
19 July 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

AFSM-based deterministic hardware TPG / Benso, Alfredo; DI CARLO, Stefano; DI NATALE, Giorgio; Prinetto, Paolo
Ernesto. - STAMPA. - (2005), pp. 178-181. (Intervento presentato al  convegno IEEE 8th Workshop on Design and
Diagnostics of Electronic Circuits and Systems (DDECS) tenutosi a Sopron, HU nel 13-16 Apr. 2005).

Original

AFSM-based deterministic hardware TPG

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499954 since:

IEEE Computer Society



AFSM-BASED DETERMINISTIC HARDWARE TPG 

Alfredo BENSO, Stefano DI CARLO, Giorgio DI NATALE , Paolo PRINETTO 
Politecnico di Torino 

Corso Duca degli Abruzzi 24 – 10129 - Torino (Italy) 
{alfredo.benso, stefano.dicarlo, giorgio.dinatale, paolo.prinetto}@polito.it 

Abstract. This paper proposes a new approach for designing a cost-effective, 
on-chip, hardware pattern generator of deterministic test sequences. Given a 
pre-computed test pattern (obtained by an ATPG tool) with predetermined fault 
coverage, a hardware Test Pattern Generator (TPG) based on Autonomous 
Finite State Machines (AFSM) structure is synthesized to generate it. This new 
approach exploits “don’t care” bits of the deterministic test patterns to lower 
area overhead of the TPG. Simulations using benchmark circuits show that the 
hardware components cost is considerably less when compared with alternative 
solutions. 

1 Introduction
Several approaches have been proposed in literature to build TPGs in BIST 

architectures: (i) exhaustive testing, where a simple counter is used to generate exhaustively 
all combinations of test patterns [1]; (ii) pseudo-random testing that exploits Linear 
Feedback Shift Registers (LFSRs) [2], or linear Cellular Automata (CAs) [3] to generate 
pseudo random patterns; (iii) hardware generators of deterministic test sequences, where a 
set of pre-computed test patterns, generated by an Automatic Test Pattern Generator 
(ATPG), are internally generated by ad-hoc logic [4], or by CA-based structures [5] [6]; 
and (iv) mixed-mode test pattern generation, that combines the test features of the pseudo-
random and deterministic generation approaches [7] [8]. 

This paper proposes a new approach for designing a cost-effective, on-chip hardware 
pattern generator of deterministic test sequences. Given pre-computed test patterns 
(computed by an ATPG tool) with predetermined fault coverage, a hardware Test Pattern 
Generator based on Autonomous Finite State Machines (AFSM) is synthesized to generate 
the given test set. This new approach exploits the experimental observation that not all bits 
of deterministic test patterns generated by ATPG are specified. In many cases, deterministic 
test patterns consist of a large number of “don't care” bits and a small number of care bits. 
Studies on compacted test sets showed a “care” bit density of 1% -5% [9]. 

2 Algorithm description 
The basic idea is to use an Autonomous Synchronous Finite-State Moore Machine as 

shown in Figure 1a. If we assume no test vectors are identical, then there is a one-to-one 
correspondence between states and outputs (if this condition is not true, it is however 

8 IEEE Workshop on
Design and Diagnostics of Electronic Circuits and Systems

Sopron, Hungary, April 13 - 16, 2005

th

178



possible to implement a different machine able to generate the same test vectors, adding 
extra flip-flops). In this case the Moore machine can be simplified as shown in figure 1b. 

Given a deterministic binary sequence, our goal is to find an AFSM (that we call 
AFSM_TPG) that evolves exactly through that 
sequence. Therefore the problem is to design a 
combinational circuit (the  function) implementing 
the correct state transitions function.
The deterministic sequence can be represented using a 
matrix M(r,c) where r and c represent the row and the 
column of the matrix respectively, and M(r,c) 
represents the bit that has to be generated in the rth

clock cycle by the cth flip-flop of the AFSM_TPG.
The goal of the proposed algorithm is therefore to 

compute M(r,c) as a function of  M(r-1, “some other c”). 
To do so, we first need to map the concept of collision on the matrix M; we say that there is 
a collision in column c when there are two rows r1 and r2 of the matrix M so that: 

),12(),11(
),2(),1(

,2/1
crMcrM

crMcrM
crr

We start from an AFSM_TPG in which each cell depends only on itself. A new dependency 
is inserted whenever a collision is detected. If adding a new dependency does not achieve 
the solution a new column is inserted in the matrix M. Purpose of the algorithm is to 
minimize the number of dependencies and the number of additional columns. To solve a 
collision, the algorithm goes through the following steps: 

 column C { 
  Classification of transitions 
  Don’t Care Substitution 
  If (Collision detected) { 
   Don’t Care Substitution 
   Collision Matrix 
   While Not (SetCovering) { 
    Add Column 
   } 
  } 
}

We detail each routine, considering C as the column under elaboration: 
Classification of transitions: Since a collision is detected whenever there is a pair of 
rows in which the matrix has a transition from 0 to 0 (or 1 to 0) and another row in 
which there is a transition form 0 to 1 (or 1 to 1), the algorithm classifies each row of the 
matrix based on the performed boolean transition (Transitions Classes). For each 
transition we define a transition class including all the rows subject to that transition 
(class Z0: transition from 0 to 0; class Z1: from 0 to 1; class O0: from 1 to 0; class O1:
from 1 to 1).  
Collisions detection: Each possible pair of rows from classes Z0 and Z1 and from 
classes O0 and O1 generates a collision. If no collisions are present in the system, the 
AFSM_TPG is able to generate the sequence of bits in column c without any other 
dependency.
Collisions matrix: All the collisions are stored in a matrix called Collision Matrix T. 
Each row of this matrix represents one of the possible collisions [r1/r2,C] whereas the 
columns Cx are those of the Matrix M (except C) that could be used as new 

Flip-Flops

Outputs

Flip-Flops

Outputs

a) Moore AFSM b) Moore AFSM without function

Figure 1: Moore AFSM

179



dependencies for column C. Each element of the matrix (T) is a boolean value whose 
value is ‘true’ if column Cx in the Matrix M assumes two different values in the 
collision rows (r1-r2). 
Set Covering: It is used to find the minimum number of columns to be used as new 
dependencies in order to remove all the collisions. When the problem has no solution, a 
new “dummy” column is added to the original matrix M. In this case the values of the 
bits of the new column are set to “don’t care” except for the two bits corresponding to 
the colliding rows, which are set to ‘0’ and ‘1’, respectively. 
Don’t care substitution: The “don’t care substitution” is performed in two situations: 
1) Each time a new column is considered by the algorithm, all the “don’t cares” 

present in the column are set in order to minimize the product of the cardinalities of 
classes Z0 and Z1, and of classes O0 and O1. 

2) When a collision is detected between two rows, if, on the same row, it is possible to 
find two “don’t cares”, setting one to ‘0’ and the other to ‘1’ will assure that the set 
covering will find a solution to resolve this collision. 

3 Experimental results 
In our experiments we used ISCAS-85 data and obtained test vectors sequences using 

the ATPG tool1 from Synopsys. The proposed algorithm is implemented in C language and 
we run the experiments on a Intel Pentium IV with 256 Megs of RAM. 

We compare our results with those presented in [5] and [6] that are pure deterministic 
methods as our AFSM_TPG method. We calculated the size of the resulting AFSM_TPG 
using the same equations defined by the authors in [5] and [6]: 

Area = (# of inputs) * (# of product terms) * (# of outputs) 
In our experiments, the total area is the sum of the areas of the  function of each 

column. We computed the area of each  function as: 
 Area = (# of dependencies) * (# of product terms of the  Truth Table) * (1) 

Table 1 shows the results of our experiments, whereas Table 2 compares our results 
with the ones presented in [5] and [6].

Table 1: Results of our experiments 

CUT
Execution 
Time

Rows 
(Patterns) Columns

Added 
Columns % Don’t Care Size 

c432 462m 90 36 0 57,22222 9776 
c499 452m 67 41 0 16,01747 3727 
c880 80m 53 60 0 58,27044 7500 
c1355 634m 81 41 0 7,768744 9007 
c1908 31m 68 33 0 41,39929 6324 
c3540 243m 180 50 1 57,86667 29698 
c5315 128m 90 178 50 73,05243 41315 
c6288 3m 59 32 0 4,502119 5348 

1 In order to obtain “don’t care” bits in the generated sequence, the command used with this tool is 
“testgen -autotime -norandomfill -combcompact”.

180



Table 2: Comparison between our results and [5] and [6] 

CUT Size Size [6] Size [5] Red. [6] Red. [5] 
c432 9776 18668 29376 48% 67% 
c499 3727 8457 37720 56% 90% 
c880 7500 31708 47520 77% 84% 
c1355 9007 26842 52808 67% 83% 
c1908 6324 53791 48576 88% 87% 
c3540 29698 115948 252000 74% 88% 
c5315 41315 288007 3262384 86% 99% 
c6288 5348 6797 9472 21% 44% 

All the benchmarks show that the proposed approach is able to produce hardware TPGs 
considerably smaller than the ones presented in [5] and [6]. 

4 Conclusions
Despite the excellent results obtained so far, the proposed approach can still benefit 

from many other possible optimizations that we are investigating. Among them the authors 
would like to mention: 

Trade-off between number of dependencies and number of additional columns. In 
general, adding a dependency will add combinational logic, whereas adding a 
column will add a flip-flop. It is not necessarily true that one addition is better than 
the other. We are therefore exploiting the performances of the algorithm when 
constraining the number of additional columns on the number of dependencies. 
A lot of work can still be done in the optimization of the “don’t care” substitution 
routine 
Experimental data show reasonable run time for the tiny benchmarks. To scales with 
large industrial circuits with large number of scan cells a mixed-mode method has to 
be investigated 

5 References 
 [1] E. J. McCluskey, “Built-In Verification Test”, Digest, 1982, IEEE Test Conference, pp.183-190, Nov. 

1982 
[2] M. Abramovici, M. A. Breuer, A. D. Friedman, “Digital Systems Testing and Testable Design”; 

Computer Science Press, New York, 1990 
[3] P. D. Hortsenius, “Cellular automata based signature analysis for Built-In Self-Test”, IEEE Trans. 

Computer, 1990, Vol. 39, No. 10, pp. 1273-1283 
[4] R. Dandapani, J. H. Patel, J. A. Abrham, “Design of Test Pattern Generator for Built-In Self-Test”, 

IEEE International Test Conference, 1984, pp.315-319 
[5] S. Boubezari, B. Kaminska, “A deterministic Built-In Self-Test Generator based on Cellular Automata 

Structures”, IEEE Trans. Computer, 1995, Vol. 44, No. 6, June 1995, pp.805-816 
[6] M. Guler, H. Kilic, “Built-In Self-Test Generator Desing using Nonuniform Cellular Automata 

Model”, IEE Proceedings of Circuits Devices Systems, Vol. 145, No. 3, June 1998 
[7] M. Karkala, N. Touba, H.J. Wunderlich, “Special ATPG to Correlate Test Patterns for Low-Overhead 

Mixed-Mode BIST”, IEEE 7th. Asian Test Symposium, pp. 492, December 1998 
[8] F. Brglez, C. Gloster, G. Kedem, “Hardware-Based Weighted Random Pattern Generation for 

Boundary Scan“, IEEE International Test Conference, 1989, pp. 264-274 
[9] T. Hiraide, K. O. Boateng, H. Konishi, K. Itaya, M. Emori, H. Yamanaka, Y. Mochiyama, “BIST-

Aided Scan Test – A New Method for Test Cost Reduction”, Proc. IEEE VLSI Test Symposium, 2003, 
pp. 359 

181


