
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An optimal algorithm for the automatic generation of March tests / Benso, Alfredo; DI CARLO, Stefano; DI NATALE,
Giorgio; Prinetto, Paolo Ernesto. - STAMPA. - (2002), pp. 938-943. (Intervento presentato al convegno Design,
Automation and Test in Europe, Conference and Exhibition (DATE) tenutosi a Paris, FR nel 4-8 Mar. 2002)
[10.1109/DATE.2002.998412].

Original

An optimal algorithm for the automatic generation of March tests

Publisher:

Published
DOI:10.1109/DATE.2002.998412

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499917 since:

IEEE Computer Society

An Optimal Algorithm for the Automatic Generation of March Tests

A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto
Politecnico di Torino

Dipartimento di Automatica e Informatica Torino, Italy
E-mail: {benso,dicarlo,dinatale,prinetto}@polito.it

Web: www.testgroup.polito.it

Abstract
This paper presents an innovative algorithm for the

automatic generation of March Tests. The proposed
approach is able to generate an optimal March Test for
an unconstrained set of memory faults in very low
computation time.

1. Introduction
Among the different types of algorithms proposed to

test random access memories (RAM), March Tests have
proven to be faster, simpler, regularly structured and
linear in complexity. A March Test consists of a sequence
of March Elements, each composed by a sequence of
basic read/write operations to be performed on each cell of
the memory, in either ascending or descending order,
before proceeding to the next memory cell. The
complexity of a March Test is given by the number of
memory operations in all March Elements performed on
each memory cell [1].

March Tests are able to cover a wide range of memory
faults such as Stuck-at-Faults, Transition Faults, Stuck-
Open Faults, Coupling Faults, Address Fault and Data
Retention Faults. Different March Tests of variable
complexity have been proposed in literature, each
optimally covering a different set of memory faults. All of
them have been manually generated, a task that always
requires a lot of time, expertise, that do not always allows
to obtain an optimal solution, and that sometimes do not
succeeds in covering particularly complex memory faults.

This paper presents a methodology to automatically
generate March Tests. A general representation is used to
model known memory faults, and to possibly add new
user-defined faults.

With respect to previously proposed approaches,
which exhaustively generate all the possible March Tests
and then select the optimal one, our approach allows
generating the optimal March Tests in a very low
computation time without exhaustive searches. In
particular, the automatic March Test generation process is
performed in the following steps: (i) the target memory
fault list is modeled into a set of FSMs representing the
faulty memory behaviors; (ii) a weighted graph is
generated, which represent all the possible test patterns
able to cover each target fault model; (iii) an optimal test

sequence is generated finding an optimal path connecting
all the nodes of the graph; (iv) from the so defined optimal
sequence, a min imal March Test is derived applying a set
of linear complexity transformations.

The paper is structured as follows: Section 2 presents
the model used to represent the good and fault memory
behavior. Section 3 summarizes the state of the art,
whereas Section 4 details all the steps of the automatic
March Test generation process. Section 5 analyzes a
possible optimization of the algorithm, and Section 6
presents experimental results that proof the efficiency of
our approach. Section 7 summarizes the main
contributions and future developments of this research.

2. State of the Art
The problem of the automatic generation of March

Tests has been already faced and several publications can
be found in literature. [2] [3] [4] present an algorithm for
March Test Generation exploiting a transition tree. The
transition tree is generated in such a way that each path
from the root node to a leaf represents a March Test. The
March Test able to address the selected fault list is
searched into the tree. The main problem of this approach
is that the transition tree is unbounded. In order to limit
the size of the tree, an upper bound on the number of
nodes in a path is used. This can cause a high number of
reiterations to find a solution making the algorithm
inefficient and time consuming. Furthermore, when
dealing with undetectable faults, the computation time
becomes infinite. In addition, this method performs an
exhaustive search to find the shortest path on the transition
tree. As the size of the transition tree increases, the
algorithm becomes more and more inefficient.

In [5] the authors present a branch and bound method
that limits the search process to the parts of the tree where
a solution exists and therefore a solution will be found
much faster and more efficiently.

An approach able to cover additional faults is
presented in [6]. With respect to the previously mentioned
works, it is able to deal with read disturb faults and
destructive read faults. It mainly targets the diagnosis of
memory faults and utilizes a fault description that allows
modeling all possible single cell and two cells faults that
occurs in memory arrays. This approach still uses

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

exhaustive search and is affected by the same problems of
[2] [3] and [4].

3. Memory Model
The problem of the automatic generation of March

Tests requires, first of all, the definition of a formal model
able to represent the behavior of both the good and the
faulty memory. In [7] and [8] the problem has been solved
proposing a memory behavioral model based on Finite
State Machines (FSM). An n one-bit cells memory can be
represented using a deterministic Mealy Automata:

),,,,(λδYXQM = (f.2.1)
where:

• { }nQ),1,0(−= is the set of the possible memory
states where the symbol ()− represents the value of
a non initialized memory cell;

• { } { }TniwwrX iii ∪−≤≤= 10|,, 10 is the input alphabet.

This alphabet is composed by all the possible
memory operations. In particular:
− ir corresponds to a read operation performed on

the cell i;
− i

dw corresponds to a write operation of the value

{ }1,0∈d performed on the cell i;

− T corresponds to a wait operation for a defined
period of time. This additional element is needed
to deal with Data Retention Faults [2].

• { }−= ,1,0Y is the output alphabet ;

• QXQ a×:δ is the state transition function;

• YXQ a×:λ is the output function.
Using the proposed model, a fault free two cells RAM

can be represented by the FSM shown in Figure 1,
conventionally named M0 in the reminder of this paper. In
M0, the letters i and j are used to identify the first and the
second cell, respectively.

00

01

10

11

(w0
i, w 0

j, T) / -
w1

i / -

w1
j / -

w1
i / -

w0
j / -

w0
i / -

w1
j / -w0

j / -

w0
i / -

(r i, rj) / 0
(w1

i, w0
j, T) / -

rj / 0
ri / 1

(w1
i, w1

j, T) / -
(r i, rj) / 1

(w0
i, w1

j, T) / -
rj / 1
ri / 0

Figure 1: M0 FSM representing a fault free RAM

 The proposed model is not manageable when used to
represent large memories; nevertheless, the model of a

two-cell me mory is general enough to model memory
faults. Therefore, the behavior of a faulty memory can be
modeled using a deterministic Mealy Automata:

),,,,(iiiii YXQM λδ= (f.2.2)

where:
• QQi ⊆ is the set of states;

• YYi ⊆ is the output alphabet;

• iii QXQ a×:δ is the state transition function

• iii YXQ a×:λ is the output function

The set of states used to represent a faulty memory is a
subset of the whole set Q (see (f.2.1)) since only the cells
involved in the fault should be represented. This
consideration makes possible the use of the proposed
model for very large memories as well. Moreover, the
given representation for faulty memories is general
enough to be used to model most of the known faults.

Considering as an example the Idempotent Coupling
Fault 0,↑ [9] (where the notation FS , denotes a fault

involving two cells; S describes the condition of the first
cell to sensitize the fault in the second cell denoted by F),
we obtain the FSM shown in Figure 2. From now on, we
will assume that the address of cell i is less then the
address of cell j.

00

01

10

11

(w0
i, w0

j, T) / -
w1

i / -

w1
j / -

w1
i / -

w0
j / -

w0
i / -

w1
j / -w0

j / -
w0

i / -

(ri, rj) / 0
(w1

i, w0
j, T) / -

rj / 0
ri / 1

(w1
i, w1

j, T) / -
(ri, rj) / 1

(w0
i, w1

j, T) / -
rj / 1
ri / 0

Figure 2: M1: 0,↑ Idempotent Coupling Fault

As previously mentioned, since the fault involves two
cells only, the cardinality of Qi is four. The difference
between the M0 and M1 machine is in the δ function, as
pointed out by the two-bolded edge shown in Figure 2.

Looking at the M1 machine we can split each fault into
a set of Basic Fault Effect (BFE) [5] [6]. A BFE can be
described by a Mi FSM with a δi function that differs from
δ0 by one transition only, or with a λi function that differs
from λ0 by one output value only. Considering the
example proposed in Figure 2, it is possible to identify
two different BFEs modeled by the two FSM shown in
Figure 3. For the sake of simplicity only the relevant
edges are represented.

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

00

01

10

11
w1

i w1
j

00

01

10

11

Figure 3: BFE model for 0,↑ Coupling Fault

Each BFE can be covered generating a Test Pattern
(TP) defined as a triplet:

),,(OEITP = (f.2.3)
where:

• { }10|)1,0(−≤≤= nkI k is the initialization state;

• { }XeeE ∈= | is the operation needed to excite the
BFE;

• { }10),1,0(| −≤≤∈= nkdrO k
d is the operation

needed to observe the fault effect. We introduce
here the concept of Read and Verify operation. The
notation rd

i means “read the content of the cell i and
verify that its value is equal to d”.

For the proposed example the two BFEs can be tested
by the following two TPs:

• ()ji rwTP 111 ,,01=

• ()ij rwTP 112 ,,10=

4. March Test Generation Algorithm
In this section the proposed approach will be

presented. It exploits the possibility of automatically
generating March Tests without exhaustive searches. The
algorithm, starting from an unconstrained list of target
BFEs, generates a non-redundant march test that covers all
of them.

In a first phase, the algorithm analyzes the set of test
patterns needed to cover each target BFE, and generates a
weighted graph named Test Pattern Graph (TPG) . Each
TPG node is associated to a TP. The graph is strongly
connected, i.e. each node is connected to all the others.

The weight of each edge represents the number of
memory operations needed to reach the initialization state
of the target node (ST), starting from the observation state
of the source node (SS). In a formal way it can be defined
as [10]:

weight = hamming-distance (SS, ST) (f.4.1)
Lets consider as an example the

{ }0,,1, ↑↑=FaultList [9]. Using the model proposed in

Section 2 we obtain four different BFEs, respectively
tested by the following set of TPs:

• ()ji rwTP 111 ,,01=

• ()ij rwTP 112 ,,10=

• ()ji rwTP 013 ,,00=

• ()ij rwTP 014 ,,00=

The proposed set of test patterns generates the TPG
shown in Figure 4.

TP1 1

1

TP4 TP2

TP3

0

2

0

2

1

1

2
2

2

2

Figure 4: TPG for { }0,,1, ↑↑

Starting from the TPG the algorithm extracts a so-
called Global Test Sequence (GTS). A GTS is a set of
memory operations able to detect all the target BFEs.
Different GTSs can be obtained by simply concatenating
all the different TPs in multiple ways, i.e., to make
different visits of the TPG. Since the TPG is strongly
connected, the total number of possible GTS can be
calculated as follow:

!# VGTS = (f.4.2)
where V is the number of nodes in the TPG.

In a fault-list containing a large amount of BFEs, the
space of all the possible GTS becomes unmanageable. It is
therefore necessary to identify a particular subset of GTSs
able to generate non-redundant March Tests. A possible
solution is to consider TPG visits with minimum weight
only. Thanks to the function used to weight the TPG edges
(see (f.4.1)), these visits generate GTSs with minimum
number of test operation. Considering two nodes
connected by a 0 weight edge, the test sequences obtained
by their concatenation does not need the initialization part
of the second TP.

The use of GTSs with minimum number of operation
seems a good choice since there is a strict correlation
between the GTS length and the March test complexity.

The generation of minimum length GTSs is a typical
instance of the Asymmetric Traveling Salesman Problem
(ATSP)[11]. The ATSP is probably the most well known
member of the wider field of the combinatorial
optimization problem. In a general instance of the ATSP,
one is given V nodes and a matrix di,j storing the distance
or cost function to go from node i to node j . A “tour”
consists of a list of V nodes, (tour[i]) where each node
appears once and only once . In the ATSP, the problem is
to find the tour with the minimum length, where the length
is defined to be the sum of the lengths along each step of
the tour,

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

[] []∑
−

=
+=

1

0
1,

V

k
ktourktourdlength (f.4.3)

and tour[V] is identified with tour[0] to make it periodic.
The main difference with respect to our problem is that

the solution of the ATSP is a cycle whereas a GTS is
identified by a non-cyclic path (i.e., the first and last node
do not need to be the same). To solve the problem we
introduced two dummy nodes used to close the cycle.
Despite the ATSP is a NP-hard problem, several
algorithms able to give an exact solution with very low
computation time in problems with low number of nodes
(50 nodes), can be found in literature [12].

The GTSs obtained by solving the ATSP problem are
able to test all the addressed BFE but are not yet March
Tests. A March Test is a particular Test Sequence
respecting a set of conditions [1]. It is therefore necessary
to apply a set of modification to transform a GTS into an
equivalent March Test.

Before applying the modifications (defined in Section
4.1), it is possible to perform a further optimization. We
observed that GTS starting with a “00” or “11”
initialization state allow to obtain March Tests of the
lowest possible complexity. This optimization, which
allows reaching a minimal solution considering all the
minimum length GTSs, can be expressed as an additional
constraint in the ATSP:

[] []

[] { }(),...,...11,00
..

0

1

0
1,

=

= ∑
−

=
+

tour

V

k
ktourktour

TP
ts

dlength

 (f.4.4)

Looking at the example of Figure 4, a possible ATSP
solution is the following GTS:

jiijjiijjiji rwrwwwrwrwwwGTS 110100110100 ,,,,,,,,,,,=
The process of March Test generation from a GTS

passes through three different steps:
• GTS reordering

• GTS minimization
• March Test Generation
Each step corresponds to a different set of Rewrite

Rules [13]. Since a GTS can be considered as a string
where each symbol is a memory operation, the rewrite
rules can be effectively represented resorting to the
Regular Expression formalism [14]. All the possible
memory operations are defined by the X alphabet defined
in (f.2.1).

For the sake of simplicity we define two subsets of
instructions:

• { }jdi
d www ,= is the set of possible memory write

operations;
• { }jd

i
d rrr ,= is the set of possible memory read

operations.
The regular expression forma lism is extended

introducing three new operators:
• End Symbol Operator: ŝ marks the symbol s as not

furtherly modifiable (terminal symbol);
• Red Operator: []Rs marks the symbol s with the red

color;
• Blue Operator: []Bs marks the symbol s with the

blue color.
The use of colored symbols is useful during the

March Test generation phase to identify the
boundaries of the different March Elements. The next
subsections summarize the rewrite rules used during
the three different phases.

4.1 GTS Reordering
The reordering phase reorders the GTS memory

instructions taking into account the constraints needed to
obtain a March Test [1]. In this phase each modification is
defined by a Pattern and by a Rewrite Rule (see Table 1).
The pattern is a regular expression that identifies all the
strings on which the rewrite rule must be applied. The
reordering process stops when all the GTS symbols are
modified into terminal ones.

Pattern Rewrite Rule

() ()∗∗ rwwwrw j
d

i
d |ˆ|ˆ j

d
i
d

Mj
d

i
d wwww ˆˆ1→

() ()∗∗ rwwwrw i
d

i
d |ˆ|ˆ i

d
i
d

Mi
d

i
d wwww ˆ2→

() ()∗∗ rwwwrw j
d

i
d |ˆ|ˆ j

d
i
d

Mj
d

i
d wwww ˆ3→

() ()∗∗∗∗ rwrwwwwwrrw i
d

s

j
d

j
d

s

j
d

j
d

i
d

i
d |)|()ˆ|ˆ|ˆ(ˆˆ|ˆ

21
4342144 344 21

 [] []BR
i

d
i

d
Mi

d
i

d ssrrrssr 21
4

21 ˆˆˆ →

Table 1: Reordering Rewrite Rules

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

Appling the reordering rules on the GTS in Section 4
we obtain the following reordered sequence:

[] [] [] [] ji
B

j
R

jjiij
B

i
R

iji
R rwwrwwrwwrwwGTS 111000111000 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ=

4.2 GTS minimization
The minimization phase deletes redundant

subsequences in order to reduce the sequence to the
minimum set of absolutely necessary operations only. The
rewrite rules applied in this phase consider the GTS
starting from left to right (see Table 2). This phase is
repeated until no further minimization can be applied. In
this context the $ symbol is used to denote the end of the
GTS and the color of the symbols (see Section 4) does not
affect the application of the rules.

Rewrite Rules
i
d

Rj
d

i
d www ˆˆˆ 1→ i

d
Rj

d
i

d rrr ˆˆˆ 1→
i
d

Ri
d

i
d www ˆˆˆ 2→ i

d
Ri

d
i

d rrr ˆˆˆ 2→
j

d
i
d

i
d

i
d

Rj
d

j
d

j
d

i
d

i
d

i
d rwwrwwrwwr ˆˆˆˆˆˆˆˆˆˆ 3→

$ˆˆˆˆ$ˆˆˆˆˆ 3 j
d

i
d

i
d

i
d

bisRj
d

j
d

i
d

i
d

i
d rwwrwrwwr →

Table 2: Modification Rewrite Rules

Appling the minimization rewrite rules on the
reordered GTSR (see Section 4.1) we obtain the follo wing
minimal sequence:

[] [] [] [] j
B

j
R

jii
B

i
R

ii
M rwrwrwrwGTS 11001100 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ=

4.3 March Test Generation
This last phase uses the minimized GTS to generate a

March Test. The input sequences are analyzed from left to
right and the March Elements are generated according to
the following rules:

• Rule 1: subsequences identified by
)ˆ|ˆ)(ˆ|ˆ(j

d
j

d
j

d
i
d rwrw regular expression close a March

Element and open a new one;
• Rule 2: subsequences identified by

[] []()∗BR wr ˆˆ regular expression are joined in a single
March Element despite they are executed on i or on
j. The last blue marked operation closes the March
Element.

The addressing order is generated using the
following rules:

• Rule 3: March Elements starting with colored
operation performed on i cells have addressing
order ⇑;

• Rule 4: March Elements starting with colored
operation performed on j cells have addressing
order ⇓;

• Rule 5: March Elements starting with non-colored
operations have addressing order c .

Applying the generation rules on the GTSM (see
Section 4.2) we obtain the following 8n non-
redundant March Test:

11001100 rwrwrwrwM ⇓⇓⇑⇑⇑=

5. BFEs equivalence
In some cases it is possible to obtain a BFE modeling a

fault already covered by another BFE. A typical case is
the b,↑ Inversion Coupling Fault [1]. It can be split into

two BFEs tested by the following TPs:
• ()ji rwTP 011 ,,00=

• ()ji rwTP 112 ,,01=
Although two TPs are generated, only one of them is

necessary to cover the fault. Therefore, the ATSP problem
must be modified to take into account only the necessary
test patterns. This goal can be achieved grouping the TPG
nodes into equivalence classes (iC).

In case of a TPG with k equivalence classes, using the
iC notation to indicate the cardinality of the iC class it is

possible to generate ∏
−

=

=
1

0

k

i
iCE different TPG. On each one

of the obtained graphs the ATSP problem must be solved
identifying E possible GTS. The minimum length GTS is
considered as the best one.

6. Experimental Results
This section reports some experimental results

obtained applying the proposed algorithm to automatically
generate March Tests to cover different sets of faults.

The algorithm has been implemented in about 5000
lines of C code. The ATSP has been solved using a
Fortran code able to give exact solutions to the problem
[12]. For each generated March Test, we report the
computation time needed to generate it, its complexity,
and the complexity of the equivalent March Test found in
literature. All the experiments are performed on a
Compaq Presario 17XL370, PIII 650Mhz based Laptop
with 128 MB of RAM. The source code has been
compiled with the gcc C compiler and the g77 Fortran
compiler [15].

Table 3 shows the March tests obtained to cover some
combinations of Stuck-At Faults (SAF), Transition Faults
(TF), Address Decoder Faults (ADF), and Inversion and
Idempotent Coupling Faults (CFin and CFid). All
generated March Tests have been verified using an ad hoc
memory fault simulator able to validate their correctness
w.r.t. the target BFE list. The fault simulator is also used
to check the non-redundancy of each generated March
Test.

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

Fault List

SAF TF ADF CFin CFid

Generated March Tests and their
complexity

CPU
Time(s)

Equivalent
Known March

Test
• { }0011 rwrw ⇓⇓⇑ 4n 0.49 MATS (4n)
• • { }10011 wrwrw ⇓⇑⇑ 5n 0.53 MATS+ (5n)
• • • { }001100 rwrwrw ⇑⇓⇑⇑ 6n 0.61 MATS++ (6n)

• • • • { }100110 wrwrww ⇑⇓⇓⇑ 6n 0.69 MarchX (6n)

• • • • • { }1100110011 rwrwrwrwrw ⇓⇓⇓⇑⇑⇑ 10n 0.85 March C- (10n)
 • { }100100 rwwrw ⇓⇑⇑ 5n 0.57 Not Found

Table 3: Experimental Results

Each March test is split into elementary blocks. An
elementary block is a portion of March Test composed by
a fault excitation and a fault observation. These blocks are
used to build a Coverage Matrix (CM). The row of the
matrix represents the elementary blocks whereas the
columns the target BFEs. A matrix cell is set to the value
one if the corresponding elementary block is able to test
the BFE represented by the column, otherwise is set to
zero. A March Test is able to detect all the target BFEs if
for each CF column exist at least one row containing a cell
set to one. The March Test is non-redundant if all the
matrix rows are needed to cover the target BFE.

This is a typical instance of the Set Covering problem
applied on the CM matrix. The Set Covering finds the
minimum number of CM rows needed to cover all the CM
columns. If this number corresponds with the total number
of rows, then the March Test can be considered non-
redundant.

This approach has been successfully applied on all the
March Tests shown in Table 1 and redundant blocks have
never been found.

7. Conclusions
This paper presented a methodology to automatically

generate March Tests. A general model has been used to
represent known memory faults, and to possibly add new
user-defined faults. With respect to previously presented
approaches our methodology allows generating the
optimal March Tests in a very low computation time, and
without exhaustive searches.

The generation process is based on four steps: memory
fault modeling, TPG generation, minimum length GTS
search, and the application of a set of rewrite rules to
transform the minimum length GTS in a March Test.
Some preliminary experimental results have been
presented in order to demonstrate the applicability and
efficiency of the proposed approach.

On going activities are focused on the extension of the
model to multi-port memory faults, and to more complex
user-defined fault models.

8. References
[1] A. J. van de Goor, “Testing Semiconductor Memories:

theory and practice” Wiley, Chichester (UK), 1991.
[2] A. J. van de Goor, B. Smit, “Generating March Tests

Automatically”,IEEE International Test Conference, pp.
870-877, 1994

[3] A. J. van de Goor, B. Smit, “Automatic the Verification
of March Tests”,IEEE VLSI Test Symposium, pp. 312-
318, 1994

[4] A. J. van de Goor, B. Smit, “The Automatic Generation
of March Tests”, IEEE International Workshop
Memory Technology, pp. 86-91, 1994

[5] K. Zarrineh, S. J. Upadhyaya, S. Chakravarty, “A New
Framework for Generating Optimal March Tests for
Memory Arrays”, IEEE International Test Conference,
pp. 73-82, 1998

[6] D. Niggemeyer, M. Redeker, E. M. Rudnick,
“Diagnostic Testing of Embedded Memories based on
Output Tracing”, IEEE International Workshop
Memory Technology, pp. 113-118, 2000

[7] J.A. Brzozowski, H. Jurgensen “A Model for Sequential
Machine Testing and Diagnosis” J. Electronic Testing:
Theory and Application, Vol. 3, No. 3, pp. 219-234,
August 1992

[8] J.A. Brzozowski, B.F. Cockburn “Detection of
Coupling Faults in RAMs” J. Electronic Testing:
Theory and Application, Vol. 1, No. 2, pp. 151-162,
May 1990.

[9] A. J. van de Goor, “Using March Tests to Test
SRAMs”, IEEE Design & Test of Computers, Volume:
10 Issue: 1, March 1993 pp: 8 –14

[10] R. W. Hamming, “Coding and Information Theory” , II
Edition, Englewood Cliffs, NJ: Prentice-Hall 1986.

[11] A. Gibbons, “Algorithmic Graph Theory” , Cambridge
University Press 1985.

[12] G.Carpaneto, E. Dell’Amico, I. Toth, “A Branch-and-
Bound Algorithm for large scale Asymmetric Traveling
Salesman Problems”, Technical Report, Modena
University 1990, ACM Collected Algorithms no. 750,
1994, ftp://netlib2.cs.utk.edu/toms/index.html

[13] G. Rozemberg, “Handbook of Graph Grammars and
Computing by Graph Transformation”, Vol. I:
Foundation, World Scientific, 1997.

[14] A.V. Aho, R. Sethi, J. D. Ullman, “Compilers:
Principles, Techniques and Tools”, Addison-Wesley,
1986.

[15] http://www.gnu.org GNU web site.

Proceedings of the 2002 Design, Automation and Test in Europe Conference and Exhibition (DATE�02)
1530-1591/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

