.

Results of comparison with manual-trace method on several real-life datasets demonstrate the high quantitative

precision of our approach.

Data coming from IHC images can be treated as a clinical parameters, and can be finally correlated with the

genetic expression data on same lung carcinoma tissue (and same set of patients) in order to better define a

group of potential candidates to protein family-inhibiting therapy. For this purpose, we developed the proposed

fully-automated joint co-clustering approach. An intermediate data matrix called correlation matrix was computed

from microarray data and bioimaging and clinical parameter information by means of a statistical method. We then

modeled a co-cluster by a submatrix of the correlation matrix with some semantics and aimed at finding statistically
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significant co-clusters.

In order to validate our approach, we found supporting evidence of our analysis in the literature. Results show

that there is a strong correlation between bioimaging parameters quantifying EGFR/erb-B protein family activations

and their gene regulative expression measured on same tissues. These preliminary results show that the joint co-

clustering is a very promising approach to analyze large-scale biological data and to study multi-factorial genetic

pathologies through their genetic alterations. Moreover, this approach enables new opportunities for early diagnosis

and provides information in future strategies for therapy.
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