POLITECNICO DI TORINO
Repository ISTITUZIONALE

Software dependability techniques validated via fault injection experiments

Original

Software dependability techniques validated via fault injection experiments / Benso, Alfredo; DI CARLO, Stefano; DI
NATALE, Giorgio; Prinetto, Paolo Ernesto; Tagliaferri, Luca. - STAMPA. - (2001), pp. 269-274. (Intervento presentato al
convegno IEEE 6th European Conference on Radiation and Its Effects on Components and Systems (RADECS) tenutosi
a Grenoble, FR nel 10-14 Sept. 2001) [10.1109/RADECS.2001.1159292].

Availability:
This version is available at: 11583/1499884 since:

Publisher:
IEEE

Published
DOI:10.1109/RADECS.2001.1159292

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

28 April 2024

Politecnico di Torino

Software dependabllity tech-
nigues validated via fault injection
experiments

Authors: Benso A., Di Carlo S., Di Natale G., Prinetto P., Tagliaferri L.,

Published in the Proceedings of the IEEE 6th European Conference on Radiation and Its Effects on
Components and Systems (RADECS), 10-14 Sept. 2001, Grenoble, FR.

N.B. This is a copy of the ACCEPTED version of the manuscript. The final
PUBLISHED manuscript is available on IEEE Xplore®:

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1159292

DOI: 10.1109/RADECS.2001.1159292

© 2000 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in

other works.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1159292
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1159292
http://dx.doi.org/10.1109/RADECS.2001.1159292
http://dx.doi.org/10.1109/RADECS.2001.1159292

Software Dependability Techniques validated
via Fault Injection Experiments

A. BENSO, S. DI CARLO, G. DI NATALE, P. PRINETTO, L.. TAGLIAFERRI

Abstract

The present paper proposes a C/C++ Source-to-
Source Compiler able to increase the dependability
properties of a given application. The adopted strategy
is based on two main techniques: variable
duplication/triplication and control flow checking. The
validation of these techniques is based on the emulatio
of fault appearance by software fault injection. Th

chosen test case is a client-server application in rge
of calculating and drawing a Mandelbrot fragiql.

1. INTRODUCTION

concerning crucial duti
control systems. In this contex

circuits size decrease,
aspects, coupled with

the fact that p are often placed in electrically

active can favor transient errors
incidencg only used technique to detect this
kind of etrqrS is based on the on-line testing techniques
able to ansure high dependability without heavily

affecting the system performance.

The development of custom products with high
performance and dependability level it is not always an
acceptable task both from the economical point of view
and for the manufacturing time. These constraints force
the massive use of commercial off-the-shelf components
(COTS) both in software and in hardware domains.
These components are usually not developed to work in
unfavourable environments where high dependability is
the essential requirement. The goal is to realize fault
tolerant and reliable systems starting from off-the-shelf
hardware and software components.

The techniques involved in building fault tolerant
ECSs rely both on hardware and software redundancy.

Hardware redundancy is a powerful and very
effective reso but sometimes it is inap;

the cost imphles, On the other h
regﬁnd il en effective, ca
sy! nces. Howevepthi ion can
with very low c@sts.
%re dundancy 111% oits additional
memory and/or executi o guarantee the

ectness of the ¢ utati and, hence, the code

fitegrity) and e\data stored in memory. The
techniques iy’ the construction of such
software _are\ \ca ftware Implemented Hardware

Fault (SIHFT) since they handle hardware
ertors with theAoftware aid. In particular, many studies
how it is possible to verify the integrity of the

dg the situations in which the ECS produces
incorrect results, whereas the application gives the
impression to correctly terminate. This kind of
malfunction is called Fail-Silent Violation and typically
is caused by an alteration of a variable value [14] [15].

Methods based on control flow point to verify the
correctness of the program control flow. They are,
therefore, suitable to detect faults appearing in the code
more than on the variables. These solutions mainly rely
on the use of software signature checking [6-13]. The
application program is split into elementary blocks, i.e.,
block with one identified entry and exit point. A
signature is computed off-line by means of the
instructions contained in the block and then is stored in a
suitable data structure. At run-time the signature is
computed again and compared with the previously
stored one. The hardware deputed to maintain this kind
of statistics is a so-called watchdog processor [5].

This approach has demonstrated to be very effective
but unluckily shows two main drawbacks: first of all a
hardware modification (an effort which cannot always
be supported); second, watchdogs can only cover main
memory faults but not the memory cache ones.

In order to solve these two weaknesses the research
has moved in the direction of pure software
implementation. Typical solutions are Block Signature
Self Checking (BSSC) [16] and Control Checking with
Assertion (CCA) [17]. These researches essentially
exploit the previously introduced concepts of watchdogs
but the computation of the signatures is performed by a
software process and not by a hardware component.

This paper presents a new reliable compiler able to
enhance the dependability of a given C/C++ source
code. The compiler joins the approaches presented by
the authors in [2] with the RECCO (Reliable C/C++
Compiler) tool and in [18] obtaining a single integrated
approach able to deal with both data and code errors.
This new tool named RECCO* targets the improvement
of the dependability properties of C/C++ source code by
introducing apposite routines able to protect the data
stored in memory (via data duplication/triplication) and
detecting the deviations from the right control flow due
to erroneous code executions (with the use of control
flow checking) . The main purpose is to show how it i
possible to couple these two techniques to produge
high level dependability application able to sel{-detect

errors injected in its memory area. Our apgroa
been then validated with the use of @aftw
injection tool [19].

The paper is organized as : tion 2

introduces some basic concep

med on a ben . Fin

ility level is reached by
ipes that periodically check the

identifying\the different tasks of the compiling flow.
H Code Relizbility Aralysis |-7

Variable Duplicationor | _|
Triplication

>
Original

C/C++code
e
Reliability
Requirements

Control Flow
Checking

—_
Reliable C/C+ code

Figure 1: The RECCO* tool

associated /wi quertial operations that
br. i tjons wherea% ely
% S 20 1S™a

the structure o,

g Sewti 3 defines Ahe

Jection envirodrdent
e-work Secti I

First of all (Code Reliability Analysis) the compiler
acquires information about the code structure itself and
the variables used in the program. The tool builds up a
dependency graph that defines the correlation and the
dependencies among the variables.

At the same time the control flow of the code is
examined: the program is split into branch-free blocks
(defined as the biggest blocks with one entry and one
exit point) and each of them is assigned to a unique
identifier.

By means of these identifiers the compiler builds a
graph describing how the program control flow can
progress. This report is saved in an auxiliary file using
the regular expression formalism [18].

Figure 2 Refehes an example of how t
handles a vtrol flow. The BI
M\se

Block2

Block4

Figure 2: Control Flow

In the Control Flow Checking phase the code is
enriched with a concurrent process, in charge of
monitoring the control flow and verifying its
correctness. This kind of test has been suited to intercept
code modifications that cause the program to deviate
from its standard flow. Realizing the checker as an
independent process introduces a modest execution-time
overhead since its functions can be efficiently scheduled
by the Operating System when the main program is
waiting for external inputs (such as I/O operations). As a
matter of fact this approach implies the presence of a
multitasking Operating System.

During the Variable Protection phase the compiler
introduces redundant data to allow error
detection/correction of the program variables: the
variables considered in the Code Reliability Analysis are
duplicated/triplicated, depending on the user choice.
Each time a variable is written its copies are updated
whereas when a variable is read, the values stored in its
copies are checked for consistency. Therefore, the
compiled program is able to asses the reliability of its
data and detect (if variables are duplicated) or even
correct (if variables are triplicates) the errors occurring
in memory locations.

In order to reduce fault latency and to avoid fault
propagation through the system, both the tests
concerning code and data integrity are performed
concurrently with the normal operations.

3. Fault Injection

Concerning the Fault model, data corrupti
been reproduced by a single bit flip (Single Erxo

fault injection studies §
relationship betyre

up statistical investig
errors occurring in mogdern digital ci
lead to the conclusion tha
miniaturization and the high”y
circuits are becoming m
effect of ionizing radi
commonly observeene
the SEU.
€ used fault model is
he ith space applications, where
allity~of SELAS very high.

To em faults in the test-case memory a Fault
Injector hys| been implemented as a UNIX daemon able
to inject &frors in random locations of the targeted
program at random execution time.

The daemon could be driven by the user to inject
faults in different sections of the running program: code,
data and stack segment. Looking at the faulty program
results and comparing them with the correct ones the
injector is able to section the fault effects into the
following three categories:

¢ No effect: the error has no effect on the system;

* Wrong result, i.e., Fail Silent Violation (FSV): the
program end but the program results are wrong;

¢ Crash: the system crashes due to an unrecoverable
problem.

0
This

wotkload between t

a fault injection ex

The information produced by the fault injector can be
used to statistically characterize the effectiveness of
RECCO*

4. Experimental results

To prove the effectiveness of the techniques
developed in RECCO*, a test-bench and a specific fault
injection policy have been set up.

The test-case is a program able to draw images based
on Mandelbrot fractals. It is organized as a client-server
application. The~client is in charge of drawing the
picture using

Oxee the triggered, the sErver\ps
cQ sends the ta]
W
tructure has beg¢ny inten to distribute the

machines, to support
nts_and to help the statistics
registering. In fAgt;;agyNnjection experiment that causes
a malfuncti (b -/ VEr turns in an erroneous depict
i hich¢an be easily compared with the

esults’ checking is based on image files
K ly the server section of the program has
tompiled with RECCO* and the faults have been

repeated on different

onttol flow checking only (CF)
* Nariable duplication only (VD)
ariable triplication only (VT)
¢ Control flow checking and variable duplication
(CF+VD)
e Control flow checking and variable triplication
(CF+VT)
For each benchmark, a set of 1000 injections is
performed.
Table 1 summarizes the overhead introduced by the
dependable techniques.

Original| CF| VD| VT | CF+VD| CF+VT

Binary Code (KB) 16 241 17| 19 25 27

Execution Time (s) 42 5,1 54] 6,2 6,5 7,3

Table 1: Memory and Time overhead

The code overhead is comprised between 3KB and
11Kb. Nevertheless, for the control flow technique, the
most of it is wasted by the control flow checker while a
small part is used by the synchronizations routines; for
this reason the incidence of this overhead decreases with
the code growth.

The first experiment aims at underlining how many
code errors and crashes can be detected when the

Control Flow Technique is employed. Table 2
summarizes results of injections on the code segment of
the program. In this case, only the CF benchmark has
been used because data redundancy is not able to cover
transient errors on the code.
For both the original program and the CF benchmark

the following information have been provided:

¢ no effect

¢ number of crashes;

¢ number of control-flow errors;

¢ number of errors not belonging in the set of

control-flow errors;
¢ number of detected control-flow errors.

Original CF
No Effect 620 622
Crashes 274 269
Control Flow Errors 75 24
Other Errors 31 30
Detected Flow Errors - 55

Table 2: Injection on code

reduced by 68%.

The second experiment is performed cti
in the data segment and the stack
the whole set of benchmarks is

As we can see, the number of crashes decreasgs by
units whereas the number of control flow . eftors—i
aults

S case,

program and the bd
have been provided:
* No effect
* number of crashes;
e number of Fail Sile
terminates its

distorted i)
* number etected
PN
\

n (160 the program
t generates a

orrected errors.

s Origig| CF | VD[VT | CF+VD [CF+VT
No Effett\™~_ 248 [716]714[978] 716 977
Crashes \ \ 7 ~_S| 143 [143]13] 12 11 12
i# Fail Silenl Violation | 139 [139]12] 10 10 11
Detected Not 0 2 1261l 0 263 0
corrected s

Table 3: Injection on data

The number of crashes and fail silent violations is
highly reduced. This means that this huge percentage of
errors that before the compilation caused an altered
image are automatically corrected by the program itself.

To validate our approach, further benchmarks, with
different characteristics, have been set up; the results are
shown on Table 4 - Table 7. As it can be seen from the
two tables the results are similar to the ones obtained in
the previous test.

5. Conclusions

The present paper describes a source-to-source
compiler able to automatically integrate methodologies
to achieve high software dependability. The main
feature of the approach is the possibility of checking the
different memory areas of a running program with two
different methods of action. The data area is protected
with variables duplication or triplication whereas the
code section is checked for error by control flow
checking. This last technique has been implemented
resorting to a multi-process approach in order to
minimize both memory and execution time overheads.

Experimental results demonstrate the effectiveness
of the approa
terms of additi

tec

ata corruption
execution ti
dependence

U © with an overhead in the
f o. The main drawback is the
ated hardware with consequent

ications of the system.
tages of these techniques are not shown

N &; t machine independent.

6. Re %
rampen, Portable and Fault-Tolerant
are Systems, IEEE Micro, September-

ctober 1998, pp. 22-32
A. Benso, S. Chiusano, P. Prinetto, L. Tagliaferri,
A C/C++ Compiler for Dependable Applications,
The International Conference on Dependable
Systems and Networks (FTCS-30), New York
(NY), USA, June 2000, pp. 71-78

[3] S. S. Yau, F. Ch. Chen, “An Approach to
Concurrent Control Flow Checking”, IEEE
Transaction on Software Engineering, Vol. SE-6,
No. 2, pp. 126-137, 1980.

[4] R. Leveugle, T. Michel, G.Saucier, “Design of
Microprocessors with Built-In On-Line test”,
20th International Symposium on Fault-Tolerant
Computing (FTCS-20), pp. 450-456, 1990.

[5] A. Mahamood, E. J. McCluskey, “Concurrent
Error Detection Using Watchdog Processor - A
Survay”, IEEE Transaction on Computer, Vol.
37, No. 2, pp. 160-174, 1988.

[6] M. Namjoo, “Techniques for Concurrent Testing
of VLSI Processor Operation”, International Test
Conference (ITC-82), pp. 461-468, 1982.

[71 M.A. Schutte, J.P. Shen, D. P. Siewiorek, Y. X.
Zhu, “Experimental Evaluation of Two

[8]

91

[10]

[11]

[12]

[13]

Concurrent Error Detection Schemes”, 16"
International Symposium on Fault Tolerant
Computing (FTCS-16), pp. 138-143, 1986

K. Wilken, J.P. Shen, “Continuous Signature
Monitoring: Low-Cost Concurrent Detection of
Processor Errors”, IEEE Transaction on
Computer Aided Design and Systems, Vol. 9,
Issue 6, pp. 629-641, June 1990.

P. Cheynet, B. Nicolescu, R. Velazco, M.
Rebaudengo, M. Sonza Reorda, M. Violante,
“Experimentally evaluating an automatic
approach for generating safety-critical

software with respect to transient errors”,
Nuclear Science, IEEE Transactions on , Volume:
47 Issue: 6 Part: 3 , Dec. 2000 Page(s): 2231 -
2236

H. Madeira, J. G. Silva, “On-line Signature
Learning and Checking”, 2nd IFIP Working
Conference On Dependable Computing for
Critical Applications (DCCA-2), pp. 170-177
Feb. 1991

T. Michel, R. Leveugle, G. Saucier, “ e
Approach to Control Flow Checki

Program Modification”, 21th _ Internati
Symposium on Fault- Tolerant \Computing
(FTCS-21), pp. 334-341, 199
Shambhu Upaddhyaya, B

“Concurrent Proces nioging with

eference Signatures™, Transacti on
N0\ 4\ pp/ 475-480, A

on Dependable

Application (DCCA-5)

€ (O
ion”, IEEE %{ 1
Distributed Syst % \No. 6, pp. 627-641,
June 1999.
. 0,6.D

[14] A. M. Amendola, A. Benso, F. Corno, L.
Impagliazzo, P. Marmo, P. Prinetto, M.
Rebaudengo, M. Sonza Reorda, Fault Behavior
Observation of a Microprocessor System through
a VHDL Simulation-Based Fault Injection
Experiment, EURO-VHDL96, September 1996,
Geneva (CH), pp. 536-541

[15] J. G. Silva, J. Carreira, H. Madeira, D. Costa, F.
Moreira, Experimental Assessment of Parallel
Systems, Proc. FTCS-26, Sendaj (J), 1996, pp.
415-424

[16] G. Miremadi, J. Karlsson, U. Gunneflo, J. Torin,
“Two software techniques for on-line error
detection”, 22th International Symposium on

Fault- nt Computing (FTCS-22 . 328-
335 92
dichali ’S.S. Nair, N. Kris

% J “Design ar§> Evi
& -1T

ecks for on

rthyJ.A.
System-
Flow Error
Parallel and

8] D1 1 i Natale, P. Prinetto ,

ntrol-Flow Checking Via
[19] ini, A. Benso, S. Chiusano, P. Prinetto,

Injector for Windows NT”, IEEE International
Symposium on Defect and Fault Tolerance in
VLSI Systems (RFT°2000), pp. 387-395, October
2000.

[20] http://tyd nl.gov/seutest.html

Floating Point Dicotomic Mat}* ix
Benchmark Search Multiplication | Quick Sort List Insertion
Benchmark
Orig. | Mod. | Orig. | Mod. | Orig. | Mod. | Orig. | Mod. | Orig. | Mod.
Code Size (KB) 48 58 36 43 14 22 15 23 20 29
Execution Time (s) 1,5 1,8 04 0,6 6,1 10,5 0,5 0,6 1,5 2
Crashes 484 471 452 443 420 414 440 432 471 464
No Effect 465 466 501 503 537 538 512 513 475 478
Control Flow Errors 25 19 18 9 13 6 19 9 23 12
Other Errors 26 26 29 29 30 30 29 29 31 31
Detected Flow Errors 18 16 NS

Table 4: Benchmarks results for Control V}%tlons on code) “

Floating . . trix’
. Dicotomic > . .

Point Searc I io Qu1ck st Insertion
Benchmark b \a Belichmark \

Orig. | Mod. O/r'ﬁ. KI&ZIQQQ rig. | Mod. (ﬁé . | Orig. | Mod.

Binary Code Size (KB) | 48 63 A Y6 49 14 | 29 pOINY 27 20 33
Execution Time (s) 15 | 18 \N4A 06 | 6,1 [958 05 | 06 1,5 2,5
No Effect 690 L 983\ [) a83 981 658N 97191696 | 992 | 657 | 983
Crashes 129/ \\§\/l78 159 \) 135 | 4 | 214 9

Fail Silent Violation {—~7\ \88 169 129

Table 5: Benc 14 s })for Con@wam Trlplzcatzon (1nJect10ns on data)

Ma
Float1 t %’ilscotomlc MultlpEc }u,\tlck Sort List Insertion
earch M

><®\$xg? }\@ Orig. M%f/ %)M&P Orig. | Mod. | Orig. | Mod.
Code Size (KB) [4853 36 43\ 17 15 19 20 24
Execution Tipse) \ \ | 15] 18 04 | 066,10 | 105 [05 [06 1,5 22
No Effect/ [0 [984 [663 [983 | 653 | 981 [696 [992 | 657 [985
Crashes \ \ N | 139 8 178 7 159 5 135 4 214 8
Fail Sitent Viotatiod | 171 8 159 | 2 [ass | 14 [169 | 4 | 129 | 7

WTable 6: Benchmarks results for Data Triplication (injections on data)

Floating Point Dicotomic Mat}' ix
Benchmark Search Multiplication | Quick Sort List Insertion
Benchmark
Orig. | Mod. | Orig. | Mod. | Orig. | Mod. | Orig. | Mod. | Orig. | Mod.
Code Size (KB) 48 60 36 46 14 24 15 25 20 31
Execution Time (s) 1,5 1.8 04 0,6 6,1 10,5 0,5 0,6 1,5 22
Crashes 139 7 178 7 159 5 135 5 214 9
No Effect 690 685 663 660 653 651 696 691 657 655
Fail Silent Violations 171 9 159 11 188 16 169 4 129 7
Detected Errors 299 322 328 300 329

Table 7: Benchmarks results for Data Duplication+ Control Flow (injections on data)

