
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Automatic March tests generation for multi-port SRAMs / Benso, Alfredo; Bosio, Alberto; DI CARLO, Stefano; DI
NATALE, Giorgio; Prinetto, Paolo Ernesto. - STAMPA. - (2006), pp. 385-392. (Intervento presentato al convegno IEEE
3rd International Workshop on Electronic Design, Test and Applications (DELTA) tenutosi a Kuala Lumpur, MY nel 17-19
Jan. 2006) [10.1109/DELTA.2006.17].

Original

Automatic March tests generation for multi-port SRAMs

Publisher:

Published
DOI:10.1109/DELTA.2006.17

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499997 since:

IEEE

Automatic March Tests Generation for Multi-Port SRAMs

A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P. Prinetto

Politecnico di Torino

Dipartimento di Automatica e Informatica

Torino, Italy

E-mail {benso, bosio, dicarlo, dinatale, prinetto}@polito.it

http://www.testgroup.polito.it

Abstract

Testing of Multi-Port (MP) SRAMs requires special

tests since the multiple and simultaneous access can

sensitize faults that are different from the conventional

single-port memory faults. In spite of their growing use,

few works have been published on testing MP

memories. In addition, most of the published work

concentrated only on two ports memories (i.e., 2P

memories). This paper presents a methodology to

automatically generate march tests for MP memories. It

is based on generations of single port memory march

test firstly, then extending it to test a generic MP

SRAMs. A set of experimental results shows the

effectiveness of the proposed solution.

1. Introduction

Multi-Port memories (MP) peculiarity is their

capability of performing more than one operation

simultaneously. Semiconductor MPs are composed of a

unique array of memory cell and a p-port to access it (p

 2). Each port has an independent set of address,

control, and data buses, making possible writing a value

on a cell while another cell is being read. Multi-port

SRAMs are nowadays widely used as embedded

memories in a plenty of digital systems, like

telecommunications ASICs and multiprocessor systems

[1].

The problem of testing multi-port memories has been

faced using and ad-hoc technique, without targeting

specific functional fault models, In [2] [3] the authors

assume that Single Port (SP) test algorithms provide a

high fault coverage when applied to MP memories. The

test methodology performs SP test algorithms on each

port, but the deep fall of the effectiveness of the applied

tests shows that ad-hoc fault models for MP must be

adopted.

In [4] a new theoretical fault model (complex

coupling fault) and its test solution are presented.

Unfortunately the fault model is not validated by

experimental analysis (i.e., it isn’t a realistic fault

model), and the test complexity (i.e., the length of the

test algorithm) is exponential w.r.t. the number of port:

O(n p).

In [5] the authors present realistic fault models

validated by industrial analysis. Taking into account the

simultaneous access in memories, march tests were

developed.

All the published tests solutions have been manually

generated, a task that always requires a lot of time,

expertise, and that sometimes does not succeeds in

covering particularly complex memory faults.

Although several methodologies to automatize the

march tests generations have been proposed [6] [7] [8]

[9] [10], none of them faces the problem of the MP test.

In this paper, we present a systematic approach to

automatically generate March Tests for MP SRAMs

based on the tests generator engine presented in [10].

Moreover taxonomy of realistic fault models for generic

p-port memories will be presented.

The paper is structured as follows: section 2 presents

the proposed test generation methodology. In Section 3

a complete description of memory faults modeling will

be exploit. Section 4 details the notation used to

represent march tests for both single and multi port

memories. In section 5 a detailed analysis of the

methodology is presented, while section 6 provides

experimental results that proof the efficiency of our

approach. Section 7 summarizes the main contributions

and future developments of this research.

2. The Proposed Test Generation

Methodology

The adopted methodology relies on a formal model

representing the fault behaviour (see Section 3).

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

To automatize the test generation phase we first

generate the single port march test by resorting the

march test generation tool published in [10].

The main steps of the methodology are:

(i) automatically translate the FPs to an

“operational” representation of the faulty behaviour,

referred to as Addresses FP, or AFP.

(ii) The original memory graph model is then

automatically modified according to the AFP, to build

the fault graph that is then traversed to generate the test.

An efficient implementation has been done, profitably

exploiting pruning conditions imposed by the goal of

primarily generating March Test.

(iii) After the generation of Single Port (SP) March

test, we apply the Multi Port translation able to extend

the SP March in to MP march.

Each generated march test has been validate by

simulation performed by memory fault simulator tool

[11]

The overall generation methodology is summarized

in Figure 1.

ValidationValidation

March Test GeneratorMarch Test Generator

Fault Graph GenerationFault Graph Generation SP March Tests

Fault

Simulator

MP March Test

Fault ModelsFault Models

Multi Port Multi Port TransaltionTransaltion

P

Figure 1 : Automatic MP march tests generation

flow

3. Fault modeling

A Functional Fault Model (FFM) is a deviation of

the memory behavior from the expected one under a set

of performed operations. A FFM involves one or more

Faulty Memory Cells (FC) classified in two categories:

Aggressor cells (a-cells), i.e., the memory cells that

sensitize a given FFM and Victim cells (v-cells), i.e., the

memory cells that show the effect of a FFM.

Each faulty behavior is sensitized by a sequence of

stimuli applied on the FCs.

In testing SRAMs, the stimuli to be applied are

memory operations. When dealing with MP SRAMs,

each stimulus could be applied on a different port. MP

faults can thus be ranked into two main classes:
Strong fault: a memory fault that can be fully
sensitized by an operation; e.g., a single-port write

or read operations fails, two simultaneous read
operations fail, etc.
Weak fault: a fault which is partially sensitized by
an operation; e.g., due to a defect that creates a
small disturbance of the voltage of the true node of
the cell. However, a fault can be fully sensitized
(i.e., become strong) when two or more weak faults
are sensitized simultaneously, since their faults
effect can be additive. This may occur when a MP
operation is applied.

Fault modeling requires a rigorous formalism; first of

all we have to specify the initial conditions of the cell,

i.e., the value (state) of the memory cell, where we are

going to apply the operations. Hereinafter we use n as

the size of the memory (i.e., the number of memory

cells)

Definition 1: C is the set of the memory states

(values), formalized as

C = {0[i], 1[i], -[i] | 0 i n-1} (1)

where apex identifies the address of the cell. If the

address is omitted, it means that the state could be

applied on every memory cell indifferently. The ‘-’

denotes a don’t care condition.

Definition 2: X is the set of the memory operations,

formalized as

X = {r[i]
[d], w[i]

d | 0 i n-1; d (0,1)} {t} (2)

where:

wi
d : a write operation of the value d performed

in the cell i;

ri
d : a read operation performed in the cell i. The

value d it is not strictly needed in case of a read

operation. If used, it means the expected value

that should be red from the i-th memory cell;

t : a wait operation for a defined period of time.

This additional element is needed to deal with

Data Retention Faults [6].

If the address is omitted, it means that the operation

could be applied on every memory cell, indifferently.

Each FFM can be described by a set of Fault

Primitives (FPs) [12].

Definition 3: A Sequence of conditions/operations

(S) is the minimum sequence of stimuli and conditions

of length m needed to sensitize the fault. The j-th

condition/operation is represented as c[x], where c C,

and x X.

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

Definition 4: A Fault Primitive FP represents the

difference between an expected (fault-free) and the

observed (faulty) memory behavior, denoted by:

 < SA ; SV / F / R > (3)

Where SA and SV are the set of S respectively applied

to a-cell and v-cell, needed to sensitize the given fault.

 Since S could be applied via several ports in parallel,

SA and SV are represented as:

(S1)
0 : (S2)

1 : … : (Sp)
p-1 (4)

The “:” denotes the fact that the sequences of

operations (from 0 to p-1) are applied simultaneously

via the p ports. The apex denotes the target port.

F = {(f)n | f C } is the faulty behavior, i.e., the

value (state) stored in the victim cells after applying S. R

= { (r)n | r C } is the sequence of values read on the

aggressor cell when applying S.

As an example FP = < 0w1 : r1 ; 0 / 1 / - > means that

the operations ‘w1’ and ‘r1’ performed on the a-cell,

trough the two ports, when the initial state is 0 for both

a and v cells, causes the victim to flip. No addresses are

specified; therefore this fault can affect each couple of

memory cell.
The terminology of weak and strong faults is used in

representing the MP FFMs as follow:

FP denotes a strong fault represented by its FP,
while wFP denotes the weak fault FP. For example,
RDF denotes a strong Read Destructive Fault, while
wRDF denotes a weak Read Destructive Fault.
wFP1&wFP2…&wFPp: denotes a pPF consisting
of p weak faults; “&” denotes the fact that the p
faults in parallel (i.e., simultaneously) form the p-
port fault (pPF). For example the
wRDF&wRDF&wRDF denote a 3PF based on
three weak RDFs [1]

Several FPs classification rules can be adopted,

based on the number of memory operations (m) needed

to sensitize the FP (e.g., static when m = 1 or dynamic

fault elsewhere); or based on the number of memory

cells (#FC) involved by the FP (e.g., single-cell where

#FC = 1 or n-cells fault, elsewhere) [12].

3.1. Multi Port Constraints

As discussed in the previous section, a MP FFM
requires the use of the ports to perform the sensitizing
operations in parallel. Physical constraints impose some
limitations on the set of allowed concurrent memory
operations:

simultaneous write operations are not allowed;
simultaneous read operations are allowed;

simultaneous read and write are allowed. In this
case the write operation has the highest priority and
therefore the read data will be discarded;
simultaneous operations are symmetric: (0w0:r0)
sensitize the same fault as (r0:0w0);

All the above constraints have been validated by
simulation experiments in [1].

4. March Test notation

As pointed out in [13] a so called March Test is

composed of a sequence of March Elments (MEs). A

March Element is a sequence of memory operations

applied on every cell of the memory. The way one

moves from a certain address to the next one is called

address order (AO) and it characterizes each ME. The

address order can be specified resorting to the following

symbols:

‘ ’ : Increasing Address Order (Up AO)

‘ ’ : Decreasing Address Order (Down AO)

‘ ’ : Don’t care address order : it is possible to

use either the up or down AO

Not necessarily an up/down AO means that the ME

starts from the lowest/highest memory address to the

highest/lowest address. One can choose an arbitrary AO

and labeling it as up, without reducing the fault

coverage of a given March Test [14]. The only

constraint is that the down AO must be exactly the

reverse of the Up AO. Hereinafter we denote a March

Test by a ‘{…}’ bracket, and a ME by a ‘(…)’ bracket.

The i-th operation is defined as opi X, where the

address of the target cell is not indicated since already

specified by the address order. The complexity of a

March Test is defined as the number of memory

operations it includes. We can formalize the above

definitions resorting to the following context free

grammar [15]:

Definition 5: A SP March Test is defined as:

MTGsp = (N, , S, P) (5)

where:

N = {MT, ME, AO, OP,D}is the collection of the

nonterminal symbols;

 = {‘0’, ‘1’, ‘w’, ‘r’, ‘,’, ‘(’, ‘)’, ‘{’, ‘}’, ‘ ’,

‘ ’, ‘ ’}is the set of terminal symbols (i.e., the

alphabet) ;

S = MT is the start symbol. S N;

P N (N)* is the set of productions

detailed as follows:

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

'1''0'5)

''''''4)

','''','''''''3)

ME)''OP('')''OP(''2)

}''ME{''1)

D

AO

OPrOPwrwOP

AOAOME

MT

DDDD

As an example consider the follow March Test:

{ (w1) (r1 ,w0) (r0)} (6)

Starting from (5) we can extended it to apply the

operation simultaneously.

Definition 6: A MP March Test is defined as:

MTGmp = (Np, p, Sp, Pp) (7)

where:

Np = N {OPs} is the set of the nonterminal

symbols;

p = {‘:’, ‘-’, ‘n’} is the set of terminal

symbols (i.e., the alphabet). Don’t care ‘-’

denotes that any operation is allowed on the

selected port, and ‘n’ denotes that no operations

are allowed on the selected port;

Sp = S is the start symbol. Sp Np;

Pp Np (Np p)
* is the set of productions

detailed as follows:

'1''0'6)

''''''5)

''''''''5)OPs1

1:''''1:'''':'''':''''4)

',')3

ME)''OP('')''OP(''2)

}''ME{''1)

D

AO

nrw

sOPrsOPwOPsrOPswOPs

OPOPsOPsOP

AOAOME

MT

DD

DDDD

The march test (6) could be extended to MP test

purpose as:

{ (w1 : n) (r1 : - , w0 : r1) (r0 : -)} (8)

This march test has been translated for two port

memories (i.e., only two operations at each time are

applied in parallel).

5. Multi Port Translation

The translation of a single port march test to a

generic p Port march test is feasible under the

constraints presented in Section 2.1.This phase requires

as input the single port march test previously generated,

and the number p of port (Figure 1)

The input march test has to be formatted by the

march test generator phase in order to evidence the

nature of the memory operations (i.e., by labeling each

operations of the march test), that can be clustered in

three categories:

1) Initializing operations : their can be only write

operations;

2) Sensitizing operations : their could be either

write or read operations;

3) Observing operations : their can be only read

operations;

Note that an operation could be, at the same time,

sensitize and observe the fault (i.e., read fault [13]) or

initialize and sensitize the fault (i.e., state fault [13])

This labeling procedure is done by the SP march test

generator, where the information about each operations

(i.e., if an operation is a sensitizing or initializing or

observing) directly from the fault model (Section 3).

This phase corresponds to a set of rewrite rules, since

the single port march test can be consider as a string

accepted by the grammar defined in (5) where each

symbol is a memory operation. Each rewrite rules is

represented by the regular expression formalism [15].

Table 1 shows the rewrite rules, as an example if an

operation is tagged “Sensitizing”, then rule #1 will be

adopted. In case of multiple labelling (i.e. the operation

is labelled both “Sensitizing” and “Observing”); the

operator precedence has been implemented by the order

of rewrite rules.

Table 1 : rewrite rules

Operation Rewrite Rules

1 Sensitizing wd wd : rx: … : rx

rd rd : rd: … : rd

2 Initializing wd wd : n : … : n

3 Observing rd rd : - : … : -

The rule having the highest precedence (#1 table 1)

is that related to sensitizing operations, since we must

add p-1 different operations to apply in parallel to fully

sensitize the fault.

The problem of what kind of added operations (write

or read) is solved by constraints detailed in Section 2.1.

Only simultaneous p read operations are supported or

one write and p-1 read operations are supported.

Therefore rule #1 inserts p-1 read operations. The

expected value to read from the memory cell (x)

depends from the previous memory state.

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

6. Experimental results

This section reports some experimental results

obtained applying the proposed algorithm to

automatically generate March Tests to cover different

sets of faults. We first generate march tests able to cover

3 port FFMs detailed in [5] and here summarized for

sake of readability.

FFMs involving one cell are:

wDRDF&wDRDF&wDRDF : applying three

simultaneous read operations to the v-cell causes the

cell to flip, but returning the correct values.

(Deceptive Read Destructive Fault, DRDF);

wRDF&wRDF&wRDF : applying three

simultaneous read operations to the v-cell causes the

cell to flip, returning the incorrect value. (Read

Destructive Fault, RDF)

FFMs involving two cells are:

wCFds&wCFds&wCFds : applying three

simultaneous operations to the a-cell causes the cell

to flip. (Disturb Coupling Fault, CFds)

wCFds&wDRDF&wDRDF : applying three

simultaneous read operations to the v-cell causes

the cell to flip if the a-cell is in a specific state, but

returning the correct values.

wCFds&wRDF&wRDF : applying three

simultaneous read operations to the v-cell causes

the cell to flip if the a-cell is in a specific state,

returning the incorrect values.

Consider as an example the wCFds&wCFds&wCFds

that is described by 8 FPs in Figure 2.

.//1;::,//0;::,//1;::0

,//0;::0,//1;::1,//0;::1

1

100

xxxxxxdd

dddddd

rrrrrrrrw

rrwrrwrrw

Figure 2 : x {0,1}, d = don’t care

The FFM is fully sensitized by the applications of the

three weak faults on the different memory port. We

generate first the SP march test covering the first FPs

and summarized in Figure 3

.//1;,//0;,//1;0

,//0;0,//1;1,//0;1

1

100

xx rrrw

www

Figure 3 : single port FPs, x {0,1}

The generated SP march test is

{ (w1) (r1,w0) (r0,w1) (r1,w0) (r0,w1) (r1)} (9)

After MP translation (i.e., applying the rewrite rules

Table 1) we obtain:

{ (w1-:-) (r1:r1:r1,w0:r1:r1) (r0:r0:r0,w1:r0:r0) (10)

(r1:r1:r1,w0:r1:r1) (r0:r0:r0,w1:r0:r0) (r1:-:-)}

That is able to cover wCFds&wCFds&wCFds [5].

Table 3 shows the resulting March Tests. For each

march test we report its complexity (length of march

test) and the equivalent march test found in literature,

and the targeted fault list, the last column shows the cpu

time (in second). The algorithm has been implemented

in about 900 lines of C++ code, compiled with gcc

compiler. All the experiments are performed on an

ASUS, AMD 1500Mhz based Laptop with 512 MB of

RAM. Table 2 reports the fault list covered by each

march test. The first four generate march tests have been

already published [5], the last three are unknown, and

#7 (whose complexity is 22n) has the same structure of

march SS [16]. It is able to detect all the static faults

(one and two-cells) extensions for multiple-port

memories. All generated March Tests have been

verified using an ad hoc memory fault simulator [11]

able to validate their correctness w.r.t. the target FP list.

The fault simulator is also used to check the non-

redundancy of each generated March Test.

7. Conclusion

This paper presented a methodology to automatically

generate March Tests for multiple-port memories. A

general model has been used to represent known

memory static faults, and to possibly add new user-

defined faults. The generation process stems from the

generation of SP march tests, then properly translated

into MP march tests by applying a set of rewrite rules.

Experimental results have been presented to prove the

applicability and the efficiency of the proposed

approach. On going activities are focused on the

automatic generation of MP march tests targeting

additional classes of memory fault, including Dynamic

and Linked Faults.

Table 2 : fault list

Fault List

#1
wDRDF&wDRDF&wDRDF

wRDF&wRDF&wRDF

#2 wCFds&wCFds&wCFds

#3
wCFds&wDRDF&wDRDF

wCFds&wRDF&wRDF

#4 All the 3port FFM

#5 All the single cell Static Fault

#6 All the CFds

#7 All static FFMs

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

Table 3 : experimental results

Algorithm
O

(n)

Known

March

Test

CPU

time

(s)

#1

{ (w0:-:-)

(r0:r0:r0,r0:-:-)

(w1:-:-)

(r1:r1:r1,r1:-:-)}

6n 3PF1 0.030

#2

{ (w1-:-)

(r1:r1:r1,w0:r1:r1)

(r0:r0:r0,w1:r0:r0)

(r1:r1:r1,w0:r1:r1)

(r0:r0:r0,w1:r0:r0)

(r1:-:-)}

10n 3PF2a 0.028

#3

{ (w1:-:-)

(r1:r1:r1, r1:-:-,w0:-:-)

(r0:r0:r0, r0:-:-,w1:-:-)

(r1:r1:r1, r1:-:-,w0:-:-)

(r0:r0:r0, r0:-:-,w1:-:-)}

13n 3PF2v 0.210

#4

{ (w1:-:-)

(r1:r1:r1,r1:-:-,w0:r1:r1)

(r0:r0:r0,r0:-:-,w1:r0:r0)

(r1:r1:r1,r1:-:-,w0:r1:r1)

(r0:r0:r0,r0:-:-,w1:r0:r0)

(r1:-:-)}

14n 3PF 0.204

#5

{ (w1:-:-)

(w0:r1:r1)

(r0:r0:r0, w0:r0:r0, r0:-:-)

(w1:r0:r0)

(r1:r1:r1, w1:r1:r1,r1:-:-)}

9n - 0.093

#6

{ (w0-:-)

(r0:r0:r0,w0:r0:r0,w1:r0:r0)

(r1:r1:r1,w1:r1:r1,w0:r1:r1)

(r0:r0:r0,w0:r0:r0,w1:r0:r0)

(r1:r1:r1,w1:r1:r1,w0:r1:r1)

(r0-:-)}

14n - 0,201

#7

{ (w0-:-)

(r0:r0:r0,r0:-:-,w0:r0:r0,r0:-:-

,w1:r0:r0)

(r1:r1:r1,r1:-:-,w1:r1:r1,r1:-:-

,w0:r1:r1)

(r0:r0:r0,r0:-:-,w0:r0:r0,r0:-:-

,w1:r0:r0)

(r1:r1:r1,r1:-:-,w1:r1:r1,r1:-:-

,w0:r1:r1)

(r0:-:-)}

22n - 0.212

8. References

[1] S.Hamdioui, “Testing Multi-Port Memories: Theory and

Practice”

[2] M.J. Raposa, “Dual-Port Static Ram Testing” ITC

1988, IEEE International Test Conference, 1988, pp.

362-368.

[3] T. Matsumara, “An Efficient Test Method for Embedded

Multi-Port RAM with BIST Circuitry” MTDT 1995:

IEEE International Workshop on Memory Technology,

Design and Testing, 1995, pp. 62-67.

[4] K. Chakrabortry P. Mazumder, “New March Test for

Multi-Port RAM Devices”, Journal of Electronic

Testing: Theory and Application , vol 16, 2000, pp. 389-

395.

[5] S. Hamdioui; A.J. Van de Goor; D. Eastwick, M.

Rodgers, “Detecting unique faultsi in multi-port SRAMs”

ATS 2001, 10th IEEE Asian Test Symposium, 2001, pp.

37 -42

[6] A. J. van de Goor, B. Smit, “Generating March Tests

Automatically”, ITC 1994, IEEE International Test

Conference, 1994, pp. 870-877

[7] K. Zarrineh, S. J. Upadhyaya, S. Chakravarty, “A New

Framework for Generating Optimal March Tests for

Memory Arrays”, ITC 1998, IEEE International Test

Conference, 1998, pp. 73-82

[8] D. Niggemeyer, E.M. Rudnick, “Automatic Generation

of Diagnostic Memory Tests Based on Fault

Decomposition and Output Tracing”, IEEE Transactions

on Computers, Volume: 53 , Issue: 9 , Sept. 2004 pp.

1134 – 1146.

[9] A. Benso, S. Di Carlo, G. Di Natale,P. Prinetto, “An

optimal algorithm for the automatic generation of

March tests” DATE 2002, IEEE Design, Automation

and Test in Europe Conference and Exhibition, 2002 pp.

938 -943

[10] A. Benso, A. Bosio, S. Di Carlo, G. Di Natale, P.

Prinetto, “Automatic March Tests Generation for Static

and Dynamic Faults in SRAMs”, ETS 2005, 10th IEEE

European Test Symposium, 2005.

[11] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto,

”Specification and design of a new memory fault

simulator”, ATS 2002, 11th IEEE Asian Test

Symposium, 2002. pp. 92 – 97.

[12] A. J. van de Goor, Z. Al-Ars, “Functional Memory

Faults: A Formal Notation and a Taxonomy”, VTS

2000, 18th IEEE VLSI Test Symposium, 2000, pp. 281-

289.

[13] A. J. van de Goor, “Testing Semiconductor Memories:

theory and practice”, Wiley, Chichester (UK), 1991

[14] D. Niggemeyer, M. Redeker, J. Otterstedt, “Integration

of non-classical faults in standard March tests”, MTDT

1998, IEEE International Workshop on Memory

Technology, Design and Testing, 1998, pp. 91 -96

[15] A.V. Aho, R. Sethi, J. D. Ullman, “Compilers:

Principles, Techniques and Tools”, AddisonWesley,

1986.

[16] S. Hamdioui, Ad J. van de Goor, M. Rodgers, “March

SS: A Test for All Static Simple RAM Faults”, MTDT

2002: IEEE International Workshop on Memory

Technology, Design and Testing, 2002 pp. 95 – 100

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

