
02 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A programmable BIST architecture for clusters of Multiple-Port SRAMs / Benso, Alfredo; DI CARLO, Stefano; DI
NATALE, Giorgio; Prinetto, Paolo Ernesto; Lobetti Bodoni, M.. - STAMPA. - (2000), pp. 557-566. (Intervento presentato
al convegno IEEE International Test Conference (ITC) tenutosi a Atlantic City (NJ), USA nel 3-5 Oct. 2000)
[10.1109/TEST.2000.894249].

Original

A programmable BIST architecture for clusters of Multiple-Port SRAMs

Publisher:

Published
DOI:10.1109/TEST.2000.894249

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1500007 since:

IEEE

A programmable BIST architec-
ture for clusters of Multiple-Port
SRAMs
Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P., Lobetti Bodoni M.,

Published in the Proceedings of the IEEE International Test Conference (ITC), 3-5 Oct. 2000, Atlantic
City (NJ), USA.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=894249

DOI: 10.1109/TEST.2000.894249

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for resale

or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

!Politecnico di Torino

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=894249
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=894249
http://dx.doi.org/10.1109/TEST.2000.894249
http://dx.doi.org/10.1109/TEST.2000.894249

A Programmable BIST Architecture for Clusters of Multiple-Port SRAMs

Alfredo BENSO, Stefano DI CARLO, Giorgio DI NATALE, Paolo PRINETTO
Politecnico di Torino

Dipartimento di Automatica e Informatica
Corso duca degli Abruzzi 24 - I-10129, Torino, Italy
Email: {benso, dicarlo, dinatale, prinetto }@polito.it

http://www.testgroup.polito.it

Monica LOBETTI BODONI
Siemens Information and

Communication Networks S.p.A.
Castelletto di Settimo Milanese
I-20019 Milano MI, Italy

Email: monica.lobettibodoni@icn.siemens.it

Abstract1

This paper presents a BIST architecture, based on a
single micro-programmable BIST Processor and a set of
memory Wrappers, designed to simplify the test of a
system containing many distributed multi-port SRAMs of
different sizes (number of bits, number of words), access
protocol (asynchronous, synchronous), and timing.

1. Introduction
Multi-port SRAMs are nowadays widely used as
embedded memories in a plenty of digital systems like
telecommunications ASIC’s or in multiprocessor
systems. They allow to speed up the system, particularly
when the memory has to serve many concurrent requests.
Today’s technologies allow the design and manufacturing
of memory chips up to 11 ports, and Multi-port RAM
generators are commonly available in many ASIC
vendors library as LSI-Logic, Texas Instruments and ST
Microelectronics. Due to the high complexity of this new
integrated circuits, resorting to BIST techniques is
nowadays a must. In this scenario, the test engineer has to
define the BIST strategy of a complex SoC including
several multi-port SRAMs of different sizes (number of
bits, number of words), access protocol (asynchronous,
synchronous), and timing. Apart from the required design
time, the mentioned task usually poses several issues,
including minimizing BIST area and routing overhead,

1 This work was partially supported by the MURST (Ministero per
l’Università e la Ricerca Scientifica e Tecnologica) under the project
2000 GRAAL (Generatore di celle Ram ad Altissima Affidabilità per
applicazioni Life e safety-critical)

selecting the proper number of BIST controllers to be
used (that is, choosing the proper memory clustering for
BIST controller sharing), fulfilling power budget
constraints, and supporting diagnostic capabilities.

Commercial tools are nowadays available for the
automatic insertion of the RAM BISTing [1], [2]. The
present paper presents the efforts and the results obtained
in designing a proprietary BIST architecture to tackle the
above-mentioned set of problems.

A BIST architecture based on a µ-programmable BIST
controller used to test large capacity dynamic memories
was proposed by [3].

The BIST architecture proposed in this paper (Figure 1)
is characterized by:

• A single BIST Processor, in charge of performing
the test of all (or a subset of) the SRAMs of the
system. It has been implemented as a micro-
programmable architecture, executing elementary
test primitives stored in a dedicated memory, thus
capable of running any required March algorithm
(it is optimized to implement the March Test for
Multi Port SRAMs presented in [4]);

• A Wrapper around each SRAM. Each wrapper is
composed of a set of Port-Wrappers (one per each
memory port) and of a Dispatcher.

• Each Port-Wrapper contains the standard memory
BIST blocks (i.e., an address generator, a
background pattern generator, and a comparator),
and an interface block designed to manage the

communications between the SRAM and the BIST
Processor, regardless the memory access protocol.

• The Dispatcher is a simple FSM designed in order
both to serially collect the test primitives for the
various ports and to deliver them to the various
Port-Wrappers.

• Aminimal set of Communication Signals allowing
the BIST Processor to execute and synchronize the
test algorithm of all the memories under test;

• A scan chain connecting all the Port-Wrappers to
allow full diagnosis of the memories under test.

BISTBIST
ProcessorProcessor

µµµµµµµµPPMemMem

SRAMSRAM

WrapperWrapperDD
II
SS
PP
AA
TT
CC
HH
EE
RR

SRAMSRAM

WrapperWrapperDD
II
SS
PP
AA
TT
CC
HH
EE
RR

SRAMSRAM

WrapperWrapperDD
II
SS
PP
AA
TT
CC
HH
EE
RR

Figure 1: Basic Architecture

The proposed scheme presents several advantages.
Among the others, we would like to highlight the
following ones:

• It allows running concurrently the BIST of a set of
SRAMs with different number of ports, sizes,
accessing protocols and timing.

• The set of memories to be tested can be freely
selected by the designer, using either ad-hoc test
primitives stored in the test program, or a
dedicated scan chain to properly set an ad-hoc
status bit in each memory.

• Using a single BIST controller and a minimum set
of communications signal allows minimizing the
BIST area overhead and the connectivity around
each SRAMs.

• Implementing the BIST Processor as a micro-
programmable machine provides the test engineer
a flexible and reusable block, which can be used to
manage the BIST of any number of memories of
any size, and it is independent from the test
algorithm.

The paper is organized as follows: Sections 2 and 3
describe the two main blocks that compose the proposed
architecture. Section 4 details the diagnostic capabilities
of the architecture, whereas Section 5 presents two
possible optimization to minimize the area overhead
when dealing with a set of identical memories and to
reduce the test length using a topological approach.

Experimental results gathered on a realistic case study
are discussed in Section 6, and Section 7 eventually
draws some conclusions.

2. The BIST Processor
As introduced in the previous section, the proposed
scheme is based on a single BIST Processor used to test
all the memories of the system. To increase flexibility,
the BIST execution is based on a micro-programmable
approach. The test algorithm (a March Algorithm [4]) is
stored in a dedicated µProgram-Memory, coded through
a set of test primitives. The µProgram-Memory can be
either a ROM or an In-System Programmable module. In
the former case, the test program is fixed at design time,
whereas in the latter one a custom and appropriate test
algorithm can be loaded into the memory at test time.

The BIST Processor reads from the µProgram-Memory
one test primitive at a time, forwards it to all the
Wrappers of the SRAMs under test, and waits until its
completion in all the target memories.

When the test program is completed (i.e., all the test
primitives have been applied), the BIST Processor reads
the test results from each RAM. If a fault is detected, the
faulty RAM can be located resorting to a set of
diagnostic facilities (See Section 4).

The BIST processor and the µProgram-Memory
architectures are strongly influenced by the multi-ports
March Test characteristics. Due to the possibility of
accessing several cells concurrently, new fault models
must be used [4] and ad-hoc March Algorithms must be
adopted to cover these new fault types. In particular, the
proposed implementation is optimized in order to
implement the March Algorithms able to cover Complex
Coupling Faults [5]. The main characteristic of the
algorithm is the access to the various ports using nested
cycles:

{ })).......)((1
1
0

n
BC

A
BA +=
−
=

where A-1
B=0

n
C=B+1: denotes a nested addressing

sequence, whereby the cell B goes from 0 to A – 1; and
for each value of B, cell C goes from B + 1 to n.

Table I summarizes the set of test primitives needed to
implement such a March Algorithm.

Test
primitive

Description

W0 Write pattern
W1 Write not(pattern)
R0 Read and verify a pattern
R1 Read and verify a not(pattern)
INC Increment the address generator and

define the end of a March Element
DEC Decrement the address generator

and define the end of a March
Element

INCCOND Conditionally increment the address
generator

DECCOND Conditionally decrement the address
generator

SUB Increment the address generator
ADD Decrement the address generator
LOAD Load a value in the address

generator (see 3.2)
NME New March Element
NOP No Operation

NEXTBP Next Background Pattern
CONF Define the set of SRAM under test
END End of test

Table I: March Algorithm Test Primitives

Each test-program step is coded in the µProgram-
memory as a sequence of test primitives, one for each
memory port.

As an example, let’s consider the following March
Algorithm used to test an 8-bit dual port SRAM (the
convention for the operation is (portA:portB)):

{)1:1();1:1,0:0();0:0(rrwwrrww ;
M0 M1 M2

):,:,...,:,:(77770000 BPBPBPBPBPBPBPBP rrwwrrww ;
M3

):0(−w ;));0:,0:0,0:1(10(10 vrnvrawvraw
v
a

n
v

−
=

−
=

M4 M5

));0:,0:0,0:1((1
1

1
0 vvava

n
va

n
v rnrwrw−

+=
−
=

M6

):1(−w ;));1:,1:1,1:0(10(10 vrnvrawvrawv
a

n
v

−
=

−
=

M7 M8

))1:,1:1,1:0((1
1

1
0 vvava

n
va

n
v rnrwrw−

+=
−
= }

M9

The March elements M0-M3 realize the MATS algorithm,
properly expanded as proposed in [6] to cover intra-word
CFsts faults, whereby BP0 through BP7 are taken from
the set of Background Patterns from Table II [6].

j Background Pattern
0 00000000
1 11111111
2 00001111
3 11110000
4 00110011
5 11001100
6 01010101
7 10101010

Table II: 8 bits Background patterns BPj for CFsts

The March elements M4-M9 represent the March 2PF2,2
proposed in [4] to test wCFi&wCFi.

The proposed March Algorithm can be coded using the
set of primitives shown in Table III.

PrimitiveMarch Element
Port A Port B

)0:0(ww NME NME
INC INC
W0 W0

)1:1,0:0(wwrr NME NME
R0 R0
W1 W1
DEC DEC

)1:1(rr NME NME
R1 R1
INC INC

):,:
,...,:,:(

7777

0000

BPBPBPBP

BPBPBPBP

rrww
rrwwc NME NME

W0 W0
R0 R0
W1 W1
R1 R1

NEXTBP NEXTBP
INC INC

):0(−w NME NOP
W0 NOP
INC NOP

));0:,0:0,0:1((1
0

1
0 vvava

v
a

n
v rnrwrw−

=
−
=

NME NME

W1 R0
W0 R0
NOP R0
NOP INCCOND
INC NOP

))1:,1:1,1:0((1
1

1
0 vvava

n
va

n
v rnrwrw−

+=
−
=

NME NOP

NOP LOAD
NOP ADD
NOP NME
W0 R1
W1 R1
NOP R1
NOP INC
INC COND

…..
END END

Table III: March Algorithm Representation

An important issue to be faced when running concurrently
the BIST of several modules is fulfilling power budget
constraints. In fact, BIST typically results in a circuit
activation rate higher than the normal one [7], and an
over-dissipation of power may seriously damage the
devices. Moreover, the variety of SRAMs that can be

found in a complex architecture may require different test
algorithms. To address these two issues, the proposed
approach implements a very flexible scheduling
mechanism. In particular, it is possible to select the set of
memories to be tested using either a special test primitive
in the µProgram-Memory, as part of the test algorithm, or

setting a dedicated flag into the memory Wrapper through
a scan chain. Only the Wrappers of the selected memories
will execute the test primitives received from the BIST
Processor. In this way, several test algorithms may be
storeed in the µProgram-Memory and may be applied
sequentially to different sets of memories.

3. Wrapper Structure
The Wrapper placed around each memory has to execute
the test primitives broadcasted by the BIST Processor,
independently of the memory access protocol. Moreover,
the Wrapper is the only element in the architecture taking
care of the number of ports, the size and the access
protocol of the memory it is placed around.

The Wrapper generates the correct test patterns and
memory addresses required to execute the received test
primitives, and evaluates the output results of a read-and-
verify primitive.

The Wrapper architecture consists of:

• a Dispatcher that receives from the BIST Processor
the test primitives for all the ports and distributes
them accordingly;

• a Port-Wrapper for each RAM port. It generates the
test patterns (address and data) and verifies the
correct behavior of the memory according to the
command received from the dispatcher. The result
of each primitive is signaled via an output line.

PORT1 PORT2 PORTn

FPWFPW OPWOPW OPWOPW

DISPATCHERDISPATCHER

n-PORT RAMn-PORT RAM

Figure 2: Wrapper architecture

Two kinds of Port Wrapper are available: one for the first
port of each memory (FPW, First Port Wrapper) and one
for the others ports (OPW, Others Port Wrapper). The
main difference between the two lays in the fact that each
OPW receives as an input the address value generated by
the previous port wrapper.

3.1. Dispatcher
The dispatcher receives the test primitives for all the port
wrappers from the BIST Processor. The BIST Processor

sends a test command per clock cycle to all the dispatcher
(the first command is driven to all the FPWs, the second
one to all the first OPWs,etc.).

Since each wrapper has no information about the other
wrappers’ size, a run signal is sent after all the commands.
The dispatcher saves all the commands in a temporary
register and, when receiving the run signal, it delivers
them to each port wrapper.

As an example, the execution of the (W0:R0) instruction
for a dual port memory is shown in Figure 3.

BISTBIST
ProcessorProcessor

DISPATCHERDISPATCHER

W0* R0+ RUN@

+Test Primive for
the second port

*Test Primive for
the first port

@All the test
primitives received,
start execution.

DUAL PORTDUAL PORT
RAMRAM

AA

BB CC

NOP NOP W0

NOP NOP R0

AA

BB

CC

CLKCLK

Figure 3: Test Instruction execution diagram

3.2. Port Wrapper
The internal structure of a FPW is drawn in Figure 4. The
Address Generator (AG) is in charge of generating the
correct address where the test pattern, provided by the
Background Pattern Generator (BPG), has to be written
or verified. Several BPGs are available, to target different
faults type [6]. The correctness of the content of a memory
cell is evaluated through a simple Comparator.

Functional Data In

Functional
Data Out

Functional
Address

Data InData Out Address

AddressAddress
GeneratorGenerator

BackgroundBackground
PatternPattern
GeneratorGenerator

=

Interfacing BlockInterfacing Block

STATUS BITSTATUS BIT
Command

Sync_out

Sync_in

SRAMSRAM
P
O
R
T
1

Figure 4: Wrapper structure

Two Status Bits are used respectively to set the memory in
transparent or in test mode (the Mode Status Bit) and to
store the test results at the BIST algorithm completion (the
Result Status Bit), respectively. To set and read them, the
status bits of all the Wrappers are connected by two scans
chain, respectively called NormTest_Scan_Chain and
Results_Scan_Chain, respectively.

Finally, each FPW includes an Interface Block able to
receive the test primitives from the Dispatcher, to receive
a synchronization signal from the previous port wrapper,
and to produce the output synchronization signals needed
by the BIST Processor to schedule the next test primitive
to be executed. The output synchronization signal
assumes different meaning depending on the received test
primitive (Table IV).

Received Primitive Output
synchronization
signal meaning

Rationale

Write / Read End of Instruction
(EOIN)

Set to ‘1’when the instruction is finished and the input synchronization
signal is equal to ‘1’. In this way the BIST Processor receives the logic-
AND of the output signals generated by the memories under test and the
input EOIN signal of the BIST Processor switches to ‘1’ only when all
the EOIN signals of the memories under test have been set to ‘1’, i.e., all
the memory Wrappers has completed the execution of the instruction

Inc/Dec
CondInc/CondDec

End of Address
(EOAD)

Set to ‘1’ when the whole addressing space has been visited by the AG

NextBP End of Background
Pattern (EOBP)

Set to ‘1’ when all the background patterns have been used

End Results Set to the logic AND among the result start bit and the synchronization
signal of the preceding port wrapper

During Diagnosis ScanResult Set to the results status bits in order to form the Results_Scan_Chain
During scheduling
configuration

ScanSched Set to the mode status bits in order to form the NormTest_Scan_Chain

Table IV: Meanings of the Output Synchronization signal

The structure of the OPW is similar to the FPW. In order
to execute the March algorithm seen in 2, this wrapper
includes some additional blocks, since it must generate a
subset of the entire addressing space, depending on the
address generated by the previous port wrapper. An OPW
is able to execute the test primitives IncCond, Dec Cond,
Load, Add and Sub.

3.3. Multiplexing
In order to minimize the routing overhead, the signals
exchanged between the BIST Processor and the memory
Wrappers (command signals, synchronization signal, scan
chain signals) are multiplexed. In particular, these signals
are multiplexed at the port-wrapper level. All the

information is routed using only 6 signals (4 command
signals and 2 synchronization signals).

4. Diagnosis
When a faulty memory is detected, the proposed approach
allows collecting diagnostic information concerning the
location of the faulty SRAM, the ports where the fault was
detected, the address of the faulty cell, and the detecting
pattern. These information items are stored into the Result
Status Bit, the Address Generator, and the Background
Pattern Generator of each Port-Wrapper and can be
scanned-out via the Results_Scan_Chain. In particular,
depending on the result of the test (Result_Status_Bit),
each Port-Wrapper configures its portion of the

Results_Scan_Chain in one of the following two ways
(Figure 5):

• Result_Status_Bit=’1’: the RAM is not faulty; only
the Result_Status_Bit is placed on the scan chain.

• Result_Status_Bit=’0’: the RAM is faulty; the
Result_Status_Bit is concatenated to the content of
the Address Generator and the Background Pattern
Generator.

ADDRESS GENADDRESS GEN.. BPGBPG 00

SCAN_IN

RESULT_STATUS_BIT

11

PortPort--WrapperWrapper

ADDRESS GENADDRESS GEN.. BPGBPG 00

SCAN_IN

RESULT_STATUS_BIT

11

PortPort--WrapperWrapper

Figure 5: Results_Scan_Chain

5. Further optimizations

5.1. Sharing Wrappers among SRAMs clusters
To further reduce the BIST area overhead, the designer
can share a single Wrapper for a cluster of identical
SRAMs (same type, width, and addressing space).

This optimization is made at the Port-Wrapper level. For
each Port-Wrapper only one Address Generator and one
Background Pattern generator are needed. The only
difference with the previously described Port-Wrapper
structure is that a shared Port-Wrapper contains a pair of
Status Bits and a comparator for each RAM. In this way,
when a fault is detected, the Result Status Bit of the faulty
memory is set, the RAM is disconnected, and the Wrapper
continues testing the remaining memories of the cluster.
Obviously, in this case, the status of the Address
Generator and the BPG of the faulty RAM are not
preserved. To collect diagnostic information, the test must
be re-executed targeting the faulty RAM, only, by
properly setting its Mode Status Bit.

5.2. Using a Topological approach for complex
coupling fault testing

The approach proposed in this paper is useful to describe
March Algorithms for multi-port RAMs with complexity
of O(nm) where n is the number of cells and m the number
of ports. For practical applications, these algorithms result
in very long test sequences. It is possible, as proposed in
[5], to optimize the address generator of each OPW in
order to generate the address for a Topological Approach.
The approach consists in detecting all coupling faults
between adjacent cells only. Using this optimization the
test complexity can be reduced to O(n) without significant
fault coverage reduction.

6. Case study
A case study has been used to evaluate the proposed
approach and to gather experimental results. The circuit,
named VC12AD, is a part of a telecommunication ASIC
designed by Italtel SpA. The same circuit has also been
used by both Italtel SpA and Siemens ICN as a benchmark
for the evaluation of commercial BIST Insertion Tools.

The target circuit has been described in VHDL and
synthesized using the G10 LSILogic™ library, which
provides a set of SRAMs of different sizes.

The VC12AD counts up to 860K Synopsys™ equivalent
gates (excluding RAMs), plus 36 small-sized SRAMs, for
a total of 14,704 bits (Figure 6).

The case study aims at evaluating:

• the BIST architecture complexity when applied to a
set of SRAMs with very different characteristics;

• the area overhead after the BIST insertion.

6.1. Case Study Architecture
Figure 6 and Figure 7 show a conceptual view of the
VC12AD organization and its actual floor plan,
respectively. The 36 SRAMs of the circuit are grouped in
four distinct macro-areas whose characteristics are listed
below.

tpatpa
21x821x8

tpatpa
21x821x8

spaspa**
21x2621x26

spaspa**
21x2621x26

dpadpa**
21x2521x25

spaspa**
21x5921x59

tpatpa 336x8336x8C12A

spaspa
21x3421x34

C12D
spaspa
21x3421x34

SpaSpa**
21x1921x19

SpaSpa**
21x1921x19

tpatpa
42x842x8

dpadpa
32x832x8

spaspa
21x3421x34PDH_INT

SpaSpa**
21x5121x51

SYNDES qpaqpa
32x932x9

qpaqpa
32x932x9

qpaqpa
32x932x9

qpaqpa
32x932x9

Figure 6: VC12AD memories organization

C12AC12A C12DC12D

PDH_INTPDH_INT
SYNDESSYNDES

Figure 7: VC12AD floorplan

• C12A : it contains 7 RAMs:

n. of instances Type2 Size3
2 tpa 21x8
2 spa* 21x26
1 dpa 21x25
1 spa 21x59
1 tpa 336x8

• C12D : it contains 6 RAMs:

n. of
instances

Type1 Size2

1 dpa 32x8
1 tpa 42x8
2 spa 21x34
2 spa* 21x19

• PDH INT : it contains 2 RAMs:

n. of instances Type1 Size2
1 spa 21x34
1 spa 21x51

• SYNDES : It consists of 21 identical blocks. Each
of them contains one instance of a qda 32x9
(asynchronous quadruple port RAM with two ports
dedicated to write and two dedicated to read).

6.2. Case Study BIST Architecture
In the BIST Architecture definition, we tried to minimize
the number of wrappers resorting, whenever possible, to
clusters of SRAMs (see Section 5.1). As a consequence:

• Within C12A, the 2 modules tpa21x8 and the 2
modules spa*21x26 are treated as two clusters.

• Within C12D, the 2 modules spa21x34 and the 2
modules spa* are treated as two clusters

• Within SYNDES, the memories are organized as
four clusters of 7, 7, 6, and 1 element, respectively.

The design of the BIST architecture has been strongly
influenced by the actual floor plan, where, for example,
the 3 spa21x34 SRAMs (2 located inside C12D and 1 in
PDH_INT) are too far to be included in a single cluster.

The overall VC12AD structure after the BIST insertion is
in Figure 8.

2 spa: single port asynchronous RAM;

spa*: single port asynchronous RAMwith 1 write enable for each data bit;

dpa : dual port asynchronous RAM (one port dedicated to write and one dedicated

to read);

tpa : triple port asynchronous RAM (one port dedicated to write and two ports

dedicated to read);

3 (Number of words) x (bits per word)

tpatpa
21x821x8

tpatpa
21x821x8

C12A

C12D

PDH_INT

SYNDES

dpadpa**
21x2521x25

spaspa**
21x5921x59

tpatpa 336x8336x8

spaspa**
21x2621x26

spaspa**
21x2621x26

spaspa
21x3421x34

spaspa
21x3421x34

spaspa**
21x1921x19

spaspa**
21x1921x19

tpatpa
42x842x8

dpadpa
32x832x8

spaspa
21x3421x34

spaspa**
21x5121x51

qpaqpa
32x932x9

qpaqpa
32x932x9

qpaqpa
32x932x9

qpaqpa
32x932x9

BISTBIST
processorprocessor

µPµP memorymemory

Figure 8: VC12AD BIST Architecture

6.3. Case Study BIST Scheduling
Due to the different characteristics of the VC12AD
SRAMs (read/write ports, read-only ports, and write-only
ports are present), it is not possible to adopt a unique
March Algorithm for the overall circuit. We have thus
been forced to organize the BIST in four session, each one
using an appropriate March algorithm:

• Session 1: All the single port RAMs are tested
concurrently;

• Session 2: All the dual port RAMs are tested
concurrently;

• Session 3: All the triple port RAMs are tested
concurrently;

• Session 4: All the quadruple port RAMS are tested
concurrently.

6.4. Experimental results
The area occupation of each memory and its Wrapper is
in Table V, whereas Figure 9 shows the contributions of
the functional blocks of each Wrapper.

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

2*[
tpa
21
x8
]

2*[
sp
a*2
1x
26
]

dp
a2
1x
25

sp
a2
1x
59

tpa
33
6x
8

dp
a3
2x
8

tpa
42
x8

2*[
sp
a2
1x
34
]

2*[
sp
a*2
1x
19
]

sp
a2
1x
34

sp
a2
1x
51

7*[
qp
a3
2x
9]

7*[
qp
a3
2x
9]

qp
a3
2x
9

6*[
qp
a3
2x
9]

Eq
ui
va
le
nt
ga
te
s Dispatcher Area

OPW3 Area
OPW2 Area
OPW1 Area
FPW Area

Figure 9: Wrappers area

RAM Wrapper Area
2*[tpa21x8] 4,574
2*[spa*21x26] 2,165
dpa21x25 4,470
spa21x59 3,148
tpa336x8 5,169
dpa32x8 2,829
tpa42x8 4,509
2*[spa21x34] 2,870
2*[spa*21x19] 1,925
spa21x34 2,162
spa21x51 2,989
7*[qpa32x9] 8,543
7*[qpa32x9] 8,543
6*[qpa32x9] 8,084
qpa32x9 5,924

Table V: Memory Wrapper overhead

The total area overhead including the Wrappers and the
BIST Processor is in Table VI.

Glue Logic area 862,347
Total RAM area 380,503
Total Wrapper area 68,177
BIST processor area 5,431
µProgram memory area 4,459
Total 1,320,917
Total area overhead 6,28%

Table VI: Total area overhead

As shown in Table VI, the BIST processor and the
µProgram-memory area overhead is a fix contribution and
it is not influenced by the number of SRAMs in the
system.

6.5. Comparison with a commercial tool
To evaluate its effectiveness, we compared the area
overhead introduced by the proposed approach with the
one obtained using a commercial tool on the same test
case. The area overhead introduced by the tool is around
the 8%, and therefore slightly higher than the one obtained
inserting the proposed BIST schemes. Nevertheless, it is
necessary to take into account that the mentioned test case
has been specifically chosen to stress the tool and,
probably, on a real system the overhead would be smaller.
Moreover, our approach is designed to target memories
only, whereas the commercial tool is able to introduce test
logic for all the different parts of the circuit.

7. Conclusions
In the present paper we presented a proprietary solution
for a particular industrial scenario, in which it is necessary
to define the BIST strategy of a complex system including
several multi-port SRAMs of different sizes, access
protocol, and timing. The proposed architecture consists in
a single BIST Processor, implemented as a micro-
programmable machine and able to execute different test
algorithms, a Wrapper for each SRAM (or SARAM
cluster), each Wrapper including one Port-Wrapper for
each memory port and a special block named Dispatcher.

Each Port-Wrapper instiantes standard memory BIST
modules, and an interface block to manage the
communications between the SRAM and the BIST
Processor. The Dispatcher collects the instruction from
the test processor and delivers them to the Port-Wrappers.
The proposed scheme presents several advantages. To
begin with, it allows running concurrently the BIST of a
set of SRAMs of different number of ports, sizes,
accessing protocols and minimizing the BIST area
overhead and connectivity around each SRAMs. In
addition, the set of memories to be tested can be freely
selected by the designer, as well as the test algorithm to be
executed on each set.

The proposed memory BIST architecture deals with
memory modules only. If additional modules (e.g., random
logic, ROMs, legacy cores, etc) have to be BISTed as
well, more complex and sophisticated approaches (such as
the HD2BIST architecture [8] [9]) have to be adopted.

8. References
[1] Logic Vision web site, http://www.logicvision.com,

February 2000
[2] Mentor Graphics web site,

http://www.mentrog.com/dft, February 2000
[3] [KTTa90] Hiroki Koike, Toshio Takeshima,

Masahide Takada, A BIST scheme using
microprogram ROM for large capacity memories,

IEEE International Test Conference (ITC’90), pp
815 – 822

[4] S. Hamdioui, A. J. Van de Goor, Consequences of
Port Restrictions on Testing Two-Port Memories,
IEEE International Test Conference, pp 63-72, 1998

[5] M. Nicolaidis, V. Castro Alves, H. Bederr, Testing
Complex Couplings in Multiport Memories, IEEE
Transaction on VLSI systems, 3(1), pp. 59-71,
March 1995

[6] A.J. van de Goor, I.B.S. Tlili, March tests for word-
oriented memories, DATE’98: IEEE Design,
Automation and Test in Europe, pp. 501-508, 1998

[7] Y. Zorian, A distributed BIST Control Scheme for
complex VLSI devices, VTS’93: The 11th IEEE
VLSI Test Symposium, pp. 4-9, April 1993

[8] A. Benso, S. Chiusano, S. Di Carlo, P. Prinetto, F.
Ricciato, M. Spadari, Y. Zorian HD2BIST: a
Hierarchical Framework for BIST Scheduling,
Data patterns delivering and diagnosis in SoCs,
Submitted to IEEE International Test Conference
(ITC00), Atlantic City (NJ), USA, October 2000

[9] A. Benso, S. Cataldo, S. Chiusano, P. Prinetto, Y.
Zorian, HD-BIST: a Hierarchical Framework for
BIST Scheduling and Diagnosis in SoCs, IEEE
International Test Conference (ITC’99), Atlantic
City (NJ), September 1999, pp. 993-1000

[10] M. Franklin, K.K. Saluya, Built-in Self-Testing of
Random-Access Memories, IEEE Computer,
October 1990, pp.45-56

[11] LSI Logic web site,http://www.lsil.com/, February
2000

