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Abstract— This paper presents an automated algorithm to determine
DNA fragment size from Atomic Force Microscope images and to
extract the molecular profiles. The sizing of DNA fragments is a widely
used procedure for investigating the physical properties of individual
or protein-bound DNA molecules. Several AFM real and computer-
generated images were tested for different pixel and fragment sizes
and for different background noises. The automated approach allows
to minimize processing time with respect to manual and semi-automated
DNA sizing. Moreover, the DNA molecule profile recognition can be used
to perform further structural analysis. For computer-generated images,
the root mean square error incurred by the automated algorithm in the
length estimation is 0.6% for 7.8 nm image pixel size and 0.34% for
3.9 nm image pixel size. For AFM real images we obtain a distribution
of lengths with a standard deviation of 2.3% of mean and a measured
average length very close to the real one, with an error around 0.33%.

Keywords: DNA sizing, DNA secondary structure transition,
molecular profile extraction, image processing, AFM images

I. INTRODUCTION

The size of DNA fragments provides essential information for the
construction of physical genome maps and genotyping. In particular,
by knowing the DNA fragment length and the DNA molecule profile
it is possible to investigate the properties of single DNA molecules
[6] or of DNA-protein interactions. It is possible, for example, to
distinguish between different DNA secondary structures [16] and also
to establish if and in which manner a ligand binds to DNA [17].

For DNA sizing, gel electrophoresis methods are very common.
Their limitations are the low speed (processing times of 2 hours
or more) and large amount of DNA samples required for analysis.
An alternative approach resorts to optical microscopy [13], which
employs light microscopy to compute the length of fluorescently
stained DNA restriction molecules. This method provides good
throughput, high resolution and low cost. Accuracy is the same as gel
electrophoresis but for smaller DNA fragments optical microscopy is
not very effective because resolution is limited to about 600bp 1. Also,
all the methods based on labeling with fluorescent markers achieve
worse resolution than optical microscopy; furthermore, they alter the
structure of the molecules.

The atomic force microscope scans a solid surface, to which DNA
samples in solution have been absorbed, with a sharp probe tip at the
end of a flexible cantilever. Voltage measurements from a laser beam
deflected off the top of the cantilever to a photodiode are employed to
create the images of DNA sample heights. Typically, the atomic force
microscope images of DNA have a lateral resolution of 1 to 10nm
(while optical microscopy does not go below 200nm). The AFM has a
high signal to noise ratio so that it can be applied to biomolecules like
nucleic acids. Furthermore, it enables direct visualization of single

1number of base pairs.

DNA molecules without contrast-enhancing agents and directly maps
the structure of DNA-binding proteins bound to molecules.

Automatic and semi-automatic algorithms for DNA sizing based
on AFM have been developed in the recent past. A semi-automatic
algorithm is presented in [16]: in an AFM image the edges and
several internal points in each fragment must be selected with
a manual procedure, a DNA line is traced by interpolating the
selected points (anchors) and then this line is skeletonized (thinned)
using 8-connectivity. Rivetti [16] reports that among six different
methods employed to estimate the contour length of digitalized DNA
molecules the best is an order-3 polynomial smoothing of the DNA
line over a moving window of 5 points. As a consequence, the
computation of the Euclidean distance point by point in the smoothed
line achieves an error around 1% with respect to the real contour
length. An automatic length estimation algorithm was presented by
Spisz et al. [22]. This algorithm uses a set of image processing steps,
such as image segmentation, image smoothing with an average filter,
image thinning etc. This method processes the images in 1% of the
time required by the semi-automated method but is affected by a
larger inaccuracy on measured contour length. Another automated
algorithm was presented in [19]. Among other steps, the authors
proposed a thresholding processing step characterized by a single-
fixed threshold. This algorithm too is affected by a larger inaccuracy
on measured contour length. Moreover, the effectiveness of this
approach has not been proved in presence of high background noise
level.

The main contribution of our work is twofold:
��� design and implementation of a fully automated algorithm which
provides same or better accuracy than what is currently obtained
using semi-automated approach commonly used by biologists.
���� design an automated image processing chain composed by
customized processing functions (fragment points recovering, prun-
ing, critical molecules removing, molecule length computation) that
provides higher accuracy than previous automated solutions without
impacting the execution time (as explained in Section III).

Furthermore, with respect to the semi-automated approach, the
fully automated algorithm can process images without any interaction
with the operator. This avoids errors introduced from operator bias
and increases the amount of information available for further analysis
such as DNA intrinsic curvature [12] and dynamic structure analysis,
critical for the understanding of several key biological processes (e.g.
DNA packaging, transcription, replication, recombination, repair and
nucleosome stability and positioning [23]).

II. LENGTH DETERMINATION ALGORITHM

This section describes an automated algorithm that computes DNA
fragment lengths and extracts the molecule profiles from images
under varying image conditions, fragment sizes and background
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contamination. Our algorithm takes as input an AFM image of DNA,
computes DNA fragment lengths and profiles through a set of image
processing steps and outputs an histogram of sizes and a data file that
contains the coordinates and the size of each fragment recognized.
This allows to select and isolate every molecule. Our goal is to
compute DNA size and molecular profiles with a very high accuracy
and low processing time. To extract biological information from
AFM images, several processing steps are needed. Each step takes as
input the image processed in the previous step in a sequential way.
In the following subsections we describe each step composing the
algorithm.

A. Filtering

Even if the signal to noise ratio provided by the AFM is higher
than those provided by other techniques [3][5][8][21], there is still
need of some level of noise filtering. In general, several noise sources
can affect the image (i.e. roughness of the support surface, presence
of impurity in the sample, different humidity or temperature in the
environment, wear of the AFM components). Filtering all these het-
erogeneous noise sources using an automated approach is impractical
due to their variability in nature and intensity. Fortunately, due to their
nature, most of these kind of noises are statistically distributed in
very small sub-portions of the images. As a consequence, the large
part of the image can still be successfully processed. In fact, the
noise that most uniformly affects an AFM image is due to a single
source that leads to distributed spots2. This noise can be classified
as impulsive, and thus can be filtered out using a median filter. As a
consequence, even if the fragments located in some small portions of
the image may not be recognized, this will not affect the effectiveness
of the technique, since the very large part of the fragments can be
recognized using a fast and automated approach. On the other hand,
a deeper analysis of the other noise sources is out of the scope of
this paper.

We remove the noise by choosing among a set of filters tuned
to the most common AFM image noises. We set as default a 3x3
median filter. With the median filter each output pixel contains the
median value in a ordered set of the 3-by-3 neighborhood value.
With this kind of filtering, some end points of the fragments or
some pixels in the thin fragment areas may be erroneously deleted.
Thus, we implemented a procedure that recovers the pixels around
the fragments, as explained in Subsection �. We implemented also
a Gaussian filter. Both filters work quite well, but the median one
defines better the contours of molecules, creates less noise-branches
close to the molecules and filters better the noise like striping. We
implemented also an adaptive filter. The filter uses a pixel-wise
adaptive Wiener method [4] based on statistics estimated from a local
neighborhood of each pixel. We used neighborhoods of size 3-by-3
to estimate the local image mean and standard deviation. This filter
works better when the noise is constant-power additive noise.

The low-frequency noise in AFM images is a very particular case.
It is probably due to uneven support surface. For thoroughness we
have inserted a high-pass filter based on Fourier transform analysis
between the filters alternative to default.

2In fact, the AFM creates the image through a probe (cantilever) that is
excited by an electrical oscillator, so that it effectively bounces up and down
as it scans over the AFM surface and the sample. Near to high quote zone
(like DNA fragments), the probe can oscillate before it reaches the correct
level. This is cause of striping or points like ’salt and pepper’ in the image.
This phenomenon is connected to the frequency of probe oscillation. Decrease
them means less precision in following the topography of the sample.

B. Thresholding

This step transforms the original gray-level image in a binary image
where pixels labeled ’1’ represent a possible fragment part. Several
techniques have been proposed from researchers in the image process-
ing field to detect a wanted object from the background [18][24][20].
In our recognition framework, we have implemented the Ridler
thresholding algorithm [15] that gives us a good trade-off between
accuracy and execution time. As detailed in Section III, this method
allows to obtain good accuracy without impairing the algorithm’s
processing speed. We have also compared this method with two others
clustering-based thresholding methods, Kittler et al. [9] and Otsu et
al. [14]. With Ridler approach we obtained better results than Kittler
method and comparable with Otsu one. In fact Ridler method works
better than Kittler-thresholding when the image histogram distribution
is not bi-modal, as almost always happens in AFM images. See
Figure 1. To implement the thresholding processing step, assuming
no knowledge about the exact location of fragments, we consider
as a first approximation that the minimum gray-level quote pixels
are background and the remainder pixels are fragments. At step �

we compute the mean background and fragment gray-level, ��� and
��� where segmentation into background and fragments at step � is
defined by the threshold value � determined in the previous step
as the mean between the mean background and fragment gray-level.
The process is straightforward iterative and stops when the threshold
value is equal to the previous value (Figure 3.a). Figures 2 and 3
show the output of some of our processing steps. Thus, we refer to
this image in almost of following steps.

C. Fragment Points Recovering

After filtering and thresholding, some valid pixels may have been
erroneously evaluated as background. In this step, we recover these
points. Fragments are identified using the 8-neighbors for connec-
tivity to avoid errors when the fragments are partially or completely
aligned on the diagonal connection. Using 8-connectivity we consider
neighbors in the vertical, horizontal and diagonal directions for each
pixel. In the thresholded image we analyze each neighbor of the
fragment pixels. If the neighbor under examination has been evaluated
as background after filtering and thresholding, but its value before
filtering was over the threshold � , it becomes a valid pixel, hence
part of the fragment. We perform this analysis for the neighbors of
each fragment pixel as well as the neighbors of each new valid pixel.

D. Thinning

According to the value of neighboring points, this process removes,
iteratively and point by point, the pixels of each fragment leaving the
skeleton of unit thickness. To extract correct molecular profile, we
want to approximate the molecules only with their central axes. Non-
maxima suppression after gradient computation has been also tried as
an alternative to thinning algorithm. However, since we are interested
in finding the backbone of molecules, additional steps will be required
after edge computation, thus increasing execution time. Several
thinning algorithms can be found in the image processing literature
[11][19][10]. Thinning is generally a time-consuming process. Thus,
we implemented a simple sequential thinning algorithm so to obtain
a good trade-off between accuracy and execution time3.

For each point in the fragments, we test the match of the point and
its neighbors with a set of masks (see Figure 4.a). If the match is

3Thinning matches our requirements since we obtain a good overall result
on the length computation error. In terms of execution time, thinning is not
the critical step, that is pruning and artifact removing, following steps in this
section.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Comparison between Ridler and Kittler image thresholding methods: (a) original AFM images of EcoRV dimer; (b) post Ridler-thresholding image and
(c) post Kittler-thresholding image (note that Ridler method selects more molecules); (d) multi-mode image histogram distribution; (e) original AFM images
of PstI dimer; (f) post Ridler-thresholding image and (g) post Kittler-thresholding image (also in this case Ridler method better preserves the connectivity of
molecules); (h) single-mode image histogram distribution

(a) (b) (c)

(d) (e) (f) (g)

Fig. 2. Example of some image processing step: (a)original image (zoom to center of an AFM image); (b)filtered image (same zoom) using a 3x3 median
filter; (c)image at the end of the processing (same zoom); (d),(e),(f) and (g) molecule profiles extracted from the image, the axis represent the coordinates of
molecules in the image (nanometers)

(a) (b) (c) (d)

Fig. 3. Example of some image processing steps, zoom on one molecule in an AFM image: (a)molecule after thresholding; (b)molecule after thinning. The
arrow in the image (b) shows one of the spurious branches; (c)same molecule after pruning and Critical molecules removing: the isolated fragment on the
right in (a) and (b) has been removed in (c); (d)same molecule at the end of the processing

found the point is deleted. This process ends when no more changes
in the image are detected. Figure 3.b shows the fragments thinned
after this step.

E. Removing objects across the image boundaries

The fragments that are located across the image boundaries must
be deleted since it is impossible to determine their extension beyond
the image and to completely analyze their features. Note that the
presence of molecules located across the image boundaries depends
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Fig. 4. (a): Example of mask to remove pixels in the Thinning step. The central pixel in the T mask is the examined pixel. Using the T mask and its rotations
we obtain the possible configurations for deleting the point. The � pixels can have both 1 and 0 values; (b): The B1 8 rotations and the B2 8 rotations are
two examples of mask for identifying critical molecules in the Removing Critical Molecules step. Specifically B1 and B2 identify molecules that overlap

on the AFM image acquisition process, that is a preprocessing step
with respect to our application, and does not depend on the automated
or the semi-automated algorithm for DNA sizing we are using. In
fact objects across image boundaries are routinely removed by the
operator when using manual or semiautomatic procedure.

F. Pruning

We define spurious branches those objects that look as small part
of molecules, like branches. They are the result of impurity in the
sample dragged by the cantilever tip or due to noise close to fragments
that has not been removed in previous steps. Branches differ from
main segment because they are much shorter than DNA fragments.

Neighborhood pixels have been analyzed using a set of masks
to distinguish among three possible situations, namely spurious
branches, critical molecules and corners (we describe critical
molecules and corners later in this section). In this step we want
to delete branches. For each fragment we recognize the end points
matching the molecule pixels with 8 masks.

Thus we recursively delete them from the most externals to the
inner ones following the recursion steps and, at the same time, we
memorize them in a vector (namely ���	
����). The user can fix
off-line, as parameter to the algorithm, the depth of the recursion
depending on the observation of the image. We defined three levels
of recursion: low, medium and high. As an example, for images with
an high noise level a high value of recursion will be chosen by the
user. This is because the higher the noise, the higher the probability
to have longer spurious branches that can be removed with a high
number of iterations. The process stops when there are only two end
points remaining, even if the depth of recursion is not yet reached4. A
post processing step recovers the original end points of the fragment
without recreating branches (see Figure 3.c). Thus we recover only
the pixels that have two main characteristics: ��� the pixels must
be end points previously deleted, ���� the pixels do not make their
neighboring pixels end point of molecules. The inputs to this part
of code are the two last end points (���) and the deleted end points
vector (��	
����).

G. Removing Critical Molecules

We define the Critical molecules as objects consisting of two or
more molecules that overlap, or of a single molecule that overlaps

4A bound on recursion depth is needed to avoid deleting backbone of
fragments in case of molecule crossings. In fact, if two molecules overlap
a backbone of one molecule can be wrongly interpreted as a spurious branch
and thus deleted by pruning. The result of this operation would be a single
molecule (obtained by two partially deleted overlapping molecules) that may
not correspond to a real fragment, being the composition of two different
fragments. We can distinguish real spurious branches from crossing molecules
because in general they are due to noise spots close to a molecule, thus they
are usually much shorter.

on itself or is closed in circle. In these cases it is not possible to
distinguish one molecule from another and to find the end points.
Since it is impossible to compute their lengths or to extract each
correct profile they should be discarded from further consideration.
We studied a set of masks to recognize all these critical cases.
Figure 4.b shows some examples. We compare these masks with
the neighbors of all points of fragments for identifying the overlap-
points and then recursively deleting the molecules. This step has been
integrated to the pruning step to further minimize the processing time
(see in the Figures 3.b and 3.c the isolated fragment on the right).

H. Removing Artifacts and corner pixels

Fragments composed by a number of pixels smaller than a user-
defined minimum size are considered artifacts and are then deleted.
As artifacts we consider noise, like points, or uninteresting sample
material, like proteins or different molecules in the same sample. This
minimum size is a user-configurable parameter and allows to user to
select only the molecules of interest.

The corner pixels are pixels that form an angle of 90 degree with
the previous and next pixels. Through neighborhood pixel analysis,
also the corner pixels are recognized and deleted since they are due to
image pixeling and could introduce some extra error distance during
the length computation (see Figure 3.d for artifacts and corner pixels
removing).

I. Length Calculation

Several techniques have been proposed from researchers to esti-
mate the length of a digital curve [2][16]. Computationally intensive
approaches, such as those based on discrete geometry [1], give a
general solution to the problem, but we found that a simpler ad-hoc
approach gives us a very good accuracy with a low execution time.
Thus, we computed molecule length as the sum of the Euclidean
distances between consecutive pixels in the thinned fragment where
the pixel coordinates are the horizontal and vertical indices of the
pixel in the image. But, except for the edge coordinates that remain
unchanged, the other pixel coordinates are calculated as weighed
average, using a single weight �, of the previous, current and
successive points.

� � ������ � ��� � �� � ������ � ��� (1)

������ �
�
���� ���� � ����� � ���� (2)

Where � is the modified distance between the points with coordi-
nates � and �. The higher the value of �, the higher is the effect of the
interpolation between the previous and the next pixel. The smoothing
is needed to approximate the real filament shape and length that has
been distorted by pixel quantization. In fact, with respect to a simple
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Euclidean distance metric, our measurement approach achieves more
accurate results since it better adapts to the DNA structure, where
the position of a single point (a base) is affected by the position of
adjacent points (e.g. bases). Moreover, the skeletonized profile traces
the best guessed location of the DNA molecular axis, but due to its
pixelized nature it does not approximate well the almost continuous
curvature of DNA, and thus the real filament shape and length. To
regain this more natural aspect a smoothing operation is necessary
prior to length measurement. Finally, the routine has been tested
for different weight value and we found values of k that minimize
the error on the length measurement (as shown in Section III). The
length calculated using the pixel as the unit is scaled to nanometers
according to the image pixel size.

J. Molecule Extraction

In this step the molecules are extracted from the image and their
pixel coordinates stored in different data files (Figures 2.d, 2.e, 2.f and
2.g). Thus, using a fixed points sliding window each fragment-tract is
fitted to a variable-degree polynomial curve that ensures square error
smaller than a user-defined threshold. This smoothing is in order to
perform further analysis like, for example, DNA intrinsic curvature
measurements [12].

III. EXPERIMENTAL RESULTS

The experimental results were obtained by running both real AFM
images and computer-generated benchmarks with additive random
gaussian noise as background contamination.

A. Implementation

Our algorithm has been implemented using Matlab 6.0 (Release 12)
for UNIX platforms. We utilized two MathWorks Image processing
Toolbox 2.2.2 functions in the filtering step: the ���� function to
compute the two-dimensional fast Fourier transform and the �������
as implementation of the Wiener adaptive filter.

B. Experimental Set Up

The fragments in the computer generated benchmark images were
generated according to Gaussian probability distribution as described
in [16] (section 2.3) so as to exhibit similar distribution and similar
shape as in the real AFM images of DNA molecules (including tip-
broadening effects).

C. Simulated Images

In the computer-generated square images, the tests were organized
in two sets depending on pixel size that, due to the image size/pixels
number ratio, was set to 7.8 nm (i.e. 2000(nm)/256pixels) and 3.9
nm (i.e.2000(nm)/512pixels).

The first set of results shows the average errors as a function of
the fragment length for 512 pixels images. The second set of results
shows similar plots for 256 pixels images. For both cases we tested
the algorithm with seven different fragment sizes (300, 433, 567, 700,
833, 967, 1100 nm) and for three different additive gaussian noise
levels. The additive gaussian noise variance was set to 0.01, 0.02 and
0.06 to obtain these different noise levels. It must be observed that
the last noise level is higher than the common noise level in real
images. The algorithm has been tested with a thousand fragments
for the seven fragment sizes and the three additive noises. Finally,
the tests were performed using 21,000 molecules for each of the two
7.8 nm and 3.9 nm pixel size sets. In addition, different values of
� were tried in the length calculation procedure in order to find the
best value of � (����) minimizing the error of the measurements.

As a result, we found two different value for ���� depending on the
pixel size. In fact, if the pixel size is larger, ���� should be smaller
to compensate for the interpolation inaccuracy (since increasing the
value of � enhances the effect of the interpolation, that is more precise
for smaller pixel size).

Figures 5.a, 5.b, 5.c show the average absolute errors for each
fragment length versus different values of �, in images with additive
gaussian noise of mean 0 and variance 0.01, 0.02 and 0.06 respec-
tively. The plots are for pixel size of 7.8 nm.

Figure 5.d show the average absolute errors for each fragment
length versus different values of �, in images with additive gaussian
noise of mean 0 and variance 0.06 and pixel size of 3.9 nm. As a
common behavior for both pixel sizes, it can be observed that for
shorter fragments, the best value of � is higher, while the opposite is
true for longer fragments. This is because the higher the value of �,
the higher is the weight of the interpolation in the length computation
formula, hence the error is minimized for most regular fragments,
which are normally shorter (shorter fragments frequently have a more
regular shape). In fact, when the fragments are longer and have more
irregular shape, the effect of the interpolation is to underestimate the
length of the molecules5. We set ���� as the value that balances the
errors in the whole range of fragment lengths, obtaining the minimum
average error.

Comparing Figure 5.a with Figures 5.b and 5.c, where the mean
of the noise is always 0 but the noise variance is respectively 0.01,
0.02 and 0.06, it can be observed that the error slightly increases as
expected when the noise level is higher, but, since the overall behavior
does not change for higher noise, the choice of � is independent from
the noise level. The same experiments have been repeated for 512
pixel images.

As a result we chose for the 512 pixel images ����=0.32 and for the
256 pixel images ����=0.16. The results shown below are obtained
for these two values of ����. Figure 6.a shows thus the results for
different fragment length measures for ���� of 0.32 in images with
pixel size of 3.9 nm and additive gaussian noise of mean 0 and
variance 0.01, 0.02 and 0.06 respectively. For each measure the error
is the average among the relative errors computed for the same length
in different image fragment number. Positive values of average errors
indicate an over-estimation, while negative values indicate an under-
estimation of fragment lengths. Figure 6.b reports similar results for
the 256 pixel images for ���� of 0.16.

In Figure 7 is shown the root mean square error versus the
resolution of image for each length. The error is monotonic function
of the pixel size.

Considering all noise and length cases, for 512 pixel images a root
mean square error of 0.4% is achieved and for 256 pixel images the
root mean square error is 0.62%.

In order to compare our method with the semi-automated [16] one,
the latter was used to measure the fragment lengths on the same set
of 512 pixel images with noise variance level of 0.06. The root mean
square error produced by the semi-automated algorithm on this set
of 512 pixel images, is of 1.6%. As a result, our method achieves
higher precision (since for 512 pixel images it achieves a root mean
square error of 0.4%) with a much shorter processing time (about
60 seconds on a PC equipped with a 650MHz PentiumIII processor
compared with about half an hour of the manual procedure, depending

5There is an inversely proportional relationship between pixel size and k
value. In fact, to keep the same correction on the pixel coordinates (in nm), this
should be independent from the pixel size. Now, the correction is proportional
to k times the distance among previous and current pixels and among current
and next pixels. This distance is larger when pixel size increases. Thus, a
lower value of k should be chosen.
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(a) (b)

(c) (d)

Fig. 5. Absolute length estimation error plots vs. � parameter values; (a), (b) and (c) are absolute length estimation error plots for 0.13, 0.15, 0.16, 0.17,
0.18, 0.19, 0.20 and 0.24 � values in images with additive noise of mean 0 and variance 0.01, 0.02 and 0.06 respectively and pixel size of 7.8 nm. The error
is the absolute average among the errors computed for the same length in different images; (d) is always absolute length estimation error plot, but for 0.24,
0.26, 0.30, 0.32, 0.33, 0.36 0.39 � values in images with additive noise of mean 0 and variance 0.06 and pixel size of 3.9 nm. The error is the absolute
average among the errors computed for the same length in different images

(a) (b)

Fig. 6. Error estimation plots in images with additive gaussian noise of mean 0 and variance 0.01, 0.02 and 0.06: (a) error estimation plots for ���� of 0.32
in images with pixel size of 3.9 nm; (b) error estimation plots for ���� of 0.16 in images with pixel size of 7.8 nm. Variances are reported as vertical lines.
Note that, since � has been optimized considering all the different fragment lengths and longer molecules have a large probability to have spiky curves, that
is where the chosen value of ���� lead to underestimation. On the contrary, smaller fragments are likely to be more flat, and for this reason the value of
���� leads to overestimation. This effect has been corrected finding a linear correlation between the average errors computed and the real fragment lengths,
as explained later in this subsection. Note also that if the pixel size is bigger, the variance of the error on the length computation is higher than for 512 pixel
images, because of stronger effect of imprecise computation of the number of pixels composing a particular fragment.

Fig. 7. Root mean square error versus the resolution of image, for each length

to the user skill) 6. Reducing the processing time is useful to speed up

6We obtained this value by asking biologists using semi-automated ap-
proaches to give us data about the time spent to complete the process. Timing
we use in the paper are thus typical times required by expert users.

analysis of several images, as this is typically the case in a biological
analysis context. In addition, the automated algorithm avoids errors
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introduced from operator bias and it allows to manage a large amount
of data to determine useful information such as DNA structure and
property analysis.

Examining our results, a linear correlation has been found between
the average errors computed and the real fragment lengths with a
confidence level of 99%. This allows to compute systematic errors.
In order to estimate the confidence level of this correlation, we
performed the test T of Student under the null hypothesis on the
correlation coefficients. As a result, we rejected this hypothesis at
significance level less than 1%. Thus the correlation turns out to
have a confidence level greater of 99%. As result of the correction,
the root mean square error incurred by our algorithm is 0.34% for
the 512 pixel images and 0.6% for the 256 pixel images. In this way,
we obtained an improvement with respect to the results shown in
Figure 6.

In order to compare our method with previous automated algo-
rithms presented in the literature, we performed an additional test
with images of molecule length of 90nm. As experiments in previous
work [22], the images were at a resolution of 1.953 nm/pixel. At this
resolution we had to set the � parameter before to perform the test on
the 90 nm molecules. For this reason, the algorithm was tested with
fragment sizes of 300, 433, 567 nm and for all the three different
additive gaussian noise levels. As result, the ���� was set to 0.48
and the root mean square error incurred by our algorithm was about
0.8%. Finally, we performed the test on a set of 620 molecules of
90 nm of length. We obtained a distribution of lengths with a mean
value of 89.3 nm and a standard deviation of 2.2 nm. Thus, the
error with respect to the real length is about 0.77% with a standard
deviation of 2.4%. As a consequence, our work is found to provide
a considerable improvement in accuracy. In fact, in [22] the error on
the average length w.r.t. the theoretical DNA fragment size is of 3%
and the standard deviation is about 10%.

D. Real AFM Images

Our algorithm was tested with three sets of real images and
the results have been compared with those of the semi-automated
procedure. All sets were images at a resolution of 3.9 nm/pixel,
so ���� was set to 0.32. The molecules in the first two sets of
images were 633.4 nm palindromic dimers of DNA obtained by
joining two segments in either the head-to-head or the tail-to-tail
configuration [26]. The molecules were cut between two different
sites (EcoRV and PstI) and dimerized around either site to get
two different dimers, EcoRV-EcoRV and PstI-PstI. The third set of
images displayed a population of 1098 nm-long DNA molecules
containing the 211 bp 7 highly-curved fragment of kinetoplast DNA
from ��������������������.

For each data set, we compared our results with the expected
real length value. We performed also a comparison with length
distribution obtained with the semi-automated method [16][26]. Gen-
erally, a semi-automated procedure can be very effective for selecting
molecules of interest because of the skillness of the bio-researcher
to distinguish molecules from background noise or artifacts. In
particular, the referenced method is widely used in bio-labs [27]
because it provides a suitable accuracy. For this reason, we decided
to perform also a comparison with it.

The first set of images displayed 170 EcoRV-EcoRV dimer
molecules. Figure 8.a shows an example of this set of images. The
length distributions of the imaged molecules is shown in Figure 8.b.
Although the EcoRV-EcoRV dimer molecules have the same length,
the imaged molecules appear to be characterized by somewhat
different lengths, as you can see in Figure 8.a. This is due to a partial
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DNA structural alteration during the deposition process, to residual
artifacts on the sample or on the substrate and to the AFM scansion
approximations. By observing the length distributions histogram in
Figure 8.b it can be noticed that the algorithm selects the molecules
of interest removing the artifacts or the critical molecules such as the
semi-automated procedure. In fact, comparing our length distributions
with the semi-automated measures a similar shape and width in the
plots is clearly visible. As a result, we obtained a standard deviation
of 2.3%, that is 14.8 nm on a mean value of 631.3 nm. The average
length is thus very close to the expected one (633.4 nm) with a 0.33%
error.

The second set of images displayed 55 PstI-PstI dimer molecules.
Figure 9.a shows an example of these set of images. Just like the
previous case, the PstI-PstI dimer molecules appear in the image
characterized from some different lengths for the reasons explained
above. As for the first set of real images, also for the second one we
can notice that the algorithm selects the molecules of interest in good
agreement with the semi-automated procedure removing the artifacts
or the critical molecules (Figure 9.b). Thus, comparing our length
distributions with the semi-automated measures we evidence similar
shape and width in the plots. As a result, we obtained a standard
deviation of 2.3%, that is 14.6 nm on a mean value of 635.37 nm.
The average length is very close to the expected one (633.4 nm) with
a 0.3% error.

Moreover, comparing these results with previous automated algo-
rithms presented in the literature, our work is found to provide a
considerable improvement in accuracy. In fact, for the automated
algorithm presented in [22] the error of the average length with
respect to the theoretical DNA fragment size for molecules of about
same length, is of 1.5% and the precision is of about 5%. For the
automated algorithm presented in [19] the error of the average length
with respect to the real DNA fragment size is of about 12%. These
results are obtained from measures of DNA fragments deposited using
air DNA deposition technique, as we did.

The third set of images displayed the 1098 nm-long DNA
molecules containing the highly curved fragment of kinetoplast DNA
��������������������. Figure 10.a shows an example of these set
of images. The molecules appear in the image characterized by very
irregular profiles due to the unusual very high molecule curvature.
This property translates into a harder computation of molecule lengths
because surrounding noise shadows DNA shapes proportionally to
DNA profile complexity. As for the other sets of real images, also
for this one we can notice that the algorithm selects the molecules of
interest in agreement with the semi-automated procedure removing
the artifacts or the critical molecules (Figure 10.b, solid plot). Com-
paring our length distributions with the semi-automated measures we
evidence similar shape in the plots, with wider spread for the semi-
automated one. The average values of the two distributions are very
close, but the semi-automated one gives more uncertain information
caused by the higher dispersion of the measured lengths. We obtained
a standard deviation of 1.9%, that is 20.5 nm on a mean value of 1085
nm. The average length is very close to the expected one (1098 nm)
with a 1.18% error. These results are comparable with the two other
sets of molecules, considering the unusual structural characteristics
of the kinetoplast DNA of �������������������� molecule.

IV. CONCLUSIONS

An automated algorithm for determining the DNA molecule length
in Atomic Force Microscope images has been presented. Furthermore,
the automated approach allows to recognize and extract the molecular
profiles with high accuracy, minimizing processing time and increas-
ing the amount of biological and biomedical available information.
Our automated algorithm is found to be effective for several DNA
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(a) (b)

Fig. 8. (a): EcoRV-EcoRV dimer DNA molecules in an AFM image (particular); (b): Histogram of EcoRV-EcoRV dimer molecules sizing: the solid plot
represents our measures, the dashed plot represents the semi-automated measures

(a) (b)

Fig. 9. (a): PstI-PstI dimer DNA molecules in an AFM image; (b): Histogram of PstI-PstI dimer molecules sizing: the solid plot represents our measures,
the dashed plot represents the semi-automated measures

(a) (b)

Fig. 10. (a): 1098 nm-long DNA molecules containing the kinetoplast DNA of ��������	
	�����	�	 in an AFM image; (b): Histogram of
��������	
	�����	�	 molecules sizing: the solid plot represents our measures, the dashed plot represents the semi-automated measures. The average
values of the two distributions are very close, but the semi-automated one presents a higher dispersion of the measured lengths

fragments sizing and molecular profile recognition applications, such
as the investigation of transitions in the secondary structure of DNA,
interactions between DNA and proteins, static and dynamic structure
analysis. The proposed algorithm takes as input AFM images of DNA
fragments and elaborates them by a sequence of processing steps. The
algorithm has been tested using computer-generated and AFM real
images.

Comparing our technique with a semi-automated algorithm, our
method achieves higher precision with a much shorter processing
time (about 60/120 seconds compared to half an hour). In addition,
the automated algorithm avoids errors introduced by operator bias.

Moreover, comparing our approach with previous automated methods
presented in literature our work is found to obtain a considerable
improvement in accuracy. In fact, results on real AFM images show
that our algorithm is able to select the molecules of interest by
removing the artifacts or the critical molecules as the semi-automated
procedure. In particular, we obtained length distributions with a
standard deviation of about 2% of mean and an average error of
about 0.3% - 1.18%.

As an extension of this work, we are currently designing an
automated algorithm for DNA curvature and flexibility analysis. As
future work, we plan to implement an adaptive snake algorithm for
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increasing the number of selected molecules in very noisy images
without impacting accuracy.
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