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Abstract 
This paper presents an innovative algorithm for the 

automatic generation of March Tests. The proposed 
approach is able to generate an optimal March Test for 
an unconstrained set of memory faults in very low 
computation time. 

1. Introduction 
Among the different types of algorithms proposed to 

test random access memories (RAM), March Tests have 
proven to be faster, simpler, regularly structured and 
linear in complexity. A March Test consists of a sequence 
of March Elements, each composed by a sequence of 
basic read/write operations to be performed on each cell of 
the memory, in either ascending or descending order, 
before proceeding to the next memory cell. The 
complexity of a March Test is given by the number of 
memory operations in all March Elements performed on 
each memory cell [1]. 

March Tests are able to cover a wide range of memory 
faults such as Stuck-at-Faults, Transition Faults, Stuck-
Open Faults, Coupling Faults, Address Fault and Data 
Retention Faults. Different March Tests of variable 
complexity have been proposed in literature, each 
optimally covering a different set of memory faults. All of 
them have been manually generated, a task that always 
requires a lot of time, expertise, that do not always allows 
to obtain an optimal solution, and that sometimes do not 
succeeds in covering particularly complex memory faults. 

This paper presents a methodology to automatically 
generate March Tests. A general representation is used to 
model known memory faults, and to possibly add new 
user-defined faults.  

With respect to previously proposed approaches, 
which exhaustively generate all the possible March Tests 
and then select the optimal one, our approach allows 
generating the optimal March Tests in a very low 
computation time without exhaustive searches. In 
particular, the automatic March Test generation process is 
performed in the following steps: (i) the target memory 
fault list is modeled into a set of FSMs representing the 
faulty memory behaviors; (ii) a weighted graph is 
generated, which represent all the possible test patterns 
able to cover each target fault model; (iii) an optimal test 

sequence is generated finding an optimal path connecting 
all the nodes of the graph; (iv) from the so defined optimal 
sequence, a min imal March Test is derived applying a set 
of linear complexity transformations. 

The paper is structured as follows: Section 2 presents 
the model used to represent the good and fault memory 
behavior. Section 3 summarizes the state of the art, 
whereas Section 4 details all the steps of the automatic 
March Test generation process. Section 5 analyzes a 
possible optimization of the algorithm, and Section 6 
presents experimental results that proof the efficiency of 
our approach. Section 7 summarizes the main 
contributions and future developments of this research. 

2. State of the Art 
The problem of the automatic generation of March 

Tests has been already faced and several publications can 
be found in literature. [2] [3] [4] present an algorithm for 
March Test Generation exploiting a transition tree. The 
transition tree is generated in such a way that each path 
from the root node to a leaf represents a March Test. The 
March Test able to address the selected fault list is 
searched into the tree. The main problem of this approach 
is that the transition tree is unbounded. In order to limit 
the size of the tree, an upper bound on the number of 
nodes in a path is used. This can cause a high number of 
reiterations to find a solution making the algorithm 
inefficient and time consuming. Furthermore, when 
dealing with undetectable faults, the computation time 
becomes infinite. In addition, this method performs an 
exhaustive search to find the shortest path on the transition 
tree. As the size of the transition tree increases, the 
algorithm becomes more and more inefficient. 

In [5] the authors present a branch and bound method 
that limits the search process to the parts of the tree where 
a solution exists and therefore a solution will be found 
much faster and more efficiently.   

An approach able to cover additional faults is 
presented in [6]. With respect to the previously mentioned 
works, it is able to deal with read disturb faults and 
destructive read faults. It mainly targets the diagnosis of 
memory faults and utilizes a fault description that allows 
modeling all possible single cell and two cells faults that 
occurs in memory arrays. This approach still uses 
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exhaustive search and is affected by the same problems of 
[2] [3] and [4]. 

3. Memory Model 
The problem of the automatic generation of March 

Tests requires, first of all, the definition of a formal model 
able to represent the behavior of both the good and the 
faulty memory. In [7] and [8] the problem has been solved 
proposing a memory behavioral model based on Finite 
State Machines (FSM). An n one-bit cells memory can be 
represented using a deterministic Mealy Automata: 

),,,,( λδYXQM =  (f.2.1) 
where: 

• { }nQ ),1,0( −=  is the set of the possible memory 
states where the symbol ( )− represents the value of 
a non initialized memory cell; 

• { } { }TniwwrX iii ∪−≤≤= 10|,, 10  is the input alphabet. 

This alphabet is composed by all the possible 
memory operations. In particular:  
− ir corresponds to a read operation performed on 

the cell i; 
− i

dw corresponds to a write operation of the value 

{ }1,0∈d  performed on the cell i; 

− T corresponds to a wait operation for a defined 
period of time. This additional element is needed 
to deal with Data Retention Faults [2]. 

• { }−= ,1,0Y  is the output alphabet ; 

• QXQ a×:δ is the state transition function; 

• YXQ a×:λ is the output function. 
Using the proposed model, a fault free two cells RAM 

can be represented by the FSM shown in Figure 1, 
conventionally named M0 in the reminder of this paper. In 
M0, the letters i and j are used to identify the first and the 
second cell, respectively. 
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Figure 1: M0 FSM representing a fault free RAM 

 The proposed model is not manageable when used to 
represent large memories; nevertheless, the model of a 

two-cell me mory is general enough to model memory 
faults. Therefore, the behavior of a faulty memory can be 
modeled using a deterministic Mealy Automata: 

),,,,( iiiii YXQM λδ=  (f.2.2) 

where: 
• QQi ⊆ is the set of states; 

• YYi ⊆  is the output alphabet; 

• iii QXQ a×:δ  is the state transition function 

• iii YXQ a×:λ  is the output function 

The set of states used to represent a faulty memory is a 
subset of the whole set Q  (see (f.2.1)) since only the cells 
involved in the fault should be represented. This 
consideration makes possible the use of the proposed 
model for very large memories as well. Moreover, the 
given representation for faulty memories is general 
enough to be used to model most of the known faults. 

Considering as an example the Idempotent Coupling 
Fault 0,↑  [9] (where the notation FS , denotes a fault 

involving two cells; S describes the condition of the first 
cell to sensitize the fault in the second cell denoted by F), 
we obtain the FSM shown in Figure 2. From now on, we 
will assume that the address of cell i is less then the 
address of cell j. 
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Figure 2: M1: 0,↑ Idempotent Coupling Fault 

As previously mentioned, since the fault involves two 
cells only, the cardinality of Qi is four. The difference 
between the M0 and M1 machine is in the δ function, as 
pointed out by the two-bolded edge shown in Figure 2. 

Looking at the M1 machine we can split each fault into 
a set of Basic Fault Effect (BFE) [5] [6]. A BFE can be 
described by a Mi FSM with a δi function that differs from 
δ0 by one transition only, or with a λi function that differs 
from λ0 by one output value only. Considering the 
example proposed in Figure 2, it is possible to identify 
two different BFEs modeled by the two FSM shown in 
Figure 3. For the sake of simplicity only the relevant 
edges are represented. 
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Figure 3: BFE model for 0,↑ Coupling Fault  

Each BFE can be covered generating a Test Pattern 
(TP) defined as a triplet: 

),,( OEITP =  (f.2.3) 
where: 

• { }10|)1,0( −≤≤= nkI k  is the initialization state; 

• { }XeeE ∈= |  is the operation needed to excite the 
BFE; 

• { }10),1,0(| −≤≤∈= nkdrO k
d  is the operation 

needed to observe the fault effect. We introduce 
here the concept of Read and Verify operation. The 
notation rd

i means “read the content of the cell i and 
verify that its value is equal to d”. 

For the proposed example the two BFEs can be tested 
by the following two TPs: 

• ( )ji rwTP 111 ,,01=  

• ( )ij rwTP 112 ,,10=  

4. March Test Generation Algorithm 
In this section the proposed approach will be 

presented. It exploits the possibility of automatically 
generating March Tests without exhaustive searches. The 
algorithm, starting from an unconstrained list of target 
BFEs, generates a non-redundant march test that covers all 
of them. 

In a first phase, the algorithm analyzes the set of test 
patterns needed to cover each target BFE, and generates a 
weighted graph named Test Pattern Graph (TPG) . Each 
TPG node is associated to a TP. The graph is strongly 
connected, i.e. each node is connected to all the others. 

The weight  of each edge represents the number of 
memory operations needed to reach the initialization state 
of the target node (ST), starting from the observation state 
of the source node (SS). In a formal way it can be defined 
as [10]: 

weight = hamming-distance (SS, ST) (f.4.1) 
Lets consider as an example the 

{ }0,,1, ↑↑=FaultList  [9]. Using the model proposed in 

Section 2 we obtain four different BFEs, respectively 
tested by the following set of TPs: 

• ( )ji rwTP 111 ,,01=  

• ( )ij rwTP 112 ,,10=  

• ( )ji rwTP 013 ,,00=  

• ( )ij rwTP 014 ,,00=  

The proposed set of test patterns generates the TPG 
shown in Figure 4. 

TP1 1

1

TP4 TP2

TP3

0

2
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2

1

1

2
2

2

2

 
Figure 4: TPG for { }0,,1, ↑↑  

Starting from the TPG the algorithm extracts a so-
called Global Test Sequence (GTS). A GTS is a set of 
memory operations able to detect all the target BFEs. 
Different GTSs can be obtained by simply concatenating 
all the different TPs in multiple ways, i.e., to make 
different visits of the TPG. Since the TPG is strongly 
connected, the total number of possible GTS can be 
calculated as follow: 

!# VGTS =   (f.4.2) 
where V is the number of nodes in the TPG.  

In a fault-list containing a large amount of BFEs, the 
space of all the possible GTS becomes unmanageable. It is 
therefore necessary to identify a particular subset of GTSs 
able to generate non-redundant March Tests. A possible 
solution is to consider TPG visits with minimum weight 
only. Thanks to the function used to weight the TPG edges 
(see (f.4.1)), these visits generate GTSs with minimum 
number of test operation. Considering two nodes 
connected by a 0 weight edge, the test sequences obtained 
by their concatenation does not need the initialization part 
of the second TP. 

The use of GTSs with minimum number of operation 
seems a good choice since there is a strict correlation 
between the GTS length and the March test complexity. 

The generation of minimum length GTSs is a typical 
instance of the Asymmetric Traveling Salesman Problem 
(ATSP)[11]. The ATSP is probably the most well known 
member of the wider field of the combinatorial 
optimization problem. In a general instance of the ATSP, 
one is given V nodes and a matrix di,j  storing the distance 
or cost function  to go from node i to node j . A “tour” 
consists of a list of V nodes,  (tour[i]  ) where each node 
appears once and only once . In the ATSP, the problem is 
to find the tour with the minimum length, where the length 
is defined to be the sum of the lengths along each step of 
the tour, 
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[ ] [ ]∑
−

=
+=

1

0
1,

V

k
ktourktourdlength  (f.4.3) 

and tour[V]  is  identified with tour[0] to make it periodic. 
The main difference with respect to our problem is that 

the solution of the ATSP is a cycle whereas a GTS is 
identified by a non-cyclic path (i.e., the first and last node 
do not need to be the same). To solve the problem we 
introduced two dummy nodes used to close the cycle. 
Despite the ATSP is a NP-hard problem, several 
algorithms able to give an exact solution with very low 
computation time in problems with low number of nodes 
(50 nodes), can be found in literature [12]. 

The GTSs obtained by solving the ATSP problem are 
able to test all the addressed BFE but are not yet March 
Tests. A March Test is a particular Test Sequence 
respecting a set of conditions [1]. It is therefore necessary 
to apply a set of modification to transform a GTS into an 
equivalent March Test. 

Before applying the modifications (defined in Section 
4.1), it is possible to perform a further optimization. We 
observed that GTS starting with a “00” or “11” 
initialization state allow to obtain March Tests of the 
lowest possible complexity. This optimization, which 
allows reaching a minimal solution considering all the 
minimum length GTSs, can be expressed as an additional 
constraint in the ATSP: 

[ ] [ ]

[ ] { }( ),...,...11,00
..

0

1

0
1,

=

= ∑
−

=
+

tour

V

k
ktourktour

TP
ts

dlength

 (f.4.4) 

Looking at the example of Figure 4, a possible ATSP 
solution is the following GTS: 

jiijjiijjiji rwrwwwrwrwwwGTS 110100110100 ,,,,,,,,,,,=  
The process of March Test generation from a GTS 

passes through three different steps: 
• GTS reordering 

• GTS minimization 
• March Test Generation 
Each step corresponds to a different set of Rewrite 

Rules [13]. Since a GTS can be considered as a string 
where each symbol is a memory operation, the rewrite 
rules can be effectively represented resorting to the 
Regular Expression formalism [14]. All the possible 
memory operations are defined by the X alphabet defined 
in (f.2.1).  

For the sake of simplicity we define two subsets of 
instructions:  

• { }jdi
d www ,=  is the set of possible memory write 

operations; 
• { }jd

i
d rrr ,=  is the set of possible memory read 

operations. 
The regular expression forma lism is extended 

introducing three new operators: 
• End Symbol Operator: ŝ marks the symbol s as not 

furtherly modifiable (terminal symbol); 
• Red Operator: [ ]Rs  marks the symbol s with the red 

color; 
• Blue Operator: [ ]Bs marks the symbol s with the 

blue color. 
The use of colored symbols is useful during the 

March Test generation phase to identify the 
boundaries of the different March Elements. The next 
subsections summarize the rewrite rules used during 
the three different phases.   

4.1 GTS Reordering 
The reordering phase reorders the GTS memory 

instructions taking into account the constraints needed to 
obtain a March Test [1]. In this phase each modification is 
defined by a Pattern  and by a Rewrite Rule (see Table 1). 
The pattern is a regular expression that identifies all the 
strings on which the rewrite rule must be applied. The 
reordering process stops when all the GTS symbols are 
modified into terminal ones. 

 

Pattern Rewrite Rule 

( ) ( )∗∗ rwwwrw j
d

i
d |ˆ|ˆ  j

d
i
d

Mj
d

i
d wwww ˆˆ1→  

( ) ( )∗∗ rwwwrw i
d

i
d |ˆ|ˆ  i

d
i
d

Mi
d

i
d wwww ˆ2→  

( ) ( )∗∗ rwwwrw j
d

i
d |ˆ|ˆ  j

d
i
d

Mj
d

i
d wwww ˆ3→  

( ) ( )∗∗∗∗ rwrwwwwwrrw i
d

s

j
d

j
d

s

j
d

j
d

i
d

i
d |)|()ˆ|ˆ|ˆ(ˆˆ|ˆ

21
4342144 344 21

 [ ] [ ]BR
i

d
i

d
Mi

d
i

d ssrrrssr 21
4

21 ˆˆˆ →  

Table 1: Reordering Rewrite Rules 
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Appling the reordering rules on the GTS in Section 4 
we obtain the following reordered sequence: 

[ ] [ ] [ ] [ ] ji
B

j
R

jjiij
B

i
R

iji
R rwwrwwrwwrwwGTS 111000111000 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ=  

4.2 GTS minimization 
The minimization phase deletes redundant 

subsequences in order to reduce the sequence to the 
minimum set of absolutely necessary operations only. The 
rewrite rules applied in this phase consider the GTS 
starting from left to right (see Table 2). This phase is 
repeated until no further minimization can be applied. In 
this context the $ symbol is used to denote the end of the 
GTS and the color of the symbols (see Section 4) does not 
affect the application of the rules. 

 
Rewrite Rules 
i
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d
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i
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d
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d
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j
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i
d

i
d

i
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d

i
d

i
d

i
d

bisRj
d

j
d

i
d

i
d

i
d rwwrwrwwr  →  

Table 2: Modification Rewrite Rules 

Appling the minimization rewrite rules on the 
reordered GTSR (see Section 4.1) we obtain the follo wing 
minimal sequence: 

[ ] [ ] [ ] [ ] j
B

j
R

jii
B

i
R

ii
M rwrwrwrwGTS 11001100 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ=  

4.3 March Test Generation 
This last phase uses the minimized GTS to generate a 

March Test. The input sequences are analyzed from left to 
right and the March Elements are generated according to 
the following rules: 

• Rule 1: subsequences identified by 
)ˆ|ˆ)(ˆ|ˆ( j

d
j

d
j

d
i
d rwrw regular expression close a March 

Element and open a new one; 
• Rule 2: subsequences identified by 

[ ] [ ]( )∗BR wr ˆˆ regular expression are joined in a single 
March Element despite they are executed on i or on 
j. The last blue marked operation closes the March 
Element. 

The addressing order is generated using the 
following rules: 

• Rule 3: March Elements starting with colored 
operation performed on i cells have addressing 
order ⇑; 

• Rule 4: March Elements starting with colored 
operation performed on j cells have addressing 
order ⇓; 

• Rule 5: March Elements starting with non-colored 
operations have addressing order c . 

Applying the generation rules on the GTSM (see 
Section 4.2) we obtain the following 8n non-
redundant March Test:  

11001100 rwrwrwrwM ⇓⇓⇑⇑⇑=  

5. BFEs equivalence 
In some cases it is possible to obtain a BFE modeling a 

fault already covered by another BFE. A typical case is 
the b,↑ Inversion Coupling Fault [1]. It can be split into 

two BFEs tested by the following TPs: 
• ( )ji rwTP 011 ,,00=  

• ( )ji rwTP 112 ,,01=  
Although two TPs are generated, only one of them is 

necessary to cover the fault. Therefore, the ATSP problem 
must be modified to take into account only the necessary 
test patterns. This goal can be achieved grouping the TPG 
nodes into equivalence classes ( iC ). 

In case of a TPG with k equivalence classes, using the 
iC notation to indicate the cardinality of the iC class it is 

possible to generate ∏
−

=

=
1

0

k

i
iCE  different TPG. On each one 

of the obtained graphs the ATSP problem must be solved 
identifying E possible GTS. The minimum length GTS is 
considered as the best one. 

6. Experimental Results 
This section reports some experimental results 

obtained applying the proposed algorithm to automatically 
generate March Tests to cover different sets of faults. 

The algorithm has been implemented in about 5000 
lines of C code. The ATSP has been solved using a 
Fortran code able to give exact solutions to the problem 
[12]. For each generated March Test, we report the 
computation time needed to generate it, its complexity, 
and the complexity of the equivalent March Test found in 
literature. All the experiments are performed on a 
Compaq  Presario 17XL370, PIII 650Mhz based Laptop 
with 128 MB of RAM. The source code has been 
compiled with the gcc C compiler and the g77 Fortran 
compiler [15]. 

Table 3 shows the March tests obtained to cover some 
combinations of Stuck-At Faults (SAF), Transition Faults 
(TF), Address Decoder Faults (ADF), and Inversion and 
Idempotent Coupling Faults (CFin and CFid).  All 
generated March Tests have been verified using an ad hoc 
memory fault simulator able to validate their correctness 
w.r.t. the target BFE list. The fault simulator is also used 
to check the non-redundancy of each generated March 
Test. 
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Fault List 

SAF TF ADF CFin CFid 

Generated March Tests and their 
complexity 

CPU 
Time(s) 

Equivalent 
Known March 

Test 
•     { }0011 rwrw ⇓⇓⇑  4n 0.49 MATS (4n) 
•  •   { }10011 wrwrw ⇓⇑⇑  5n 0.53 MATS+ (5n) 
• • •   { }001100 rwrwrw ⇑⇓⇑⇑  6n 0.61 MATS++ (6n) 

• • • •  { }100110 wrwrww ⇑⇓⇓⇑  6n 0.69 MarchX (6n) 

• • • • • { }1100110011 rwrwrwrwrw ⇓⇓⇓⇑⇑⇑  10n 0.85 March C- (10n) 
   •  { }100100 rwwrw ⇓⇑⇑  5n 0.57 Not Found 

Table 3: Experimental Results 

Each March test is split into elementary blocks. An 
elementary block is a portion of March Test composed by 
a fault excitation and a fault observation. These blocks are 
used to build a Coverage Matrix (CM). The row of the 
matrix represents the elementary blocks whereas the 
columns the target BFEs. A matrix cell is set to the value 
one if the corresponding elementary block is able to test 
the BFE represented by the column, otherwise is set to 
zero. A March Test is able to detect all the target BFEs if 
for each CF column exist at least one row containing a cell 
set to one. The March Test is non-redundant if all the 
matrix rows are needed to cover the target BFE.  

This is a typical instance of the Set Covering problem 
applied on the CM matrix. The Set Covering finds the 
minimum number of CM rows needed to cover all the CM 
columns. If this number corresponds with the total number 
of rows, then the March Test can be considered non-
redundant. 

This approach has been successfully applied on all the 
March Tests shown in Table 1 and redundant blocks have 
never been found. 

7. Conclusions  
This paper presented a methodology to automatically 

generate March Tests. A general model has been used to 
represent known memory faults, and to possibly add new 
user-defined faults. With respect to previously presented 
approaches our methodology allows generating the 
optimal March Tests in a very low computation time, and 
without exhaustive searches.  

The generation process is based on four steps: memory 
fault modeling, TPG generation, minimum length GTS 
search, and the application of a set of rewrite rules to 
transform the minimum length GTS in a March Test. 
Some preliminary experimental results have been 
presented in order to demonstrate the applicability and 
efficiency of the proposed approach. 

On going activities are focused on the extension of the 
model to multi-port memory faults, and to more complex 
user-defined fault models. 
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