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1 Introduction

The study of rotordynamics has been faced up deeply during last century. However, only after
World War II, i.e. with the development of gas turbines in aeronautical field, the need for a better
understanding of rotating system dynamics has become an urgent problem.

For a long time the studies were based on the hypothesis that the deformed shaft rotates
around the axis of the bearings at the constant angular velocity imposed at the end section of the
shaft itself by an external torque. This hypothesis, substantially neglecting the effects of Coriolis’
acceleration, could not explain how a shaft might rotate without breaking at angular velocities
greater than the first critical velocity.

foep foep and jeff jeff, referring to a rotating disk mounted with non-zero eccentricity on a mass-
less elastic shaft, were the first to introduce the idea that the disk instantaneous axis could not
be considered always coincident with the bearing axis, but it had to be determined from the sys-
tem equilibrium equations. Their idea permitted to overtake the contradiction with experimental
outcomes.

It is practically impossible to cite all the researchers acting in this field of mechanics; however it
is worth to remember at least three researchers for their important contributes to rotordynamics:
dime dime, tond tond and yama yama.

In this paper, the authors analyze the dynamic behaviour of asymmetric rotating shafts having
distributed mass and distributed stiffness; the analytical solutions are obtained in a fixed reference
frame. It is worth noting that in the case of shafts with non circular sections, a rotating reference
frame is commonly adopted (see, e.g., tond’s work tond, pp.96–105 and kram’s book kram, pp.192–
199); anyway also fixed reference approaches can be found in the literature (black black and gane
gane). Therefore the originality of the paper consists in the mathematical technique used to abtain
analytical solutions that, it must be underlined, are well known.

In addition, in the present work the instability region is explicitly related to the asymmetry
itself: therefore the results allow to analyze the shaft dynamical behaviour in a simple and direct
way.

A case test is analyzed, considering a shaft mounted on two rigid bearings, possessing uniformly
distributed mass and rotating at constant angular speed, in absence of external disturbances.

2 Shaft model

Figure 1 shows a generic section of a vertical shaft, projected on a plane normal to the bearing
s-axis; the section is obtained with a plane perpendicular to the tangent to the deformed axis line.

Figure 1: Shaft section

The shaft section is elliptical, with axes ξ and η fixed to the section, coincident with the axes
of the geometrical inertial central ellipse.

According to Bernoulli-Euler model, the dynamical equilibrium equations have the following
form:
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where E is the shaft elasticity modulus, µ is the mass per unit length, x and y are the coordinates
of the section centre, z = x + ıy is the elastic displacement, z̃ is the complex conjugate of z, s
is the distance measured along the bearing axis, ω is the shaft angular speed, Iξ and Iη are the
inertial moments respectively along axis ξ and η, S = (Iξ + Iη)/2 and D = (Iξ − Iη)/2 (assuming
that Iξ > Iη).

After dividing Eq. (1) and (2) by µω2, let
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ES

µω2
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ED

µω2
; τ = ıωt; (3)

it yields:
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Let now consider the case in which quantities χ and ∆χ are constant and do not depend on
coordinate s; therefore, from Eq. (5) it holds:
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Substituting Eq. (6) and (7) in Eq. (8), it yields:
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Finally:
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A solution for Eq. (10) can be obtained through separation of variables; let z(τ, s) = ϕ(τ)ψ(s),
where function ψ(s) satisfy equation:

ψ
′′′′

= νψ, ν = constant. (11)

After suitable substitutions, Eq. (10) becomes:

····
ϕ −4

···
ϕ + (4− 2χν) ϕ̈+ 4χνϕ̇+

[(
χ2 −∆χ2

)
ν2 − 4χν

]
ϕ = 0. (12)

It is now necessary to solve the fourth order characteristic equation corresponding to Eq. (12),
obtained by letting ϕ = erτ :

r4 − 4r3 + (4− 2χν)r2 + 4χνr +
[(
χ2 −∆χ2

)
ν2 − 4χν

]
= 0. (13)

It is well known that Eq. (13), having form ar4 + br3 + cr2 + dr+ e = 0, reduce to y4 + 2Ay2−
By − C = 0 if y = r + b/(4a). In the case of Eq. (13), it holds:
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y = r − 1 (14)
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hence:
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Let p1 and p2 be defined as follows:
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√
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√
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then the solutions of Eq. (13) are given by:

r = 1± p1 and r = 1± p2. (21)

Therefore, function ϕ(τ) can be written in the form:

ϕ(τ) = A1e
(1+p1)τ +A2e

(1−p1)τ +A3e
(1+p2)τ +A4e

(1−p2)τ , (22)

while function ψ(s), solving Eq. (11), becomes:

ψ(s) = B1 sin
(

4
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)

+B2 cos
(

4
√
νs
)

+B3 sinh
(

4
√
νs
)
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(

4
√
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The four integration constants Ai reduce to two, because the solution must satisfy Eq. (4) and
(5); hence, from Eq. (4):

χψ
′′′′
ϕ−∆χe2τψ

′′′′
ϕ̃− ψϕ̈ = 0, (24)

where ϕ̃ is the complex conjugate of ϕ. Substituting Eq. (11) and (22) in Eq. (24) it is possible
to determine the following relations between the constants Ai:

A1

A2
=

ν∆χ

χν − (1 + p1)
2 and

A3

A4
=

ν∆χ

χν − (1 + p2)
2 . (25)

With regard to constants Bi, the four boundary conditions, corresponding to null values of the
function and of its first or second derivative, lead to four homogeneous equations. Therefore, for
any real and distinct value of ν, constants Bi are determined except from a constant that can
be either assumed equal to one or included in the Ai constants. Finally, displacement z can be
expressed as:

z =
∑
ν

4∑
i=1

Aie
riτ

4∑
j=1

Bje
4
√
νs; (26)

hence there are two series of constants A(ν) necessary and sufficient to define the initial position
and velocity of the points of the shaft axis.

3 Case test: pinned–pinned shaft

For a pinned–pinned shaft, the boundary conditions lead to

B2 = B3 = B4 = 0 and sin
(

4
√
νl
)

= 0, i.e. ν = n4π4/l4. (27)
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From the analysis of the roots of the temporal function ϕ(τ) it is possible determine the
instability conditions: in fact it results that root p2 may be complex, hence causing a solution
growing with time. This situation occurs when

1 + χν <
√

4χν + ν2∆χ2, i.e. |1− χν| < ν∆χ. (28)

By substituting back the inertial moments, it holds:

−νE Iξ − Iη
2µω2

< 1− νE Iξ + Iη
2µω2

< νE
Iξ − Iη
2µω2

; (29)

hence:

νE
Iη
µ
< ω2 < νE

Iξ
µ
. (30)

Therefore, for angular speed inside the range defined by the limit values determined in Eq.
(30), the motion of the shaft is unstable. It is immediate to verify that the limit values computed
in Eq. (30) represent the natural frequencies corresponding to uniform stiffness respectively equal
to EIξ and EIη. Let ωn0 be the frequency of a circular shaft; then:

ν =
µω2
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EI
, (31)

where I = (Iξ + Iη)/2. Hence Eq. (30) becomes:
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µ
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E (Iξ + Iη)
= ω2
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χ

)
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µ

2µω2
n0
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(
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χ

)
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(32)

In the case of a pinned-pinned shaft, the value of ωn0, representing a circular shaft natural
frequency, is given by:

ω2
n0 =

EI

µ

n4π4

l4
, n = 1, 2, . . . (33)

Therefore it is possible to represent the instability regions, for a pinned-pinned shaft, as in
Fig. 2.

Figure 2: Instability diagram (dashed regions) for a pinned-pinned shaft

In the limit case of angular speed coincident with one of the critical values given by Eq. (30), it
results that p2 = 0; hence, since there are two real coincident roots, function ϕ(τ) grows indefinitely
and the motion is unstable.
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4 Conclusions

In this work the authors studied the dynamical behaviour of an asymmetric shaft possessing dis-
tributed mass and distributed elasticity. The equations of motion are written in a fixed reference
frame and solved with an original technique.

Furthermore, it must be observed that the analytical approach developed in the present paper
allows to emphasize an important feature of the shaft dynamic behaviour. In fact, the analysis of
the results presented in Fig. 2.6,1 of tond’s work tond clearly shows the angular velocity intervals
corresponding to instability conditions; however the dependence of these regions on the asymmetry
ratio (∆χ/χ) is not highlighted. On the contrary, Fig. 2 of the present work provides a clear and
direct answer to this question.
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[Krämer1993] Krämer, E. Dynamics of Rotors and Foundations. Springer - Verlag, Berlin, 1993.

[Tondl1965] Tondl, A. Some Problems of Rotor Dynamics. Chapman et Hall, London, 1965.

[Yamamoto and Ishida2001] Yamamoto, T. and Ishida, Y. Linear and Nonlinear Rotordynamics.
J. Wiley & Sons, New York, 2001.

6


	Introduction
	Shaft model
	Case test: pinned–pinned shaft
	Conclusions

