
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Software dependability techniques validated via fault injection experiments / Benso, Alfredo; DI CARLO, Stefano; DI
NATALE, Giorgio; Prinetto, Paolo Ernesto; Tagliaferri, Luca. - STAMPA. - (2001), pp. 269-274. (Intervento presentato al
convegno IEEE 6th European Conference on Radiation and Its Effects on Components and Systems (RADECS) tenutosi
a Grenoble, FR nel 10-14 Sept. 2001) [10.1109/RADECS.2001.1159292].

Original

Software dependability techniques validated via fault injection experiments

Publisher:

Published
DOI:10.1109/RADECS.2001.1159292

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499884 since:

IEEE

Software Dependability Techniques validated
via Fault Injection Experiments

A. BENSO, S. DI CARLO, G DI NATALE, P. PRINETTO, L. TACLIAFERRI

Abstract

The present paper proposes a C/C++ Source-to-
Source Compiler able to increase fhe dependobilily
properlies of0 giwn application. 7he adopfed strotegy
is boxed on ma main techniques: variable
duplication/t~iplicatio~ and control flow checking. The
validation of these techniques is based on the emulation
of fault appearance by sofmre faulr injection. The
chosen fesf case is o client-server application in charge
ofcolculoting and drawing U Mondelbrot fractal.

1. INTRODUCTION

Nowadays, the use of computer-based systems
manages multiples aspects of our life and an increasing
number of critical applications relies on their functions.
The tasks in which ECS (Embedded Computer Systems)
are involved are becoming more and more complex
concerning crucial duties like aircrafl, trains and medical
control systems. In this context, ECS plays a crucial role
in ensuring data security and human safety; therefore it
i s mandatory that their tasks were appropriately
accomplished.

It can be observed that, while circuits size decrease,
clock tiequency increase. These aspects, coupled with
the fact that processors are oflen placed in electrically
active environments, can favor transient errors
incidence. One commonly used technique to detect this
kind of errors i s based on the on-line testing techniques
able to ensure high dependability without heavily
affecting the system performance.

The development of custom products with high
performance and dependability level i t is not always an
acceptable task both from the economical point of view
and for the manufacturing time. lhese constraints force
the massive use of commercial off-the-shelf components
(COTS) both in software and in hardware domains.
These components are usually not developed to work in
unfavourable environments where high dependability is
the essential requirement. The goal i s to realize fault
tolerant and reliable systems starting from off-the-shelf
hardware and sohare components.

The techniques involved in building fault tolerant
ECSs rely both on hardware and software redundancy.

Hardware redundancy i s a powerful and very
effective resource but sometimes it is inapplicable far
the cost it implies. On the other hand, soflware
redundancy, while oflen effective, can slow down the
system performances. However, this second solution can
be implemented with very low costs.

Software redundancy techniques exploits additional
memory andor execution time to guarantee the
correcmess of the computation (and, hence, the code
integrity) and of the data stored in memory. The
techniques employed in the construction of such
sothvare are called Sofmwe lmplernenfed Hardware
Fault Tolerance (SlHF7) since they handle hardware
errors with the software aid. In particular, many studies
show how i t i s possible to verify the integrity of the
variables that populate a program [1][2] and of the
executed code [4-131. All thqse strategies rely on ad hoc
modification of the high-level source code, with the
introduction of routines able to periodically test the
memory integrity. Even though these methods differ in
their approach (data protection or code protection) their
purpose is always producing a Fail-Silenf system, i.e., a
system that produces only correct results.

Methods based on variable duplication aim at
reducing the situations in which the ECS produces
incorrect results, whereas the application gives the
impression to correctly terminate. This kind of
malfunction is called Foil-Silenl Violafion and typically
is caused by an alteration of a variable value [141 [15].

Methods based on control flow point to verify the
correcmess of the program control flow. They are,
therefore, suitable to detect faults appearing in the code
mnre than on the variables. These solutions mainly rely
on the use of soflware signature checking [6-131. The
application program is split into elementary blocks, i.e.,
block with one identified entry and exit point. A
signature i s computed off-line by means of the
instructions contained in the block and then is stored in a
suitable data structure. At run-time the signature is
computed again and compared with the previously
stored one. The hardware deputed to maintain this kind
of statistics i s a rc+called watchdogprocessor (51.

This approach has demonstrated to be very effective
but unluckily shows two main drawbacks: first of all a
hardware modification (an effort .which cannot always
be supported); second, wafchdogs can only cover main
memory faults but not the memory cache ones.

0-7803-73 13-8/01/$17.00 (C) IEEE 269

In order to solve these two weaknesses the research
has moved in the direction of pure software
implementation. Typical solutions are Block Signature
Self Checking (BSSC) [I61 and Control Checking with
Assertion (CCA) [17]. These researches essentially
exploit the previously introduced concepts of watchdogs
but the computation of the signatures is performed by a
software process and not by a hardware coqconent.

This paper presents a new reliable compiler able to
enhance the dependability of a given C / C H source
code. The mmpller joins the approaches presented by
the authors in 121 with the RECCO (Reliable C/C++
Compiler) tool and in [IS] obtaining a single integrated
approach able to deal with both data and code errors.
This new tool named RECCO' targets the improvement
of the dependabllity properties of C I C H source code by
introducing apposite routines able tn protect the data
stored in memory (via data duplicatiodtriplication) and
detecting the deviations from the right control flow due
to erroneous wde executions (with the use of wntrol
flow checking) . The main purpose is to show how it is
possible to couple these two techniques to produce a
high level dependability application able to selfdetect
errors injected in its memnry area. Our approach has
been then validated with the use of software fault
injection tool [19].

The paper is organized as follow: Section 2
introduces some basic concepts about the structure of
the compiler itself whereas Section 3 defines the
adopted fault model and the fault injection environment.
To prove the effectiveness of the work Section 4 reports
expenmental results performed on a benchmark. Finally
Section 5 draws some conclusions.

2. TheTool

RECCO' is a source-to-source compiler; it converts
a U C H code into a reliable version with the same
functionalities. The high reliability level is reached by
the introduction of routines that periodically check the
content of the memory (both data and code) to detect . .
corruptions.

Figure I sketches the structural design of RECCO*
identi& the different tasks ofthe compiling flow.

Figure 1. The RECCO' tml

0-7803-73 I3-8/0 I /$I 7.00 (C) IEEE

First of all (Code Reliability Analysis) the compiler
acquires information a b u t the code StNClUre itself and
the variables used in the program. The tool builds up a
dependency graph that defines the correlation and the
dependencies among the variables.

At the Same time the control flow of the code is
examined the program is split into branch-free blocks
(defined as the biggest blocks with one entry and one
exit point) and each of them is assigned to a unique
identifier.

By means of these identifiers the compiler builds a
graph describing how the program control flow can
progress. This report is saved in an auxiliary file using
the regular expression formalism [IS].

Figure 2 sketches an example of how the compiler
handles a typical control flow. The Block labels are
associated with sequential operations that do not wntain
branch instruclions whereas Dec labels show the
presence branch instructions. Tbe regular expression
describing the example control-flow is: afilc'fd.

Block1

Block3

w - &
Figure 2: Control Flow

In the Control Flow Checking phose the code is
enriched with a concurrent process, in charge of
monitoeng the wntrol flow and verifying its
correCtness. This ldnd of test has been suited to intercept
code modifications that cause the progran to deviate
fmm its standard flow. Realizing the checker as an
indepmdent process introduces a modest execution-time
overhead since ils functions can be efficiently scheduled
by the Operating System when the main program is
waiting for external inputs (such as YO opentions). As a
maner of fact this approach implies the presence of a
multitasking Operating System.

270

During the Vmioble Protection phose the compiler
introduces redundant data to allow error
detectiodcorrection of the program variables: the
variables msidered in the Code Reliability Analysis are
duplicatedltriplicated, depending on the user choice.
Each time a variable is written its copies are updated
whereas when a variable is read, the values stored in its
copies are checked for consistency. Therefore, the
compiled program is able to asses the reliability of its
data and detect (if variables are duplicated) or even
correct (if variables are triplicates) the ~ M S occurring
in memory locations.

In order to reduce fault latency and to avoid fault
propagation through the system, both the tests
concolling code and data integrity are performed
concurrently with the normal operations.

3. Fault Injection

Concerning the Fault model, data w m p t i o n has
been reproduced by a single bit flip (Sin@ Error Upset,
SEU) in the memory locations of the testiase both in
the code and in the data (global and stack) areas. The
question of how much this fault model represents an
appropriate defect induced by the occurrence of real
phenomena is crucial. Several software-implemented
fault injection studies are dedicated to the analysis ofthe
relationship between fault injected by software and
physical faults. In particular, NASA [20] researches 5et
up statistical investigations about the most common
mm occurring in modem diptal circuiu. These stodies
lead to the conclusion that, due to the high
miniaturization and the high work frequencies, today
circuits are becoming more and more susceptible to the
effect of ionizing radiation and noise source. The most
commonly observed effects of these kind of disturbs is
the SEU.

The effectiveness of the used fault model is
increased when dealing with space applications, where
the probability of SEU i s m y high.

To emulate the faults in the test-case memory a Fault
Injector has been implemented as a UNlX daemon able
to inject WIMS in random locations of the targeted
program at random execution time.

The daemon wuld be driven by the user to inject
faults in different sections of the running program: code,
data and stack segment. Looking at the faulty program
results and comparing them with the correct ones the
injector is able to section the fault effects into the
following three categories:

No effect: the error has no effect on the system;
Wrong result, i.e., Fail Silent Violation (FSV): the
program end but the program results are wrong;
Crash: the system crashes due to an unrecoverable
problem.

The information produced by the fault injector can be
used to statistically characterize the effectiveness of
RECCO'

4. Experimental results

To prove the effectiveness of the techniques
developed in RECCO', a test-bench and a specific fault
injection policy have been set up.

The test-case is a program able to draw images based
on Mandelbrot fractals. It is organized as a client-server
application. The client is in charge of drawing the
pictore using data proeded by the SWR whereas the
semer waits for client requests to produce new pictures.
Once the request is triggered, the server performs the
computation and sends the data flow through the
network.

This srmchlre has been intended to distribute the
workload between two different machines, to support
the fault injection experiments and to help the statistics
registering. In fact, any injection experiment that causes
a malfunction on the server turns in an erroneous depict
on the client which can be easily compared with the
right one. The results' checking is based on image files
comparison. Only the sewer section of the program has
been compiled with RECCO' and the faults have been
injected only on it.

The experiments ' ,are. repeated on different
dependable versions of the same program to underline
which are the capabilities of each technique and the
influence on the program performance. Each version is
compiled selecting some of the options provided by
RECCO*. Five benchmarks have been defined

Control flow checking only (CF)
Variable duplication only(VD)
Variable tridication only (VTj . .
Control flow checking and. variable duplication
(CF+VD)
Control flow checking and variable triplication
(CF+Vn

For each benchmark, a set of 1000 injections is

Table 1 summarizes the overhead introduced by the
performed.

dependable techniques.

I O.ei~l[CFI VDI WI CFtVDl CFIVT
BinaryCode(KB) I 16 I 241 17 I 19 I 25 I 27
Execution Tim (9 I 4,2 I 5.1 I 5.4 I 6.2 1 6.5 1 7.3

Table 1 : Memory ond Time overhead

The code overhead is comprised between 3KB and
I IKb. Nevertheless, for the control flow technique, the
most of it is wasted by the control flow checker while a
mll part is used by the synchronizations routines; for
this reason the incidence of this overhead decreases with
the code growth.

The first experiment a i m at underlining how many
code ~ M S and crashes can be detected when the

0-7803-7313-8/01/$17.00 (C) IEEE 271

Control Flow Technique is employed. Table 2
summarizes results of injections on the code segment of
the program In this case, only the CF benchmark has
been used because data redundancy is not able to cover
transient errors on the code.

FM both the original program and the CF benchmark
the following information have been provided:

noeffect
number of crashes;
number Of Wnbol-flOW m M S ;

number of errors not belonging in the set of
control-flow errors;
number of detected control-flow mors.

11 No Elled
X C m h a
X Control Plow Emn
X Otkr E m n
U Detected Flow Ermn

Orig1n.l CF
620 622
274 269
75 24
31 30

5 5

Table 3: Injection on data

The number of crashes and fail silent violations is
highly reduced. This means that this huge percentage of
errors that before the compilation caused an altered
image are automatically corrected by the program itself

To validate OUT approach, further benchmarks, with
different characteristics, have been set up; the results are
shown on Table 4 - Table 7. As it can be seen from the
two tables the ~esults are similar to the ones obtained in
the previous test.

0-7803-7313-8/01/$17.00 (C) IEEE

5. Conclusions

The present paper describes a source-twource
Mmpiler able to automatically integrate methodologies
to achieve high soflware dependability. The main
feamre of the approach is the possibility of checking the
different m e m v areas of a running program with two
different methods of action. The data area is protected
with variables duplication or triplication whereas the
code section is checked for error by control flow
checbng. This last technique has been implemented
resomng to a multi-process approach in order to
minimize both memoIy and execution time overheads.

Experimental results demonstrate the effectiveness
of the approach and the low overhead introduced both in
terms of additional memory and execution time.

Comparing the percentage of CFE detected by BSSC
technique [I61 (about SO%), the result is WMX than the
one achieved by RECCO'. Moreover, BSSC is
applicable to machine code only.

Watchdogs and Triple Modular Redundancy (TMR),
instead, can both reach accuracy in detecting CFE and
data corruption ofabout 80-95% with an overhead in the
execution time of about 10%. The main drawback is the
dependence from dedicated hardware with consequent
noticeable modifications of the system.

The disadvantages of these techniques are not shown
by RECCO' that instead deals with C/C++ code which
is target machine independent.

272

References

V. Strumpen, Portable and Fault-Tolerant
Sofrware Systems, IEEE Micro, September-
October 1998, pp. 22-32
A. Benso, S. Chiusano, P. Prineno, L. Tagliaferri,
A UC+t Compiler for Dependable Applications,
The International Conference on Dependable
Systems and NetwMks (FTCS-30), New York
(NY), USA, lune 2000, pp. 71 -78
S. S. Yau, F. Ch. Chen, "An Approach to
Concurrent Control Flow Checking", IEEE
Transaction on Software Engineering, Vol. SE-6,
No. 2, pp. 126-137, 1980.
R. Leveugle, T. Michel, GSaucier, "Design of
Microprocessors with Built-In On-Line test",
20th International Symposium on Fault-Tolerant
Computing (FTCS-ZO), pp. 450456, 1990.
A. Mahamood, E. 1. McCluskey, "Concurrent
Error Detection Using Watchdog Processor - A
Survay", IEEE Transaction on Computer, Vol.
37,No.Z,pp. 160-174, 1988.
M. Namjw, "Techniques for Concurrent Testing
of VLSl P~OC~SSM Operation", International Test
Conference (ITC-82). pp. 461468, 1982.
M.A. Schutte, 1.P. Shen, D. P. Siewiorek, Y. X.
Zhu, "Experimental Evaluation of Two

Concurrent Error Detecrion Schemes”, 1 6‘h
International Symposium on Fault Tolerant
Computing (FTCS-l6), pp. 138-143, 1986
K. Wilken, J.P. Shen, “Continuous Signature
Monitoring: Low-Cost Concurrent Detection of
Processor Errors”, IEEE Transaction on
Computer Aided Design and Systems, Vol. 9,
Issue 6, pp. 629-641, June 1990.
P. Cheynet, B. Nicolescu, R. Velmo, M.
Rebaudengo, M. Soma Reorda, M. Violante,
‘.Exper&entally evaluating an automatic
approach for generating safetycritical
sofhuare with respect to transient errors”,
Nuclear Science, IEEE Transactions on, Volume:
47 Issue: 6 Part: 3 , Dec. 2000 Page(s): 2231 -
2236

[IO] H. Madeira, I. G. Silva, “On-line Signature
Learning and Checking”, 2nd IFP Working
Conference On Dependable Computing for
Critical Applications (DCCA-2), pp. 170-177,
Feb. 1991

[I l l T. Michel, R. Leveugle, G. Saucier, “A New
Approach to Control Flow Checking without
Promam Modification”. 21th International
S G o s i u m on Fault- Tolerant Computing
(FTCS-21), pp. 334-341, 1991

1121 Shambhu Upaddhyaya, Bina R m m h y ,
“Concurrent Process Monitoring with No
eference Simatures”. IEEE Transaction on I

Computer, Vol. 43 no. 4, pp. 475480, April 1994
[I31 G. Miremadi, J. Ohlsson, M. Rimen, J. Karlsson,

“Use of Time and Address Signatures for Conhol
Flow Checking”. 5th lFIP Working Conference
on Dependable Computing for Critical
Application (DCCA-S), pp. 113-124, 1995

[I41 A. M. Amendola, A. Benso, F. Como, L.
Impagliazzo, P. Marmo, P. Prineno, M.
Rebaudengo, M. Sonza Reorda, Fault Behavior
O b m t i o n of a Microprocessor System through
a VHDL Simulation-Based Fault lnjection
Expiment, EURO-VHDL96, September 1996,
Geneva (CH), pp. 536-541
1. G. Silva 1. Carreira, H. Madeira, D. Costa, F.
Morein, Experimental Assessment of Parallel
Systems, Proc. FKS-26, Sendaj (0, 1996, pp.

[IS]

415424
G. Miremadi, 1. Karlsson, U. GuMeflo, J. Torin,
“Two s o h a r e techniques for on-line error
detection”, 22th International Symposium on
Fault-Tolerant Computing (FTCCS22), pp. 328-

2. Alkhalifa V.S.S. Nair, N. Krishnamurthy, J.A.
Abraham, “Design and Evaluation of System
Level Checks for on-line Control Flow Error
Detection”, IEEE Transaction on Parallel and
DisIributed Systems, Vol. IO, No. 6, pp. 627-611,
June 1999.
A. Benso. S . Di Carlo, G. Di Natale, P. Prinetto,
L. Tagliaferi, Control-Flow Checking Via
Regular Expressions, submitted to ATS 2001.
A. Baldini, A. Benso, S. Chiusano, P. Prinetto,
“BOND An Interposition AgenLs based Fault
Injector for Windows NT’, IEEE International
Symposium on Defect and Fault Tolerance in
V U 1 Systems (DW2000), pp. 387-395, October
2000.
http://tvdgl O.phy.bnl.gov/seuten.hrml

.

335, July, 1992

0-7803-7313-8/01/$17.00 (C) IEEE 273

http://tvdgl

Table 4: Benchmarks results for Control Flow (injections on code)

Floating Paint
Benchmark

Orig. Mod.

Table 5: Benchmarks results for Control Flow and Data Triplication (injections on data)

Matrix Dicotomic Multiplication Quick Sort List Insertion

Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod.

Search Benchmark

Floating Point
Benchmark

Table 6: Benchmarks results for Data Triplication (injections on data)

Matrix

Benchmark

Dicotomic
Search Multiplication Quick Sort List Insertion

Table 7: Benchmarks results for Data Duplication+ Control Flow (injections on data)

0-7803-7313-8/01/$17.00 (C) IEEE 214

