
07 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An effective distributed BIST architecture for RAMs / Benso, Alfredo; Chiusano, SILVIA ANNA; DI CARLO, Stefano; DI
NATALE, Giorgio; LOBETTI BODONI, M.; Prinetto, Paolo Ernesto. - STAMPA. - (2000), pp. 119-124. (Intervento
presentato al convegno IEEE European Test Workshop (ETW) tenutosi a Cascais, PT nel 23-26 May 2000)
[10.1109/ETW.2000.873788].

Original

An effective distributed BIST architecture for RAMs

Publisher:

Published
DOI:10.1109/ETW.2000.873788

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1499844 since:

IEEE Computer Society

An Effective Distributed BIST Architecture for RAMs

Monica LOBETTI BODONI

Siemens Information and
Communication Networks S.p.A.
Castelletto di Settimo Milanese

I-20019, Milano, Italy
Email: monica.lobettibodoni@icn.siemens.it

Alfredo BENSO, Silvia CHIUSANO, Stefano
DI CARLO, Giorgio DI NATALE, Paolo PRINETTO

Politecnico di Torino
Dipartimento di Automatica e Informatica

Corso duca degli Abruzzi 24
I-10129, Torino, Italy

Email: {benso, chiusano, dicarlo, dinatale,
prinetto}@polito.it

Abstract

The present paper proposes a solution to the problem of
testing a system containing many distributed memories of
different sizes. The proposed solution relies in the
development of a BIST architecture characterized by a
single BIST Processor, implemented as a micro-
programmable machine and able to execute different test
algorithms, a Wrapper for each SRAM including standard
memory BIST modules, and an interface block to manage
the communications between the SRAM and the BIST
Processor. Both area overhead and routing costs are
minimized, and a scan-based approach allows full
diagnostic capabilities of the faults possibly detected in
the memories under test.

1. Introduction

Several commercial tools are nowadays available for
the automatic insertion of the RAM BISTing [1], [2]. This
paper presents the efforts and the results obtained in
designing a proprietary BIST architecture to fulfill a
peculiar industrial scenario.

In the target industrial scenario, the test engineer has to
define the BIST strategy of a complex System-on-Chip
including several SRAMs of different sizes (number of
bits, number of words), access protocol (asynchronous,
synchronous), and timing. Apart from the required design
time, the mentioned task usually poses many issues, as the
BIST area and routing overhead, the number of BIST
controller to be used, the power budget constraints, and
the diagnostic capabilities of the approach.

The BIST architecture proposed in this paper is
characterized by (Figure 1):

• A single BIST Processor, able to perform the test
of all (or a subset of) the SRAMS of the system. It
is implemented as a micro-programmable machine
executing elementary test primitives stored in a
dedicated memory and implementing any required
March algorithm;

• A Wrapper placed around each SRAM, including
standard memory BIST blocks (i.e., an address
generator, a background pattern generator, and a
comparator), and an interface block designed to
manage the communications between the SRAM
and the BIST Processor independently from the
memory access protocol;

• A minimal set of communication signals that
allows the BIST Processor to execute and
synchronize the test algorithm of all the memories
under test;

• A scan chain connecting all the Wrappers in order
to allow full diagnosis of the memories under test.

The proposed scheme presents several advantages. To
begin with, it allows running concurrently the BIST of a
set of SRAMs of different sizes, accessing protocols and
timing. Moreover, the set of memories to be tested can be
flexibly defined by the user, using either ad-hoc test
primitives stored in the test program, or a dedicated scan
chain configuring a status bit in each memory. The use of
a single BIST controller and a minimum set of
communications signal allow minimizing the BIST area
overhead and the routing around each SRAMs. Finally,
implementing the BIST Processor as a micro-
programmable machine provides the test engineer with a
flexible and reusable block, which can be used to manage
the BIST of any number of memories of any size, and it is
independent from the test algorithm.

SRAMSRAM

WrapperWrapper

SRAMSRAM

WrapperWrapper

SRAMSRAM

WrapperWrapperBISTBIST
ProcessorProcessor

µµµµP P MemMem

Figure 1: Basic Architecture

The paper is organized as follows: Sections 2 and 3
describe the two main blocks that compose the proposed
approach. Section 4 details the diagnostic capabilities of
the architecture, whereas Section 5 presents a possible
optimization when dealing with a set of identical
memories. Experimental results gathered on a realistic
case study are discussed in Section 6, and Section 7
eventually draws some conclusions.

2. The BIST Processor

As introduced in the previous section, the proposed
scheme is based on a single BIST Processor used to test all
the memories of the system. To increase flexibility, the
BIST execution is based on a micro-programmable
approach. The test algorithm (a March Algorithm [3]) is
stored in a dedicated µProgram-Memory, coded using a
set of test primitives. The µProgram-Memory can be either
a ROM (in this way the test program is fixed at project
time) or a programmable memory (in this way the
appropriate test algorithm can be loaded into the memory
at test time). The BIST Processor reads one test primitive
at a time, forwards it to all the Wrappers of the SRAMs
under test using a synchronization signal, and waits for all
the enabled SRAMs to complete the test primitive before
sending the next one. When the test program is completed
(all the test primitives have been applied), the BIST
Processor reads the test results from each RAM. If a fault
is detected, the faulty RAM can be located resorting to a
set of diagnostic facilities (See Section 4). The set of test
primitives needed to code a March Algorithm is listed in
Table 1.

Table 1: March Algorithm Test Primitives

Test primitive Description
CONF Define the set of SRAMs under Test
W0 Write pattern
W1 Write not(pattern)

R0 Read and verify a pattern
R1 Read and verify a not(pattern)
INC Increment the address generator
DEC Decrement the address generator
NEXTBP Next Background Pattern
END End of test

As an example, let’s consider the MATS algorithm for
an 8-bit wide RAM, properly expanded as proposed in [4]
to cover intra-word CFsts faults:

{⇑(w0) ; ⇓(r0,w1) ; ⇑(r1) ;
c(wBP0, rBP0, wBP1, rBP1, ..., wBP7, rBP7),)}

whereby BP0 through BP7 are taken from the set of
Background Patterns from Table 2 [4].

Table 2: 8 bits Background patterns BPj for
CFsts

j Background Pattern
0 00000000
1 11111111
2 11110000
3 00001111
4 11001100
5 00110011
6 10101010
7 01010101

The considered MATS algorithm can be described
using the following sequence of primitives:

Table 3: Modified MATS Algorithm

March Element Primitive
W0

⇑(w0)
INC
R0
W1⇓(r0,w1)

DEC
R1

⇑(r1)
INC
W0
R0
W1
R1

NEXTBP

c(wBP0, rBP0, wBP1, rBP1, ..., wBP7,
rBP7,)

INC
--- END

An important issue to be faced when running
concurrently the BIST of many modules is fulfilling
power budget constraints. In fact, BIST typically results in

a circuit activation rate higher than the normal one [5], and
an over-dissipation of power may seriously damage the
device. Moreover, the wide variety of SRAMs that can be
found in a complex architecture may require different test
algorithms. To address these two issues, the proposed
approach implements a very flexible scheduling
mechanism. In particular, it is possible to select the set of
memories to be placed under test using either a special test
primitive in the µProgram-Memory, as part of the test
algorithm, or setting a dedicated flag into the memory
Wrapper through a scan chain. Only the Wrappers of the
selected memories will execute the test primitives received
from the BIST Processor. In this way it is possible to store
in the µProgram-Memory more than one test algorithm
and apply them to different sets of memories. The two
scheduling mechanisms are briefly explained in the
following two subsection.

2.1. Scheduling using the “CONF” primitive.

Using the CONF primitive, it is possible to embed into
the test Program the scheduling information. The format
of this primitive in the µProgram-Memory is shown in
Table 4.

Table 4: Conf primitive representation

CONF
#words

ActivationMask
Where:
• Conf is the primitive opcode;
• #words is the number of 4-bit words used to code

the ActivationMask;
• ActivationMask is a mask of bits, one for each

memory in the system. To include a memory in the
set of the SRAMs under test the corresponding bit
in the ActivationMask has to be set.

As an example, let consider the system in Figure 2:

µP-MEM

BIST
Processor

RAM6 RAM7RAM5RAM4RAM3RAM2RAM1

AS

2
CONF

1001
0000

ALG 1

2
CONF

0110
0000

ALG 2

Figure 2: Scheduling using the “Conf” primitive.

When the BIST processor reach a CONF primitives
during the Test Program execution it read the
ActivationMask and configure all the memory wrappers
using the scan chain defined in Section 1 in order to
realize the described scheduling plane. The first
ActivationMask described in Figure 2 sets the RAM1 and
RAM4 under test whereas the second one sets the RAM2
and RAM3 under test. In order to define different test
sessions and to collect test results, at the end of each
algorithms the BIST processor stop the test program
execution and wait for a new start command to continue
with the next one.

2.2. Scheduling using the Scan chain option.

In order to give high flexibility to the designer, the set
of RAMs under test can be set loading the appropriate
ActivationMask (see 2.1) directly from the extern using a
scan chain protocol.

In order to choose the appropriate test algorithm in the
µ-program memory, also the µ-program memory Address
Register can be loaded via scan chain protocol.

3. The memory Wrappers

The Wrapper placed around each memory has to
execute the test primitives received by the BIST Processor,
independently of the memory access protocol. Moreover,
the Wrapper is the only element in the architecture that
must know the dimension and the access protocol of the
memory it is placed around.

The Wrapper generates the correct test patterns and
memory addresses required to execute the received test
primitive, and evaluates the output results of a read-and-
verify primitive.

The internal structure of a Wrapper is in Figure 3. The
Address Generator (AG) is in charge of generating the
correct address where the test pattern, provided by the
Background Pattern Generator (BPG), has to be written or
verified. The BPG can generate “1…1” and “0…0” test
patterns as well as the background patterns shown in Table
2. The correctness of the content of a memory cell is
evaluated using a simple comparator.

Two Status Bits are used to set the memory in
transparent or in test mode (the Mode Status Bit) and to
store the test results at the end of the BIST algorithm (the
Result Status Bit), respectively. In order to load and read
their content, the status bits of all the Wrappers are
connected by two different scans chain, named
Normal_Test_Scan_Chain (NTScan) and
Results_Scan_Chain (Resscan).

Finally, each Wrapper includes an Interface Block able
to receive the test primitives from the BIST Processor, and
to produce the status signals needed by the BIST
Processor to schedule the next test primitive to be

executed. In particular, the Interface Block generates the
following information:

• End of Instruction (EOIN): asserted when the last
received test primitive is thoroughly executed;

• End of Address Space (EOAD): asserted when the
address generator reaches the end of its addressing
space;

• End of Patterns (EOPG): asserted when the BPG
has generated the whole set of background
patterns;

• Read-and-Verify Result (GO): asserted when the
content of the addressed memory cell matches the
value expected by the test algorithm.

SRAMSRAM

FunctFunct Data In Data In

FunctFunct
Data OutData Out

FunctFunct..
AddressAddress

Data In

Data Out

Address

AddressAddress
GeneratorGenerator

BackgroundBackground
PatternPattern

GeneratorGenerator

=

Interfacing BlockInterfacing Block

STATUS BITSTATUS BIT
ContrContr_in_in

ContCont_out(i)_out(i)

ContCont_out(i-1)_out(i-1)

4

Figure 3: Wrapper structure

The BIST Processor receives the logic-AND of the
signals generated by the memories under test. In this way,
for example, the input EOAD signal of the BIST
Processor switches to ‘1’ only when all the EOAD signals
of the memories under test have been set to ‘1’, i.e., all the
memory Wrappers reached the end of their address space.
Consequently, from the BIST Processor point of view, the
system under test consists in a single memory, whose size
is equal to the maximum size of the memories under test.
To minimize the routing overhead, the signals exchanged
between the BIST Processor and the memory Wrappers
(command signals, synchronization signal, scan chain
signals) are multiplexed (Figure 4), and all the information
items routed using only five signals (four command
signals and one synchronization signal).

BIST
PROCESSOR

CUCU

sync

NTscan

SE

SE

Interfacing Interfacing BLOCKBLOCK

Resscan

CUCU

sync

NTscan

Interfacing BLOCK

Resscan

SE

SE

Figure 4: Multiplexing of command and
synchronization signals

4. Diagnosis

When a faulty memory is detected, the proposed
approach allows collecting diagnostic information
concerning the location of the faulty SRAM, the address
of the faulty cell and the pattern that detected the fault.
These information are stored into the Result Status Bit, the
Address Generator, and the Background Pattern Generator
of each Wrapper. All the diagnostic information can thus
be accessed via the Results_Scan_Chain. In particular,
depending on the result of the test, each Wrapper is able to
configure its portion of the Results_Scan_Chain in one of
the following two ways (Figure 5):

• If the RAM is not faulty, only the
Result_Status_Bit (whose value is equal to ‘0’) is
placed on the scan chain.

• If a RAM is faulty, the Result_Status_Bit (whose
value is ‘1’) is concatenated to the contents of the
Address Generator and the Background Pattern
Generator.

ADDRESS GEN.ADDRESS GEN. BPGBPG 11

00
SCAN_IN

SCAN_OUT

RESULT_STATUS_BIT

Figure 5: Results_Scan_Chain

5. Further optimizations

To further reduce the BIST area overhead, the designer
can share a single Wrapper for a cluster of identical
SRAMs (same type, width and addressing space). When
the BIST Processor drives the Wrapper, only one Address
Generator and one BPG are needed to execute the required
test primitives on all the SRAMs.

The only difference with the previously described
Wrapper structure is that a shared Wrapper contains a pair
of Status Bits and a comparator for each RAM (Figure 6).

In this way, when a fault is detected, the Result Status Bit
of the faulty memory is set, the RAM is disconnected, and
the Wrapper continues testing the remaining memories of
the cluster. Obviously, in this case, the status of the
Address Generator and the BPG of the faulty RAM are not
preserved. To collect diagnostic information, the test must
be re-executed targeting the faulty RAM, only, properly
setting its Mode Status Bit.

Func. Data In

Funct.
Address

Address
Generator

Background
Pattern

Generator

=

Interfacing Block
ContrContr_out(i)_out(i)

SRAM

DI

DO

AD
SRAM

DI

DO

AD
SRAM

DI

DO

AD

= =

Funct.
Data
Out

STATUS BIT

ContrContr_out(i-1)_out(i-1)

ContrContr_in_in

4

Figure 6: Wrapper structure for a RAM cluster

6. Experimental results

To evaluate the impact of the proposed solution in
terms of area overhead, a case study has been developed
within Siemens ICN. The target circuit (Figure 8) has been
described in VHDL and synthesized using the G10
LSILogic library [6], which provides a set of SRAMs of
different sizes. The test case includes 8 SRAMs: 5
different memories managed by 5 different Wrappers and
a cluster of 3 identical memories that shares a single
Wrapper.

The area occupation of each memory and its Wrapper
is in Table 5 whereas Figure 8 shows the contributions of
the functional blocks of each Wrapper.

The total area overhead including the Wrappers and the
BIST Processor is in Table 6 and Figure 9.

1Kx81Kx8

WrapperWrapper

BISTBIST
ProcessorProcessor

µµµµP P MemMem WrapperWrapper

4Kx164Kx16

8Kx168Kx16

WrapperWrapper

8Kx328Kx32

WrapperWrapper

2Kx642Kx64

WrapperWrapper

4Kx164Kx16

WrapperWrapper

4Kx164Kx16 4Kx164Kx16

Figure 7: Case study

Table 5: Memory Wrapper overhead

RAM RAM Area Wrapper Area Overhead
1Kx8 25,831 1,788 6.92%
4Kx16 139,740 2,291 1.64%
8Kx16 265,355 2,347 0.88%
2Kx64 314,262 3,653 1.16%

3*[4Kx16] 419,220 3,254 0.78%
8Kx32 492,537 2,908 0.59%

0

500

1000

1500

2000

2500

3000

3500

4000

1Kx8 4K*16 8Kx16 2Kx64 3*[4Kx16] 8Kx32
Number of cells

E
qu

iv
al

en
t g

at
es

Interfacing block

Comparator

AG

BPG

Figure 8: Wrappers area

Table 6: Total area overhead

Total RAM area 1,656,945
Total Wrapper area 16,241
BISTprocessor area 1,392
Total 1,674,578
Total area overhead 1.06%

Total Ram Area

Wrap8kx32
BIST Processor

Wrap3*[4Kx16]

Wrap2Kx64

Wrap8kx16

Wrap4Kx16
Wrap1Kx8

Figure 9: Area overhead

Resorting to the experimental results shown in the
previous tables, we can relate the area overhead of the
Address Generator and the BPG to the dimension of the
memory under test.

Figure 10 and Figure 11 present the trend of the area
occupation of the mentioned two blocks related to the
number of bits and number of words, respectively.

0
100
200
300
400
500
600
700

1 8 16 32 64
Word width

E
qu

iv
al

en
t g

at
es

Figure 10: BPG area evaluation

450

500

550

600

650

700

1K 2K 4K 8K

Addressing Space

E
qu

iv
al

en
t g

at
es

Figure 11: Address generator area evaluation

7. Conclusions

In this paper we presented a possible solution to a
particular industrial scenario, in which it is necessary to
define the BIST strategy of a complex system including
several SRAMs of different sizes, access protocol, and
timing. The proposed architecture is composed of a single
BIST Processor, implemented as a micro-programmable
machine and able to execute different test algorithms, a
Wrapper for each SRAM including standard memory
BIST modules, and an interface block to manage the
communications between the SRAM and the BIST
Processor. The proposed scheme presents several
advantages. To begin with, it allows running concurrently
the BIST of a set of SRAMs of different sizes, accessing
protocols and timing minimizing the BIST area overhead
and the routing around each SRAMs. Moreover, the set of
memories to be tested can be freely selected by the
designer, as well as the test algorithm to be executed on
each set.

8. References

[1] Logic Vision web site, http://www.logicvision. com,
February 2000

[2] Mentor Graphics web site, http://www. mentrog. com/dft,
February 2000

[3] A.J. Van de Goor, Using March Tests to Test SRAMs, in
IEEE Design and Test, March 1993, pp 8-14

[4] A.J. van de Goor, I.B.S. Tlili, March tests for word-
oriented memories, DATE’98: IEEE Design, Automation
and Test in Europe, pp. 501-508, 1998

[5] Y. Zorian, A distributed BIST Control Scheme for complex
VLSI devices, VTS’93: The 11th IEEE VLSI Test
Symposium, pp. 4-9, April 1993

[6] http://www.lsil.com

