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Abstract
This paper presents an innovative algorithm for the
automatic generation of March Tests. The proposed
approach is able to generate an optimal March Test for
an unconstrained set of memory faults in very low
computation time.

1. Introduction

Among the different types of algorithms propo & to
test random access memories (RAM), March T ’
proven to be faster, simpler, regularly struct
linear in complexity. A March Test consjst
of March Elements, each compose
basic read/write operations to b

the memory, in either agcC

—

S¢ HCC

memory operations in
each memory cell [1].

March Tests are able to cover a
faults such as Stuck-at-Faults,
Open Faults, Coupling Faults
Retention Faults. Differer
complexity have be

of variable
literature, each
emory faults. All of

succeeds in coyepiig particularly complex memory faults.

This paper \presents a methodology to automatically
generate March Tests. A general representation is used to
model known memory faults, and to possibly add new
user-defined faults.

With respect to previously proposed approaches,
which exhaustively generate all the possible March Tests
and then select the optimal one, our approach allows
generating the optimal March Tests in a very low
computation time without exhaustive searches. In
particular, the automatic March Test generation process is
performed in the following steps: (i) the target memory
fault list is modeled into a set of FSMs representing the
faulty memory behaviors; (ii) a weighted graph is
generated, which represent all the possible test patterns
able to cover each target fault model; (iii) an optimal test

¢ha st
erea i
ch Test gener.

sequence is generated finding an optimal path connecting
all the nodes of the graph; (iv) from the so deflned optimal

trfuctured as follgwsn\Se 2 presents
4 to represer@ fault memory

state of the art,

steps of the automatic

. Section 5 analyzes a
he” algorithm, and Section 6
ults that proof the efficiency of
éotion 7 summarizes the main

ossible optimizati

tate of the Art

e problem of the automatic generation of March
i faced and several publications can
12] [3] [4] present an algorithm for

iinto the tree. The main problem of this approach

the transition tree is unbounded. In order to limit
the size of the tree, an upper bound on the number of
nodes in a path is used. This can cause a high number of
reiterations to find a solution making the algorithm
inefficient and time consuming. Furthermore, when
dealing with wndetectable faults, the computation time
becomes infinite. In addition, this method performs an
exhaustive search to find the shortest path on the transition
tree. As the size of the transition tree increases, the
algorithm becomes more and more inefficient.

In [5] the authors present a branch and bound method
that limits the search process to the parts of the tree where
a solution exists and therefore a solution will be found
much faster and more efficiently.

An approach able to cover additional faults is
presented in [6]. With respect to the previously mentioned
works, it is able to deal with read disturb faults and
destructive read faults. It mainly targets the diagnosis of
memory faults and utilizes a fault description that allows
modeling all possible single cell and two cells faults that
occurs in memory arrays. This approach still uses



exhaustive search and is affected by the same problems of
[2] [3] and [4].

3. Memory Model

The problem of the automatic generation of March
Tests requires, first of all, the definition of a formal model
able to represent the behavior of both the good and the
faulty memory. In [7] and [8] the problem has been solved
proposing a memory behavioral model based on Finite
State Machines (FSM). An n one-bit cells memory can be
represented using a deterministic Mealy Automata:

M =(0,X.Y.,5,n) (f2.1)
where:
* Q0= {((),1,_)”} is the set of the possible memory

states where the symbol (- )represents the value of

a non initialized memory cell;

memory operations. In particular:

two-cell memory is general enough to model memory
faults. Therefore, the behavior of a faulty memory can be
modeled using a deterministic Mealy Automata:

M, =(0,,X.Y,.0,,\) (£2.2)
where:
* Q C Qis the set of states;
* Y, CY isthe output alphabet;
* 9,:0 xX > Q, is the state transition function
* A :Q xX 7Y, is the output function

The set of states used to represent a faulty memory is a
subset of the whole set Q (see (f.2.1)) since only the cells
involved i e fault should be rgpreSented. This

possible the use he\ proposed

mo@xdel 0 y Iarge memories /gs oreover, the
i representation for It @ ries is general
o bewused to mod of-theknown faults.
Cons ,

Idempotent Coupling

¢ X= {ri,wi Wl0=is< n—l}U{T} is the input alphabet. ou m
. 0 . nsidering as an.e
This alphabet is composed by all the possible t </|\ ’0> [9] (wyﬁle notation (S,F> denotes a fault

- r'corresponds to a read operation perfi
the cell i;
i : :
- w, corresponds to a write oper

d 6{0,1} performed on the ¢

lue

* A:OxX > Yistheoutput
Using the proposed model
can be represented by t SM in Figure 1,
conventionally named in\the remjnder of this paper. In
M, the letters i and eu idéntify the first and the
second cell, respectively.

r/1
r/0
(w1i! wojs T)/-

N

(r r))

W1i/- Wol/- w0|/_ W1i/-
ONNG
i w0
(wy, w,i, T)/- (wy', wyl, T) / -
0 Wqib

Figure 1: MO FSM representing a fault free RAM

The proposed model is not manageable when used to
represent large memories; nevertheless, the model of a

&)

involving tw& scribes the condition of the first
cell to sens{tize the fult in the second cell denoted by F),

i SMshown in Figure 2. From now on, we
at the address of cell i is less then the

@ ess of cell j.
r/1

(A < i n/0
(W1i! WOi! T)/ =

(ri, i) /1

Jenn
(W', wi), T) /- ol i D

Figure 2: M1: <¢ ’0> Idempotent Coupling Fault

As previously mentioned, since the fault involves two
cells only, the cardinality of Q; is four. The difference
between the My and M; machine is in the 9§ function, as
pointed out by the two-bolded edge shown in Figure 2.

Looking at the M; machine we can split each fault into
a set of Basic Fault Effect (BFE) [5] [6]. A BFE can be
described by a M; FSM with a § function that differs from
& by one transition only, or with a A; function that differs
from A, by one output value only. Considering the
example proposed in Figure 2, it is possible to identify
two different BFEs modeled by the two FSM shown in
Figure 3. For the sake of simplicity only the relevant
edges are represented.
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Figure 3: BFE model for <¢ ,()> Coupling Fault
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Each BFE can be covered generating a Test Pattern
(TP) defined as a triplet:
TP =(I,E,0) (£2.3)
where:
o = {(0,1)k 10<k<n —1} is the initialization state;
s E-= {el ee X} is the operation needed 7o excite the
BFE;
e O= {r{f ldEO),0<k=<n _1} is the operation
needed to observe the fault effect. We introduce
here the concept of Read and Verify operatio

notation r/ means “read the content of th 1
verify that its value is equal tod”.

For the proposed example the two B (& sted
by the following two TPs:
7R = (01w ) @?

* TP, =(10,wlf,rli

4. March Test G

In this section the “proposed
presented. It exploits the possibi

on Algorit

of them.
In a first phase/ analyzes the set of test

target BFE, and generates a

>Ciated to a TP. The graph is strongly
connected, i.e. each node is connected to all the others.

The weight “of each edge represents the number of
memory operations needed to reach the initialization state
of the target node (S7), starting from the observation state
of the source node (Ss). In a formal way it can be defined
as [10]:

weight = hamming-distance (Ss, St) (f4.1)

Lets consider as an example the

FaultList = {(1\ ,1>,<'|~ ,0>} [9]. Using the model proposed in

Section 2 we obtain four different BFEs, respectively
tested by the following set of TPs:

« 7P, =(10,w/ )

* 1P, = (OO,wli,roj)

( &taﬂing from t

* TP, =(00,w|j,r(j)
The proposed set of test patterns generates the TPG

shown in Figure 4.

. algorithm extracts a so-

T i

lled Global Test ue GTS). A GTS is a set of
memory oper@n abls to detect all the target BFEs.
Different G(TSs <an/Pe obtained by simply concatenating
all the(di

)
5 ¢
w)

[Ps in multiple ways, i.e., to make
of the TPG. Since the TPG is strongly
ected, the total number of possible GTS can be
ated as follow:

#GTS =V! (f4.2)

ntaipning a large amount of BFEs, the
§ t‘sib 2 'GTS becomes unmanageable. It is
necessary to identify a particular subset of GTSs

erate\non-redundant March Tests. A possible

anly Alhanks to the function used to weight the TPG edges

(f4.1)), these visits generate GTSs with minimum
number of test operation. Considering two nodes
connected by a 0 weight edge, the test sequences obtained
by their concatenation does not need the initialization part
of the second TP.

The use of GTSs with minimum number of operation
seems a good choice since there is a strict correlation
between the GTS length and the March test complexity.

The generation of minimum length GTSs is a typical
instance of the Asymmetric Traveling Salesman Problem
(ATSP)[11]. The ATSP is probably the most well known
member of the wider field of the combinatorial
optimization problem. In a general instance of the ATSP,
one is given V nodes and a matrix d;; storing the distance
or cost function to go from node i to node j . A “tour”
consists of a list of V nodes, (our[i] ) where each node
appears once and only once . In the ATSP, the problem is
to find the tour with the minimum length, where the length
is defined to be the sum of the lengths along each step of
the tour,



V-1

length: 2 dmur[k],mur[kH] (f43)

and four[V] is identified with tour[0] to make it periodic.

The main difference with respect to our problem is that
the solution of the ATSP is a cycle whereas a GTS is
identified by a non-cyclic path (i.e., the first and last node
do not need to be the same). To solve the problem we
introduced two dummy nodes used to close the cycle.
Despite the ATSP is a NP-hard problem, several
algorithms able to give an exact solution with very low
computation time in problems with low number of nodes
(50 nodes), can be found in literature [12].

The GTSs obtained by solving the ATSP problem are
able to test all the addressed BFE but are not yet March
Tests. A March Test is a particular Test Sequence
respecting a set of conditions [1]. It is therefore necessary
to apply a set of modification to transform a GTS into an
equivalent March Test.

Before applying the modifications (defined in Sectio
4.1), it is possible to perform a further optimizatio;
observed that GTS starting with a “00”
initialization state allow to dtain March

allows reaching a minimal solution
minimum length GTSs, can be ex

tour

TP,y = (011}
f’ s Ssible ATSP

VN R A ey
dsWo sW1 5Ty W1

* GTS minimization

* March Test Generation

Each step corresponds to a different set of Rewrite
Rules [13]. Since a GTS can be considered as a string
where each symbol is a memory operation, the rewrite
rules can be effectively represented resorting to the
Regular Expression formalism [14]. All the possible
memory operations are defined by the X alphabet defined
in (f.2.1).

For the sake of simplicity we define two subsets of
instructions:

¢ w= {wfj ,w;} is the set of possible memory write

read

O% regilar  expressi€n f is extended
introducingthree new operatorss

e d Symbol '%ks the symbol s as not
inal symbol);

s the symbol s with the red

v [sL marks the symbol s with the

The use of colored symbols is useful during the
Mlarch Test generation phase to identify the
i g different March Elements. The next

iy taking into account the constraints needed to
arch Test [1]. In this phase each modification is
ned by a Pattern and by a Rewrite Rule (see Table 1).
The pattern is a regular expression that identifies all the
strings on which the rewrite rule must be applied. The
reordering process stops when all the GTS symbols are
modified into terminal ones.

W) 7O, s 1) s(w L wd) s (wl )

sl 52

” Pattern Rewrite Rule
(WIf)*w;wj(wlr)* whw) —— i
(Wlf)*w;w;(wlr)* wiw, —2E— 0w
(WI?)*w;wf(wlr)* wiwt —— il wd
(w17)

Table 1: Reordering Rewrite Rules



Appling the reordering rules on the GTS in Section 4
we obtain the following reordered sequence:

GTS , = Wy [ Lo b9 Ly 7 30w [ | |7 ]y ] 7
4.2 GTS minimization

The  minimization  phase  deletes  redundant
subsequences in order to reduce the sequence to the
minimum set of absolutely necessary operations only. The
rewrite rules applied in this phase consider the GTS
starting from left to right (see Table 2). This phase is
repeated until no further minimization can be applied. In
this context the $ symbol is used to denote the end of the
GTS and the color of the symbols (see Section 4) does not
affect the application of the rules.

Rewrite Rules
NP R1 i ninj_ Rl oAl
wdwd d d d d
AL AT R2 AT NN R2 Al
B —_—
ded Wd drd d
R3 i’\_

A[AIAIAJAJA/ 3 A~ IAIAJ
rdijdrd W{TWd — >rdeWd d ~ ( C@
AiAG A A A R3bis __ nini Ainj
T WoW T w;$———>rdw‘7 oy

Table 2 : Modification Rewriy

Appling the minimization ¢s on the
reordered GTSg (see Sectiq

minimal sequence:

This last phase uses the mini
March Test. The input sequen

the following rules:
* Rule I: subsegux

regular expression are joined in a single
March Element despite they are executed on i or on
Jj- The last blue marked operation closes the March
Element.
The addressing order is generated using the
following rules:

* Rule 3: March Elements starting with colored
operation performed on i cells have addressing
order f};

* Rule 4: March Elements starting with colored
operation performed onj cells have addressing
order |J;

* Rule 5: March Elements starting with non-colored
operations have addressing order {J .

Applying the generation rules on the GTS) (see
Section 4.2) we obtain the following &n non-
redundant March Test:

M =ﬂwoﬂrowl ﬂriWOUrOWI Ur]

5. BFEs equivalence

In some cases it is possible to obtain a BFE modeling a
fault already covered by another BFE. A typical case is
the (1\ , $> Inversion Coupling Fault [1]. It can be split into
two BFEs tested by the following TPs:

1R =(00w.r)

¢ TP, =q W:’rlj)

s are generated, oy ong of them is

the\ATSP problem
X phly the necessary

ieved grouping the TPG

ivalence classes, using the

nqdes into equivalen .

In case of a TPG with &
|Cl.|notation tg T@hat e cardinality of the C class it is
possible to gt’\ efate’/ =t‘[| | different TPG. On each one
of‘the obtained graphs the ATSP problem must be solved

ying E possible GTS. The minimum length GTS is

gu ered as the best one.

b. Experim esults

reposts some experimental results
he proposed algorithm to automatically
ests to cover different sets of faults.

rtyan code able to give exact solutions to the problem
[12]. For each generated March Test, we report the
computation time needed to generate it, its complexity,
and the complexity of the equivalent March Test found in
literature. All the experiments are performed on a
Compaq™ Presario 17XL370, PIII 650Mhz based Laptop
with 128 MB of RAM. The source code has been
compiled with the gcc C ompiler and the g77 Fortran
compiler [15].

Table 3 shows the March tests obtained to cover some
combinations of Stuck-At Faults (SAF), Transition Faults
(TF), Address Decoder Faults (ADF), and Inversion and
Idempotent Coupling Faults (CFin and CFid). All
generated March Tests have been verified using an ad hoc
memory fault simulator able to validate their correctness
w.r.t. the target BFE list. The fault simulator is also used
to check the non-redundancy of each generated March
Test.



Fault List Generated March Tests and their CPU Equivalent
SAF | TF “DF | cFin | Crid complexity Time(s) Knov¥1ei\:larch
. 1w rwy Ur f 4n 049 | MATS (4n)
. . 1wt rw §rw | 5n 053 | MATS+ (5n)
. . . 1w, trw brw, o} 6n 061 | MATS++ (6n)
. . . . It wo Uw, b rwg trom | 6n 069 | MarchX (6n)
° ° ° ° ° {ﬂ w ey w §onwe b w rl} 10n 0.85 March C- (10n)
. {ﬂ w, ﬂr{)w]w{) U rOl } Sl’l 057 Not Found
Table 3: Experimental Results
Each March test is split into elementary blocks. An 8. Refer S
elementary block is a portion of March Test composed by T o . .
a fault excitation and a fault observation. These blocks are (1] j or ,,Tes fing Semiconductorfemories:
used to build a Coverage Matrix (CM). The row of the < t pd practice” Wiley, Ck NERQVK), 1991,
8 ' AN de Goor, B. S ating March Tests

matrix represents the elementary blocks whereas the |
columns the target BFEs. A matrix cell is set to the value
one if the corresponding elementary block is able to tes 3
the BFE represented by the column, otherwise is to

zero. A March Test is able to detect all the targe
for each CF column exist at least one row contai

(4]

applied on the CM matriy
minimum number of CM r¢

of rows, then the Mai
redundant.

(7]

March Tests shown in Table 1 a
never been found.

7. Conclusions

T

This paper presefted a methedology to automatically
engral model has been used to
aults, and to possibly add new
~With respect to previously presented
methodology allows

(9]

user-defined

approaches o generating the
optimal March Yests in a very low computation time, and (10]
without exhaustive searches.

The generation process is based on four steps: memory (1]
fault modeling, TPG generation, minimum length GTS [12]
search, and the application of a set of rewrite rules to
transform the minimum length GTS in a March Test.

Some preliminary experimental results have been
presented in order to demonstrate the applicability and
efficiency of the proposed approach. [13]

On going activities are focused on the extension of the
model to multi-port memory faults, and to more complex
user-defined fault models. [14]
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