
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

TS2PACK: A Two-Level Tabu Search for the Three-dimensional Bin Packing Problem / Crainic, T. G.; Perboli, Guido;
Tadei, Roberto. - In: EUROPEAN JOURNAL OF OPERATIONAL RESEARCH. - ISSN 0377-2217. - STAMPA. -
195:3(2009), pp. 744-760. [10.1016/j.ejor.2007.06.063]

Original

TS2PACK: A Two-Level Tabu Search for the Three-dimensional Bin Packing Problem

Publisher:

Published
DOI:10.1016/j.ejor.2007.06.063

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1497436 since:

Elsevier

TS2PACK: A Two-Level Tabu Search for the

Three-dimensional Bin Packing Problem

Teodor Gabriel Crainic
Département de management et technologie

École des sciences de la gestion, U.Q.A.M.
and CIRRELT, Montreal, Canada

theo@crt.umontreal.ca

and
Guido Perboli and Roberto Tadei

Control and Computer Engineering Department
Politecnico di Torino, Torino, Italy

guido.perboli@polito.it, roberto.tadei@polito.it

Abstract

Three-dimensional orthogonal bin packing is a problem NP-hard in
the strong sense where a set of boxes must be orthogonally packed into
the minimum number of three-dimensional bins. We present a two-level
tabu search for this problem. The first level aims to reduce the number of
bins. The second optimizes the packing of the bins. This latter procedure
is based on the Interval Graph representation of the packing, proposed
by Fekete and Schepers, which reduces the size of the search space. We
also introduce a general method to increase the size of the associated
neighborhoods, and thus the quality of the search, without increasing
the overall complexity of the algorithm. Extensive computational results
on benchmark problem instances show the effectiveness of the proposed
approach, obtaining better results compared to the existing ones.

Keywords: Three-dimensional packing, Tabu Search, bin packing.

1 Introduction

Given a set of rectangular-shaped items i ∈ I, with sizes wi, li, and hi, and
an unlimited number of containers of fixed sizes W , L, and H, called bins, the
Three-Dimensional orthogonal Bin Packing problem consists in orthogonally
packing the items into the minimum number of bins. We assume items cannot
be rotated. According to the typology introduced by Wäscher et al. [29], the
problem can be characterized as the Three-Dimensional Single Bin-Size Bin
Packing Problem (3D − SBSBPP).

1

Multi-dimensional Bin Packing (BP) problems have been studied mainly
in their 2D versions, the focus on problems in higher dimensions, 3D versions
in particular, being quite recent ([24], [9] and [25]). It is interesting to notice
that most approaches used to address two-dimensional packing problems cannot
be extended to their three-dimensional counterparts or, in the best case, that
such an extension yields packing that underuses the volumes of the bins ([24],
[23], [25], [19], and [21]). Methods specifically designed for 3D problems must
therefore be developed.

3D − SBSBPP is NP-hard in the strong sense. Meta-heuristics appear
therefore as the methods of choice when large instances must be addressed.
Meta-heuristics proposed in the literature use a composite solution representa-
tion, which considers simultaneously the assignments of items to the bins and
the packing representation describing the positioning of items inside the bins.
This considerably reduces the flexibility and performance of the methods. In
fact, in these cases can be necessary to rewrite and adapt the overall heuristics
every time a packing constraint changes. This paper addresses this issue and
proposes a flexible meta-heuristic that outperforms existing methods.

The main contribution of the paper is the introduction of TS2PACK, a
two-level heuristic aimed at solving 3D−SBSBPP . TS2PACK separates the
search for the optimal number of bins, related to the assignment of the items to
the bins (first-level heuristic), from the optimization of the accommodation of
items within bins (second-level heuristic). This results into a significantly more
flexible procedure than existing heuristics. Thus, the accommodation heuristic
can be modified to take into account additional constraints or use a different
solution representation without changing the first level heuristic.

One of the main challenges of Multi-Dimensional Packing problems is effi-
ciently verifying the feasibility of the packings, i.e., given the items assigned
to a container and their positions within the container according to a set of
orthogonal axes, the assignment is feasible if and only if the items of each pair
do not overlap. The second level heuristic uses an implicit representation of
a packing in a multi-dimensional environment following the graph-theoretical
characterization developed by Fekete and Schepers [10, 11]. According to the
literature (Section 2), it is the first time that this representation, which reduces
the size of the solution space of the accommodation heuristic, is applied within a
meta-heuristic context. TS2PACK also includes the k-chain-moves algorithm,
a general method to increase the accuracy of a neighborhood. It dynamically
increases the size of a neighborhood without changing its computational com-
plexity, introducing cycles of changes inside the solution.

Extensive computational results on benchmark problem instances show that
the TS2PACK meta-heuristic outperforms other methods for solving 3D −
SBSBPP . The experimental results also show that k-chain-moves and the
graph-theoretical characterization of the solution improve significantly the re-
sults of the TS2PACK heuristic both in quality and accuracy.

The paper is organized as follows. We recall the literature on solution meth-
ods for 3D − SBSBPP in Section 2. Section 3 is dedicated to introducing the
TS2PACK heuristic. Experimental results are discussed in Section 4.

2

2 Literature Review

According to several papers and surveys (e.g., [25], [19] and [21]), one of the main
issues in building a solution of a multi-dimensional packing problem is finding
an efficient and accurate representation of placement of the items inside the
container. However, in the following, we will focus on the solution methods for
3D − SBSBPP , being available a recent review of the packing representations
in [7].

The first exact method to solve 3D − SBSBPP was proposed by Martello,
Pisinger and Vigo [24]. It is a two-level Branch & Bound. The first search
tree assigns the items to the bins. For each node of the first-level search tree,
they use a second Branch & Bound to verify (prove) whether the items assigned
to each bin can be actually packed into it. To perform this verification phase,
the authors consider that, given a set of items placed into a container, the
resulting set of possible packing is dominated by the packing where the items
cannot be moved leftward, downwards or backwards. Furthermore, given a
partial packing, there is a limited number of points within the residual space of
the container where we can accommodate a new item without the new packing
being dominated by another. These points, called Corner Points (CP s), are
used by the authors to reduce the search space of the second level Branch &
Bound. Martello, Pisinger and Vigo test their procedure on 6 sets of instances
with up to 200 items.

In the same paper, the authors derive the first lower bounds for 3D −
SBSBPP . Their best bound considers the items with width and height larger
than fixed values p and q, respectively, and determines the subsets of items that,
for geometric reasons, cannot be placed side by side.

Fekete and Schepers [10, 11] define an implicit representation of the packing
by means of Interval Graphs (IGs), the Packing Class (PC) representation. In
their work, the authors consider the relative position of the boxes in a feasible
packing and, from the projection of the items on each orthogonal axis, they
define a graph describing the overlappings of the items in the container. More
formally, let Gd (V,Ed) be the interval graph associated to the dth axis with a
vertex associated to each item i in the container and a non-oriented edge (i, j)
between two items i and j if and only if their projections on axis d overlap. The
authors prove necessary conditions on the interval graphs to define a feasible
packing. This characterization is used by the authors to develop a two-level
tree search. Their computational results, mainly limited to 2D problems, show
that their method outperforms previous methods. Unfortunately, up to now no
comparison with the Branch & Bound by Martello, Pisinger, and Vigo [24] has
been performed, even if the approach by Fekete and Schepers could be easily
extended to 3D − SBSBPP .

A new class of lower bounds has been introduced by Fekete and Schepers
[10]. The authors extend the use of dual feasible functions, first introduced
by Johnson [18], to two and three dimensional packing problems, including
3D − SBSBPP .

The most recent lower bound, proposed by Boschetti [5], introduces new

3

dual feasible functions. The derived bound is able to dominate both the bounds
by Martello, Pisinger and Vigo and the ones by Fekete and Schepers.

A Tabu Search algorithm for the 2D−BP problem was developed by Lodi,
Martello, and Vigo [20]. This algorithm uses two simple construction heuristics
for packing the items into the bins. The Tabu Search algorithm only controls the
movement of the items between the bins. In [23], this Tabu Search approach was
generalized to other variants of the BP problem, including the one considered
in this paper.

Faroe, Pisinger, and Zachariasen [9] presented a Guided Local Search (GLS)
heuristic algorithm for 3D − SBSBPP . Starting with an upper bound on
the number of bins obtained by a greedy heuristic, the algorithm iteratively
decreases the number of bins, each time searching for a feasible packing of the
boxes using the GLS method. Up to now, this heuristic is the one that obtains
the best solutions for 3D − SBSBPP .

Different constructive algorithms have been developed for different versions
of the 2D problem (see [21] for a survey). Unfortunately, these approaches can-
not be directly applied to the 3D case due to the growing complexity of the
accommodation of the items. Two heuristics have been developed and tested
for 3D−SBSBPP by Martello, Pisinger, and Vigo in [24]. The first algorithm,
called S − Pack, is based on a layer building principle derived from shelf ap-
proaches used by several authors for 2D − BP (e.g., [6] and [4]). The second
approach, called T − MPV , repeatedly fills a bin after the other by means of
a Branch & Bound algorithm for the single container filling developed by the
authors in the same paper.

Lodi, Martello, and Vigo [22] presented a new heuristic for 3D−SBSBPP ,
called Height first - Area second (HA). The heuristic chooses the best of two
possible solutions. In the first one, the items are partitioned by height into
clusters and a series of layers are obtained from each cluster. Then, the layers
are packed into the bins through the Branch & Bound by Martello and Toth
for the 1D −BP problem. The second solution is obtained resorting the items
by non-increasing area of their base and new layers are built. As in the first
solution, the layers are packed in the bins solving a 1D−BP problem. According
to the results, the HA heuristic is the constructive procedure that obtains the
best results on benchmark tests.

Crainic, Perboli, and Tadei [7] defined the Extreme Points, an extension of
the Corner Points able to better exploit the container’s volume. The basic idea
is to efficiently find the points where an item can be added to an existing pack-
ing. The Extreme Points are used by the authors to design new constructive
heuristics based on the First Fit Decreasing and the Best Fit Decreasing heuris-
tics for the mono-dimensional BP problem. Computational results show that
they outperform all the other constructive heuristics for both 2D − SBSBPP
and 3D − SBSBPP . Moreover, the procedure obtains, in negligible time, re-
sults that are better than those of the Branch & Bound by Martello, Pisinger,
and Vigo [24] and comparable to those of existing meta-heuristics.

4

3 TS2PACK: A Two-Stage Tabu Search Heuris-
tic for 3D − SBSBPP

The main difference between mono-dimensional and multi-dimensional packing
problems is the verification of the feasibility of the packing, i.e. given a set of
items IC assigned to a container C, determining whether an accommodation
of the items inside the container exists such that the items do not overlap and
the packing is compatible with the container size. Usually, both in exact and
heuristic procedures, the feasibility of the packing and the evaluation of the
objective function of the problem are mixed. This is particularly true for meta-
heuristics and their neighborhood exploration addresses phases [9], [3].

Two observations can be made at this point. Given a container and a set of
items to accommodate into according to a specified objective function:

• some decisions change from one problem to another and are usually related
to the objective function, e.g., the assignment of items to bins in the BP
problem or the selection of the subset of items to load in the Container
Packing problem, and can be seen as optimality-related decisions;

• the problem of evaluating the accommodation is the same in different
multi-dimensional packing problems and are feasibility-related decisions.

Dissociating the feasibility and the optimality issues by using two different
heuristics would then provide the means to define different solution representa-
tions and apply different methods to solve the two sub-problems. Furthermore,
the methods developed for the feasibility issue could be reused for different
classes of packing problems and the introduction of additional constraints on
the packing (e.g., guillotine cut) would not modify the heuristic dealing with
the optimality issue. We thus propose TS2PACK, a two-level meta-heuristic,
where a first-level heuristic deals with the optimality of the BP problem, while
a second-level heuristic finds feasible packings for the items assigned to the bins.
Both heuristics are Tabu Search based.

Tabu Search is a memory-based search method introduced by Glover [14, 15].
Tabu Search meta-heuristics avoid local optima by allowing the objective func-
tion to deteriorate and series of cyclic moves in the search space by keeping
track of recent moves in the so-called tabu list. The number, size, contents, and
management policies of the tabu list depend on the specific problem and algo-
rithm. The method can be enhanced by performing diversification, a method
to guide the search toward zones of the solution space not yet explored.

The TS2PACK meta-heuristic (see Algorithm 1 for a schema of the heuris-
tic) computes an initial solution applying the EP-FFD heuristic developed by
the authors [7]. The EP-FFD heuristic is a composite heuristic derived from
the well-known First Fit Decreasing algorithm for the mono-dimensional Bin
Packing problem. The items are sorted by non-increasing values of their vol-
ume and are accommodated one after the other into the existing bins. When an
item cannot be loaded into an existing bin, a new bin is created. The items are

5

accommodated into the bins by placing them on the Extreme Points. When an
item k is placed in a given position (xk, yk, zk) in a container, an additional item
j can be accommodated in specific points, called Extreme Points (EP s). They
are the orthogonal projections, on the three axes, of the points (xk +wk, yk, zk),
(xk, yk + lk, zk) and (xk, yk, zk + hk) on the items previously accommodated
into the container, where wk, lk and hk are width, length and depth of item k
respectively.

Given an initial solution, the TS2PACK meta-heuristic iteratively discards
the bin b with the worst value of the fitness function ϕ (b) defined in [23] as the
weighted sum of the volume used by the items loaded into the bin and the num-
ber of items. The items in b are iteratively loaded into the other bins, selecting,
for each item, the bin with the maximum value of ϕ (b). More precisely, we relax
the bin size constraints on the height axis. Thus, each item is accommodated
on the Extreme Points into the bin that minimizes the overall height of the new
packing. When the new solution is feasible, i.e. each subset of items assigned
to each bin is packed such that the items do not overlap and the packing is
compatible with the bin size, the new solution is accepted as the current best
and a new bin is discarded. Otherwise, the first-stage Tabu Search heuristic
ACC TS is applied (see Subsection 3.1).

The ACC TS heuristic works on the items-to-bins assignments, without tak-
ing into account explicitly the feasibility of the new solutions. It relaxes the bin
dimensions and considers the unfeasibility due to building larger packings than
the bin size as a penalty added to the objective function. The inner heuristic
IG TS (see Subsection 3.2) is used by the ACC TS procedure to check the fea-
sibility and optimize the packing in order to respect the constraints on the bin’s
sizes.

The TS2PACK heuristic stops when either a given time limit is reached
or the number of bins in the current solution is equal to the lower bound by
Boschetti [5].

3.1 The first level ACC TS heuristics

The ACC TS heuristic works with a set of items and a fixed number of bins. Its
goal is to find a set of items-to-bins assignments able to produce a packing for
each bin such that it fits within the dimensions of the bin and the items are not
overlapping. The position of the items in the bins is not determined directly by
the ACC TS heuristic. Rather, it is assigned by an external procedure which
guarantees that each two items assigned to the same bin are not overlapping,
but relaxes the constraints on the bin size, i.e., the boxed envelope of minimum
size which contains the items accommodated into a bin can be larger than the
bin itself.

ACC TS is a Tabu Search-based heuristic. It makes use of a local-search
neighborhood whose size and accuracy is dynamically varied during the search
by means of the k-chain-moves procedure. It also includes a diversification
phase, which is applied after a fixed number of iterations without improvement
and aims to explore new regions of the solution space. At each iteration, the

6

Algorithm 1 The TS2PACK meta-heuristic

CS, BS: Current and Best Solution
it: item
Bins(S): Function returning the number of bins of a solution S
LBB : Lower bound by Boschetti

Compute the initial solution by EP − FFD
CS = BS = EPFFD
while time limit is not reached or BS 6= LBB do

b = arg minϕ(b)
Relax the Z size of the bins
for all it ∈ b do

b′ = arg maxϕ(b)
Load it in the EP of b′ minimizing the overall height

end for
Discard b
if CS is feasible then

BS = CS
else

Relax the constraints on the sizes the bins
ACC TS(CS) (see Subsecion 3.2)

end if

end while

7

ACC TS heuristics considers the neighbors according to non-increasing values
of their objective function and stops when the best solution found is feasible for
3D − SBSBPP , i.e. each packing satisfies the bin dimension constraints, or
when the time limit given to the overall heuristic is reached.

Solution representation

Define:

• I, the set of items;

• C, the set of bins. All bins are similar with dimensions W , D, and H;

• A system of orthogonal axes X, Y , and Z for each container with the
origin in the left-back-bottom corner and parallel to the sides of the bin;

• A function m (j) : I −→ C that returns the bin to which item j has been
assigned.

The solution representation is then defined as follows:

• A partition of the set of the items I yielding |C| subsets Ic:

Ic = {j ∈ I : m (j) = c, c ∈ C},
I1 ∪ ... ∪ IC = I,

Ii ∩ Ij = ∅,∀i, j ∈ C, i 6= j.

• The positions xi, yi, and zi of item i on the orthogonal axes X, Y , and
Z, respectively. The positions are such that the items in the same bin are
not overlapping.

This solution representation does not guarantee that the packing fits into
the bin.

Let

Infcd (S(c)) = max{0, Lcd (S(c))− Lcd},

be a measure of the packing unfeasibility with respect to the size of the bin on
the dth axis, where Lcd and Lcd (S(c)) stand for the size on the dth axis of the
bin c and packing S(c), respectively.

The following formula is then used to evaluate the unfeasibility of a packing
S(c) of bin c:

OF = lex

(∑
c∈C

∑
d

Infcd (S(c)) ,
∑
c∈C

∑
d

Lcd (S(c))

)
, (1)

where lex is the lexicographic order of the objective functions. S is then a
feasible solution of 3D − SBSBPP iff:

8

∑
c∈C

∑
d

Infcd (S(c)) = 0.

Because the first part of the function is ”flat”, i.e. several solutions have
the same value, we use the second term to guide the algorithm toward solutions
that are as compact as possible.

k-chain-moves procedure

Neighborhood definition is a critical issue in the design of many meta-heuristics,
and Tabu Search in particular. Large neighborhoods generally conduct to bet-
ter local optimal solutions and search accuracy. On the other hand, they are
also increasing the time required to explore the neighborhood at each iteration
and, thus, the computational burden of the method. Consequently, a larger
neighborhood does not necessarily produce a more effective heuristic unless one
can explore it in a very efficient manner. Thompson and Orlin [27, 28] pro-
posed the cyclic exchange neighborhood to solve partitioning problems, an idea
generalized by Ahuja, Orlin, and Sharma [2]. Ghamlouche, Crainic, and Gen-
dreau [12, 13] proposed cycle-based neighbourhoods for Tabu Search and Path
Relinking meta-heuristics addressing the fixed-cost, capacitated, multicommod-
ity network design problem. All the above-mentioned authors define large-size
neighborhoods based on the introduction of cycles of simple moves (e.g., swaps
or open/close a single arc). These large neighborhoods are then implicitly ex-
plored by solving particular network flow problems on specifically built and
managed graphs.

The k-chain-moves procedure is a simplified version of these approaches,
which introduces chains of k changes in the solution with a negligible additional
computational effort. The k-chain-moves procedure does not involve the man-
agement of an additional data structure and, in this sense, it is also somewhat
related to the ejection-chain concept proposed by Glover ([16]; see also [26]) and
used mainly in the context of Tabu Search.

Consider a combinatorial optimization problem P and its set of feasible so-
lutions F . A neighborhood of a feasible solution s ∈ F may be described as
a function associating a subset of feasible solutions N(s) ⊂ F to s, while an
associated move is a rule that when applied to s yields s′ ∈ N(s). A large
neighborhood defining cycles of 2 consecutive moves may then be trivially ob-
tained by defining the same neighborhood and applying the move to each so-
lution s′ ∈ N(s). The size of the new neighborhood is |N(s)|2. Applying the
same idea recursively k times, we obtain an increasingly larger neighborhood of
size |N(s)|k, with members which can be derived from s by means of a series
- a cycle - of k moves. The computational time needed to explore this large
neighborhood would increase rapidly with the size of k, however.

The k-chain-moves procedure introduces a cycle of at most k moves, by
successively building the neighborhood of the best solution of the previous iter-
ation and moving to the best neighbor in this neighborhood. The procedure is

9

illustrated in Algorithm 2 and starts from a current solution CS. The neighbor-
hood of CS is denoted N(CS) and gives the first elements to the final large kN
neighborhood identified as NSet. Let BS1 be the best solution obtained after
the first iteration (in N(CS)). The procedure then builds the neighborhood
N(BS1) of BS1, denoted NSet2, and add its elements to NSet. The procedure
continues extracting BS2, the best solution in NSet2, building its neighborhood
NSet3 = N(BS2) of BS2, adding its elements to NSet, and so on and so forth.
Iterating the procedure k times, NSet will contain a set of solutions that differ
from the starting solutions by cycles of up to k moves.

To illustrate 3D − SBSBPP , consider the neighborhood which, given a
starting bin and an item i inside it, builds the neighbors swapping i with the
items in the other bins. Suppose, e.g., we apply this neighborhood to item 1
in bin B1 in the loading depicted in Figure 1 to build a cycle of length k = 2.
The first iteration, the neighbors are all possible swaps of item 1 with items in
the other bins. Assume the best swap is with item 2 in bin B2. Following the
move, item 1 is in bin B2 and we apply the neighborhood with item 1 in bin
B2 on the remaining B − 2 bins, obtaining the swap 1− 3 (neither the bin B1,
nor the bin B2 is considered to avoid cycles). At the end of the procedure, we
have built a solution that differs from the original one by 2 swaps.

Algorithm 2 k-chain-moves procedure
Input k : length of the cycle to build
CS : Current Solution
GENN : Function generating the set of solutions of the neighborhood N
AV OID : List of forbidden solutions
NSet : Set of the solutions belonging to the neighborhood

NSet = {∅}
AV OID = AV OID ∪ {CS}, BS0 = CS
for i = 1 to k − 1 do

NSeti = GENN (AV OID,BSi−1)
NSet = NSet ∪ {NSeti}
Extract the best solution BSi from NSeti
AV OID = AV OID ∪ {BSi}

end for
returnNSet

Neighborhood structure

The structure of the neighborhood for the high-level heuristic focuses on changes
of assignments of items to bins. It is a composite neighborhood which uses the
1-swap and the add-drop neighborhoods. Given a target bin b and the list of the
items accommodated in it, the 1-swap neighborhood swaps each item in b with
the items assigned to another bin, while the add-drop neighborhood unloads
one item from b and reloads it into another bin. To increase the quality of the

10

Figure 1: Example of 2-chain-moves application

composite neighborhood, we use the 1-swap neighborhood within the k-chain-
moves procedure.

The procedure that builds this neighborhood is described in Algorithm 3.
The target bin b is the bin with the worst contribution to the objective function.
Then the k-chain-moves is applied with the 1-swap neighborhood. Finally, the
add-drop neighborhood is applied. The packing of bins in the candidate solution
which are not feasible, i.e. the packing does not respect the bin dimensions, is
optimized by means of the IG TS heuristic presented at the next sub-section.

It is simple to see that the 1-swap neighborhood has size O(|Ib|n), where
|Ib| is the number of items loaded in bin b, while the add-drop neighborhood is
O(C|Ib|), where C is the number of bins in the solution. Thus, the composite
neighborhood is O(|Ib|kn + C|Ib|).

Tabu list structure

The tabu list records the last assignments of an item to a bin. This prevents
the reversal of the assignment status as long as they remain in the list. Given
a solution in the composite neighborhood, the tabu moves are built as follows:

1. If we swap item i in bin l with item j in bin m, we forbid the assignment
of i to l and j to m;

2. If we move item i from bin l to bin m, we forbid the assignment of i to l.

11

Algorithm 3 ACC TS’s composite-neighborhood
Input K: Length of the chain to build
Input CS: Current solution

AD(s, b): Add and Drop neighborhood of solution s and target bin b
SW (s, b, k): 1-Swap neighborhood of solution s and target bin b with k-chain-
moves procedure with size k
N(i): Whole neighborhood of solution s and target bin b
BS: Best solution

b = arg max lex{
∑

d Infcd (S) ,
∑

d Lcd (S)}
N(CS) = {∅}
Generate SW (BS, b, k)
Extract the best solution from SW (CS) and assign it to BS
b = arg max lex{

∑
d Infcd (S) ,

∑
d Lcd (S)}

Generate AD(BS, b)
N(CS) = SW (CS) ∪AD(BS, b)

The tabu list has a fixed length.

Diversification phase

The diversification phase is applied once a fixed number of non improving iter-
ations is reached. Given C as the number of bins in the current solution, the
diversification phase changes the current solution of the ACC TS heuristic by
performing on the first C/2 bins in the solution the k-chain-moves procedure
(with k = C/2) applied to the add-drop neighborhood, and taking the best
solution of the resulting neighborhood as the new solution.

3.2 Feasibility of a packing: the IG TS procedure

The aim of the second-level procedure is to find the accommodation of the items
that minimizes the unfeasibility of the resulting packing as defined in Equation
(1). The IG TS procedure is a Tabu Search-based local search, which uses
the implicit solution representation given by the Interval Graph (IG) approach
proposed by Fekete and Schepers [10, 11] and thus reduces the search space.

Given a list of items to be accommodated into a bin, the procedure first
builds an initial packing by means of an Extreme Point-based heuristic derived
from [7]. This heuristics relaxes the height of the bin and considers the items one
after the other without any sorting. Each item is loaded on the EP minimizing
the Z, Y , and X coordinates, in this order. The resulting packing is transformed
to yield the representation by Fekete and Schepers and the Tabu Search-based
local search is applied. The heuristic works directly on the IGs, and uses a
fixed sized tabu-list (no long-term memories or diversification phase are used).
At procedure considers the neighbors according to non-increasing values of their

12

objective function and stops when the number of the iterations is reached, or
when the best solution defines a packing compatible with the bin dimensions.

Solution Representation

According to the representation of Fekete and Schepers, a three-dimensional
packing and the projections of one of its items i on the dth coordinate axis
generate intervals on the real numbers set, which can be described using a graph-
based representation. We recall in this sub-section a number of basic definitions.
For a more detailed description of this representation, refer to [10, 11].

Consider the two packings in Figure 2. They are made by the same set
of items, use the same volume, and are characterized by the same rectangular
minimal envelope. One notices a common combinatorial structure, the differ-
ences arising from how items “see” each other orthogonally to the frame axes.
Projecting the items on the axes (see Figure 2), one may observe how the item
projections overlap on each axis. Associate to each axis a graph Gd (V,Ed),
where the nodes represent the items and two nodes are connected by an edge
if the corresponding projections on the dth axis overlap (even partially). The
graphs associated to the two packings are the same. Moreover, by construction,
the graphs are Interval Graphs (IGs).

Figure 2: Example of definition of packings by the definition by Fekete and
Schepers

Given an IG, its co-graph is a Comparability Graph (CG). A transitive
orientation of the CG determines the positions of the items on the axis. Thus,
we may build a graph representation for a 3D packing by computing, for each
coordinate axis, its IG representation and vice versa. Moreover, a set of IGs
defines not a single packing, but a set of packings with the same minimal boxed
envelope. For instance, the IGs in Figure 2 represent 36 different packings.
Define:

• C, a container with width W , depth D, and height H;

13

• IC , the set of items assigned to a container;

• A system of orthogonal axes X, Y and Z with origin O in the left-back-
down corner of the container and parallel to the sides of the bin;

• The positions xi, yi, and zi of the left-back-down corner of item i ∈ IC in
the packing, on the orthogonal axes X, Y and Z.

Then, more formally, a set of 3 graphs GC
d , on the three axes d, with vertex

set V = IC and respective edge sets Ed, are defined as a Packing Class (PC)
in 3 dimensions for container C if:

1. Each GC
d is an IG;

2. ∀i, j ∈ V , it exists a dimension d such that eij /∈ Ed,;

3. Each stable set of GC
d is d − feasible, i.e. the items associated to the

stable sets can be lined up on the axis d, ∀d, without exceeding the size
of the bin on the same axis.

Conditions 1 and 3 can be efficiently checked by exploiting the properties of
the IGs, the transitive orientations of the co-graphs of GC

i defining the packings
in the PC. Moreover, all the packings in a PC have the same box envelope.
An efficient way to check condition 1 then is to verify whether the graph does
not contain chordless cycles with 4 nodes and its co-graph is a CG. In the
following, we will refer to a chordless cycle with 4 nodes as a C4 chordless cycle.
The second task can be accomplished by means of the Transitively Orientable
(TRO) algorithm by Golumbic [17], which verifies whether a graph is a CG by
building one of its transitive orientation in O(δ|E|), where δ is the maximum
degree of a vertex of the graph and |E| is the number of edges (see [17] for
details on IGs, transitive orientations, and the TRO algorithm).

When condition 3 holds, the envelope of the packings represented by a PC
lies inside the container C. We represent the solutions by means of a relaxation
of the PCs, where conditions 1 and 2 hold, while condition 3 is ignored. We call
a solution satisfying conditions 1 and 2 a Semi-Packing Class (SPC). Similarly
to the PC, each SPC defines a set of actual packings characterized by the same
minimal boxed envelope.

We thus define the feasible solutions and the search space of the IG TS
heuristic as the set of the SPCs that can be built with the set IC . Given
a SPC, called s, we define L(s, d) as the size of the packings belonging to s
on the d axis (all the packings have the same minimal boxed envelope). Each
solution is evaluated by means of the objective function (1). According to this
definition, a SPC is a PC iff Infcd (s) = 0, ∀d = {X, Y, Z}.

Neighborhood structure

The neighborhood we propose for a given SPC is defined by changes in item
overlapping. Recall that the overlapping of two items i and j in dimension d

14

X Y Z GC
X GC

Y GC
Z

1 O O NO eij ∈ EX eij ∈ EY eij /∈ EZ

2 O NO O eij ∈ EX eij /∈ EY eij ∈ EZ

3 NO O O eij /∈ EX eij ∈ EY eij ∈ EZ

4 O NO NO eij ∈ EX eij /∈ EY eij /∈ EZ

5 NO O NO eij /∈ EX eij ∈ EY eij /∈ EZ

6 NO NO O eij /∈ EX eij /∈ EY eij ∈ EZ

7 NO NO NO eij /∈ EX eij /∈ EY eij /∈ EZ

Table 1: Overlapping rules for two items i and j in three dimensions (O =
Overlapping, NO = Not Overlapping)

corresponds to adding the edge eij to the IGs GC
d of the SPC. Moreover, we

can evaluate the size of the packings represented by the SPC. We therefore
define the neighborhood directly on the graphs GC

d .
The neighborhood is denoted overlapping rule exchange and is displayed as

Algorithm 4. It is defined by considering each pair of items (i, j) in the container
and changing the edges in the three IGs describing the corresponding packing.
Seven such feasible combinations can be obtained, as shown in Table 1, each
defining an overlapping rule between items i and j.

Algorithm 4 Overlapping rule exchange
Input CS: current SPC defined by the IGs GC

x (Vx, Ex), GC
y (Vy, Ey), and

GC
z (Vz, Ez)

for all item i do
for all item j 6= i do

for all overlapping rule r do
Apply the overlapping rule
for all dimensions d ∈ {X, Y, Z} do

if r adds the edge eij to Ed then
Ed = Ed∪{eij}∪{eik : pk ≤ pj , pk + lk ≥ pj + lj , pk, pj ∈ Pd, lk, lj ∈ Ld}

else
Ed = Ed\ {{eij} ∪ {eik : pk ≥ pl, pk + lk ≤ pj + lj , pk, pj ∈ Pd, lk, lj ∈ Ld}}

end if
end for
if GC

d (Vd, Ed′) are IGs, ∀d then
Add the solution to the neighborhood

end if
end for

end for
end for

Recall that, by the properties of the IGs, a SPC represents a group of
accommodations of items, each packing displaying the same overlapping between

15

the items. Then, under particular conditions, a new SPC representing the same
packing may be obtained by adding or removing a single edge from an IG of a
SPC, as illustrated in the following. Consider the packing in Figure 3a. The IG
related to the Y axis is represented by the graph depicted in Figure 3b. Let us
modify this IG by adding the edge (3, 4) on Y , leaving the IG on X unchanged.

Figure 3: Example of the add overlapping rule

Then we obtain, on the Y axis, the IG in Figure 4b. Its co-graph is repre-
sented in Figure 4c. To obtain one of the accommodations of the items repre-
sented by the SPC, we build the transitive orientation of the co-graph repre-
sented in Figure 4d. Assigning the positions of the items on the Y dimension
according to the transitive orientation, we obtain the packing of Figure 4a, which
is the same one represented in Figure 3a. Thus, the same packing can belong to
different SPCs. One can easily check that the same situation is obtained when
edges (2, 4) and (1, 4) are added.

Let us now consider the situation in Figure 5. Starting from the packing
in Figure 3a, we add the edge (1, 4) to the IG represented in Figure 3b and
obtain the new graph of Figure 5b. Following the same procedure as in the
previous example, the co-graph of Figure 5b is depicted in Figure 5c, while
Figure 5d represents the transitive orientation of the co-graph. In this case,
after assigning the positions of the items according to this transitive orientation,
the accommodation of the items is changed, see Figure 5a.

These different behaviors are explained by the structure of the IGs involved
and the position of the corresponding items. Thus, items 1, 2 and 3 form a
clique in the IG and, thus, each pair is (partially, in case) overlapping on the
Y axis. Furthermore, the positions of the items in Figure 3a have the same y
value, even though the height of item 1 differs from the heights of items 2 and
3. ¿From a logical point of view, in fact, the first example corresponds to using
the following add overlapping rule: “Items 3 and 4 overlap, but item 4 does not
overlap with items 1 and 2”. This requirement cannot be satisfied, however,
because the overlapping of items 3 and 4 implies to add the overlapping with
the other two items too. This situation is managed by the IG on the Y axis

16

Figure 4: Adding edge (3, 4) to an IG

with the co-graph, which does not change the represented packing.
A heuristic rule is used to reduce the probability of cycling when changing

the SPCs by adding or removing edges. The heuristic proceeds by considering
the edge one wants to add or drop as well as the other edges sharing a node and
displaying the properties indicated in the following. Let Gd = (Vd, Ed) be an
IG and, for the items in Vd, let Pd and Ld represent the sets of item positions
and lengths on axis d, respectively. To add an edge eij to Ed, we then build the
new graph G2, which defines the add overlapping rule (move):

G2 = (Vd, E
′
d) (2)

E′
d = Ed ∪ {eij} ∪ {eik : pk ≤ pj , pk + lk ≥ pj + lj , pk, pj ∈ Pd, lk, lj ∈ Ld} .

Thus, according to the overlapping rule (2), adding an edge eij to an existing
IG of a SPC implies that one also adds the edges eik related to the items k
that have their end points higher than item j and their left-back-down corner
position at least equal to j on the considered axis. A similar remove overlapping
rule (move) is defined to specify that, when removing edge eij of an existing IG
of a SPC, one also removes edges eik related to the items k with the same end
point on the considered axis as item j. More formally (see rule (3)), given an
IG Gd = (Vd, Ed) and an edge eij to be removed, the following new graph G3

17

Figure 5: Adding edge (1, 4) to an IG

defines the remove overlapping rule (move):

G3 = (Vd, E
′
d) (3)

E′
d = Ed\ {{eij} ∪ {eik : pk ≥ pj , pk + lk ≤ pj + lj , pk, pj ∈ Pd, lk, lj ∈ Ld}} .

Once the new graphs are generated, one must verify whether they are IGs.
It is in fact easy to see that adding or removing an edge form an IG may yield
a graph which is not an IG, as illustrated in Figure 6. The graph in Figure 6a
has no C4 chordless cycle and is an IG with a CG as its co-graph (illustrated
in Figure 6b). Removing the edge (2, 4) yields the graph depicted in Figure 6c.
This graph is without C4 chordless cycles, but its co-graph (Figure 6d) is not
a CG and, thus, the corresponding graph is not an IG. A similar example can
be build for the case of adding an edge to an existing IG.

If the new graphs are IGs, the objective function is evaluated and the new
solution is inserted in the neighborhood, otherwise the solution is discarded. The
size of the neighborhood is O

(
|IC |2

)
. Moreover, both the verification whether

a new graph is an IG and the computation of the transitive orientations can be
efficiently performed by means of the properties of IGs (see [17]).

Tabu list structure

Moves belong to the tabu list each time a solution is selected as follows. Suppose
the overlapping rule yielding the selected solution is j. A new solution will be
considered ”tabu” if its overlapping rule is j or j, where j is the move that
is obtained by substituting, on each dimension, the overlapping rule j with its

18

Figure 6: Example of removing an edge from an IG

inverse. For instance, if j is the first overlapping rule in Table 1, its reverse
move j is the overlapping rule 6. The tabu list has a fixed length.

4 Computational results

In this section we present and analyze the results of a rather comprehensive
computational experimentation. The performance of the algorithm is compared
with that of the exact algorithm for 3D− SBSBPP by Martello, Pisinger, and
Vigo [24] and the GLS by Faroe, Pisinger, and Zachariasen [9]. We do not
report the results of the Tabu Search algorithm by Lodi, Martello, and Vigo
[20] because their procedure is outperformed by GLS.

3D−SBSBPP instances come from [24]. For Classes 1 to 3, the bin size is
W = H = D = 100 and the following five types of items are considered:

• Type 1 : wj uniformly random in [1, 1
2W], hj uniformly random in [23H,H],

dj uniformly random in [23D,D];

• Type 2 : wj uniformly random in [23W,W], hj uniformly random in [1, 1
2H],

dj uniformly random in [23D,D];

• Type 3 : wj uniformly random in [23W,W], hj uniformly random in [23H,H],
dj uniformly random in [1, 1

2D];

• Type 4 : wj uniformly random in [12W,W], hj uniformly random in [12H,H],
dj uniformly random in [12D,D];

19

• Type 5 : wj uniformly random in [1, 1
2W], hj uniformly random in [1, 1

2H],
dj uniformly random in [1, 1

2D].

The classes are built as follows:

• Class 1 : type 1 with probability 60%, type 2, 3, 4, 5 with probability 10%
each;

• Class 2 : type 4 with probability 60%, type 1, 2, 3, 5 with probability 10%
each;

• Class 3 : type 5 with probability 60%, type 1, 2, 3, 4 with probability 10%
each.

Classes from 4 to 6 are generated according to the rules by Berkey–Wang
[4]:

• Class 4 : wj , hj and dj uniformly random in [1,10] and W = H = D = 10;

• Class 5 : wj , hj and dj uniformly random in [1,35] and W = H = D = 40;

• Class 6 : wj , hj and dj uniformly random in [1,100] and W = H = D =
100.

For each class (i.e., 1, 2, 3, 4, 5, and 6) we consider instances with a number
of items equal to 50, 100, 150, and 200. Given a class and an instance size, we
generate 10 different problem instances based on different random seeds. Bins
are cubic in all instances.

The results of the benchmark algorithms GLS and MPV are taken from
[24] and [9], respectively. Both algorithms are run on a Digital 500 workstation
with a 500 MHz 21164 CPU with a time limit of 1000 seconds for each instance.
TS2PACK is coded in C++ and tested on a Pentium4 2000 Mhz CPU, with a
time limit of 300 seconds to solve each instance. We used the results of the SPEC
CPU2000 benchmarks published in [1] to obtain the equivalence in terms of
performance between the Digital and the Pentium4 computers. In the following,
when citing computational times, we refer to the equivalent computational time
on the Digital 500 workstation, i.e. if the computer in use is not a Digital 500
workstation the computational time is changed by a ratio given by the SPEC
CPU2000 benchmarks.

In the IG TS procedure, the iteration limit is fixed to the number of the items
assigned to the bin, while the size of the Tabu List is equal to the minimum
between the items assigned to the bin and 7.

First, we present the tuning of the parameters of the heuristic, including the
size of the cycles of moves induced by the k-chain-moves procedure in Subsection
4.1. Section 4.2 is then devoted to compare the TS2PACK heuristic to state-
of-the-art methods.

20

Class Bins n k=1 k=2 k=3
1 100x100 50 13.4 13.4 13.4

100 26.7 26.7 26.7
150 37.2 37 37
200 51.3 51.2 51.1

2 100x100 50 29.4 29.4 29.4
100 58.9 58.9 58.9
150 86.8 86.8 86.8
200 118.8 118.8 118.8

3 100x100 50 8.3 8.3 8.3
100 15.6 15.2 15.2
150 20.6 20.3 20.1
200 27.7 27.5 27.4

4 10x10 50 9.8 9.8 9.8
100 19.2 19.1 19.1
150 29.3 29.3 29.2
200 37.8 37.8 37.7

5 40x40 50 7.4 7.4 7.4
100 12.3 12.3 12.3
150 15.9 15.8 15.8
200 23.8 23.7 23.5

6 100x100 50 9.3 9.2 9.2
100 18.9 18.8 18.8
150 25.1 24.9 24.8
200 30.5 30.3 30.3

Total bins 734 731.9 731

Table 2: TS2PACK performance for various k parameter values in the k-chain-
moves procedure

Class Bins n IG_TS EP-FFD LB IG_TS EP-FFD
1 100x100 50 13.4 13.7 12.9 3.88% 6.20%

100 26.7 27 25.6 4.30% 5.47%
150 37 37.4 35.8 3.35% 4.47%
200 51.1 53 49.7 2.82% 6.64%

2 100x100 50 29.4 29.4 29 1.38% 1.38%
100 58.9 59 58.5 0.68% 0.85%
150 86.8 86.8 86.4 0.46% 0.46%
200 118.8 118.8 118.3 0.42% 0.42%

3 100x100 50 8.3 8.3 7.6 9.21% 9.21%
100 15.2 15.6 14 8.57% 11.43%
150 20.1 21.4 18.8 6.91% 13.83%
200 27.4 28.3 26 5.38% 8.85%

4 10x10 50 9.8 9.8 9.4 4.26% 4.26%
100 19.1 19.1 18.4 3.80% 3.80%
150 29.2 29.3 28.5 2.46% 2.81%
200 37.7 38 36.7 2.72% 3.54%

5 40x40 50 7.4 7.4 6.8 8.82% 8.82%
100 12.3 12.4 11.5 6.96% 7.83%
150 15.8 16.2 14.4 9.72% 12.50%
200 23.5 24.1 22.7 3.52% 6.17%

6 100x100 50 9.2 9.3 8.7 5.75% 6.90%
100 18.8 18.9 18.4 2.17% 2.72%
150 23.9 24.2 22.5 6.22% 7.56%
200 30 30.2 28.2 6.38% 7.09%

Total bins 729.8 737.6 708.8 2.96% 4.06%

GAP WITH LB

Table 3: TS2PACK performance with and without the IG TS procedure

21

4.1 Algorithm tuning

The parameter values affecting the computational behavior of the overall al-
gorithm are the number of iterations of the IG TS heuristic and the length of
the cycles in the k-chain-moves heuristic. It is intuitive that the computational
time of each iteration of the ACC TS heuristic increases proportionally with the
number of iterations of the IG TS heuristic. According to our results, perform-
ing more than 7 iterations of the IG TS heuristic hurts the performances of the
overall heuristic. Moreover, to reduce computational time, we apply the IG TS
heuristic not to all the packings in the macro-neighborhood of the ACC TS
heuristic, but only to its candidate solution.

The results of the impact of k-chain-moves heuristic are summarized in Table
2. The class of the instances, the sizes on the bins, and the number of items
are reported in the first three columns, respectively. The other columns show
the mean number of bins over 10 instances when the size of the k parameter
of the k-chain-moves procedure is fixed to 1, 2, and 3, respectively. We do not
report the results for values more than 3, because they does not produce better
solutions due to the computation effort of the resulting procedure. Notice that
k = 1 corresponds to not applying the k-chain-moves procedure, while k = 2
and k = 3 imply the introduction of cycles of item assignment to bins of length
2 and 3, respectively. One notices that, on small-sized instances, the k-chain-
moves procedure is not relevant. The effects of the procedure can be noticed
when the number of the items involved increases. In particular, the impact of
the k-chain-moves procedure is higher on class 3, which includes instances with
items significantly smaller than the bins.

The other parameter values of the ACC TS and IG TS heuristics were deter-
mined experimentally considering, for each combination of class and number of
items, two instances only and reducing the computational effort to 20 seconds.
We noticed a generally small sensitivity of the results with respect to changes
in the parameter values.

Table 3 displays the results of the TS2PACK algorithm when the IG TS
heuristic is applied (column IG TS) and when the IG TS heuristic is replaced
by its initial solution only (column EP FFD), comparing them with the results
of the lower bound by Boschetti [5]. The mean gap between the two versions is
about 1%, which indicates that the IG TS heuristic is effective. In particular,
it will contribute to achieve state-of-the-art results using TS2PACK, as shown
in the next section.

4.2 TS2PACK computational results

The comparison between the performances of TS2PACK, GLS heuristic [9]
and MPV , the Branch & Bound algorithm by Martello, Pisinger, and Vigo
[24], is presented in Table 4. The class of the instances, the sizes on the bins,
and the number of items are reported in the first three columns, respectively.
We report in the next three columns, the mean number of bins over 10 instances
obtained by TS2PACK, GLS and MPV , stopping them after 1000 seconds for

22

Class Bins n TS2PACK GLS MPV LB
1 100x100 50 13.4 13.4 13.5 12.9

100 26.7 26.7 27.3 25.6
150 37 37 38.2 35.8
200 51.1 51.2 52.3 49.7

2 100x100 50 29.4 29.4 29.4 29
100 58.9 59 59.1 58.5
150 86.8 86.8 87.2 86.4
200 118.8 119 119.5 118.3

3 100x100 50 8.3 8.3 9.1 7.6
100 15.2 15.1 17.5 14
150 20.1 20.2 24 18.8
200 27.4 27.2 31.8 26

4 10x10 50 9.8 9.8 9.8 9.4
100 19.1 19.1 19.4 18.4
150 29.2 29.4 29.6 28.5
200 37.7 37.7 38.2 36.7

5 40x40 50 7.4 7.4 8.1 6.8
100 12.3 12.3 15.3 11.5
150 15.8 15.8 19.7 14.4
200 23.5 23.5 27.9 22.7

6 100x100 50 9.2 9.2 10.1 8.7
100 18.8 18.9 20.2 18.4
150 23.9 23.9 27.3 22.5
200 30 29.9 34.9 28.2

Total bins 729.8 730.2 769.4 708.8

Table 4: Comparing TS2PACK, GLS, and MPV

23

Class Bins n TS2PACK GLS TS2PACK GLS TS2PACK GLS

1 100x100 50 13.4 13.4 13.4 13.4 13.4 13.4
100 27 26.9 26.7 26.7 26.7 26.7
150 37.7 37.5 37 37.2 37 37
200 53 52.8 51.1 52.1 51.1 51.2

2 100x100 50 29.4 29.4 29.4 29.4 29.4 29.4
100 59.2 59 58.9 59 58.9 59
150 87.3 87.1 86.8 86.9 86.8 86.8
200 119.2 119.9 118.8 119.7 118.8 119

3 100x100 50 8.3 8.3 8.4 8.3 8.3 8.3
100 15.4 15.1 15.3 15.1 15.2 15.1
150 20.9 20.7 20.5 20.3 20.1 20.2
200 28 27.8 27.6 27.5 27.4 27.2

4 10x10 50 9.9 9.8 9.8 9.8 9.8 9.8
100 19.5 19.3 19.1 19.1 19.1 19.1
150 29.4 29.5 29.2 29.4 29.2 29.4
200 38.7 38.5 37.7 38 37.7 37.7

5 40x40 50 7.4 7.4 7.4 7.4 7.4 7.4
100 12.3 12.3 12.3 12.3 12.3 12.3
150 16 15.8 15.8 15.8 15.8 15.8
200 24.8 24.4 23.5 24.1 23.5 23.5

6 100x100 50 9.2 9.2 9.2 9.2 9.2 9.2
100 19.2 18.9 18.8 18.9 18.8 18.9
150 24.6 24.5 24.8 24.1 23.9 23.9
200 30.8 30.6 30 30.1 30 29.9

Total bins 740.6 738.1 731.5 733.8 729.8 730.2

60 s 150 s 1000 s

Table 5: Comparing TS2PACK and GLS after 60, 150 and 1000 seconds

24

each instance. Notice that the results of MPV , being the algorithm stopped
after a fixed amount of time, are not the proved optimal values. For GLS the
results displayed are taken from the literature, while for MPV the results have
been obtained by the code available from the authors, modified according to the
erratum by Boef [8]. The algorithm run on a Pentium4 2000 Mhz CPU, with a
time limit of 1000 seconds to solve each instance. The last column reports the
mean number of bins over 10 instances obtained by means of the lower bound
by Boschetti [5].

The figures show that TS2PACK obtained better results than both GLS
and MPV . Usually, GLS and TS2PACK find the same results on small in-
stances, while the gap increases with the size of the instance. In general, our
algorithm achieves the same or better results than GLS. The most difficult
instances for TS2PACK are in class 3, characterized by items with a volume
that is quite smaller than that of the bin. In those instances, TS2PACK spends
a lot of time in each iteration of the IG TS heuristic, even when, after discard-
ing a new bin, the solutions in the neighborhood are probably not feasible for
3D − SBSBPP . The solution quality may be slightly improved increasing the
maximum time of the heuristic.

The results show a total gap between TS2PACK and GLS heuristics less
than 1%. Table 5 compares the behavior of the two heuristics after 60, 150, and
1000 seconds. In general, GLS obtains better results after 60 seconds, while
the opposite is true after 150 seconds, where the total gap between TS2PACK
and GLS is of 2.3 bins. The gap reduces when the time limit increases, even if
TS2PACK continues to be the algorithm with the best overall behavior. This
is probably due to the fact that both algorithms are able to achieve optimal
solutions for a good percentage of the instances. We tried to verify if the solution
of the TS2PACK could be improved by using them as initial solutions of MPV
truncated after 10000 seconds, but for three instances only, an improvement of
one bin was observed.

5 Conclusions

In this paper, we presented a new tabu search-based two-level approach for
3D−SBSBPP . This approach separates the search for the optimal number of
bins from the optimization of the accommodation of items within bins, resulting
into a more flexible procedure than the existing ones. Within this framework, we
extended the Interval Graph representation of packings by Fekete and Schep-
ers to make it usable within a heuristic framework. We also introduced the
k-chain-moves procedure, a general method to dynamically increase the size
of a neighborhood and the quality of the associated solution, without signifi-
cantly increasing the computational burden. Extensive computational results on
benchmark problem instances show that TS2PACK outperforms other meth-
ods for 3D − SBSBPP , obtaining very good results when short computation
times are available.

25

6 Acknowledgements

Partial funding for this project has been provided by the Natural Sciences and
Engineering Council of Canada. This research has been partially supported by
ASI, the Italian Space Agency, under the ICARO Project, n. ASI I/R/137/01.

References

[1] Standard performance evaluation corporation CPU2000.
URL http://www.spec.org/cpu2000/results/cpu2000.html

[2] R. Ahuja, J. Orlin, D. Sharma, Very large-scale neighborhood search, In-
ternational Transactions in Operational Research 7 (2000) 301–317.

[3] R. Alvarez-Valdes, F. Parreno, J. Tamarit, A GRASP algorithm for con-
strained two-dimensional non-guillotine cutting problems, Journal of the
Operational Research Society 4 (56) (2005) 414–425.

[4] J. O. Berkey, P. Y. Wang, Two dimensional finite bin packing algorithms,
Journal of the Operational Research Society 38 (1987) 423–429.

[5] M. A. Boschetti, New lower bounds for the finite three-dimensional bin
packing problem, Discrete Applied Mathematics 140 (2004) 241–258.

[6] F. K. R. Chung, M. R. Garey, D. S. Johnson, On packing two-dimensional
bins, SIAM - Journal of Algebraic and Discrete Methods 3 (1) (1982) 66–76.

[7] T. G. Crainic, G. Perboli, R. Tadei, Extreme point-based heuristics for
three-dimensional bin packing, INFORMS Journal on Computing forth-
coming.

[8] E. den Boef, J. Korst, S. Martello, D. Pisinger, D. Vigo, Erratum to ”the
three-dimensional bin packing problem”: Robot-packable and orthogonal
variants of packing problems, Operations Research 53 (4) (2005) 735–736.

[9] O. Faroe, D. Pisinger, M. Zachariasen, Guided local search for the three-
dimensional bin packing problem, INFORMS Journal on Computing 15 (3)
(2003) 267–283.

[10] S. P. Fekete, J. Schepers, A new exact algorithm for general orthogonal d-
dimensional knapsack problems, ESA ’97, Springer Lecture Notes in Com-
puter Science 1284 (1997) 144–156.

[11] S. P. Fekete, J. Schepers, A combinatorial characterization of higher-
dimensional orthogonal packing., Math. Oper. Res. 29 (2) (2004) 353–368,
doi http://dx.doi.org/10.1287/moor.1030.0079.

[12] I. Ghamlouche, T. G. Crainic, M. Gendreau, Cycle-based Neighbourhoods
for Fixed-Charge Capacitated Multicommodity Network Design, Opera-
tions Research 51 (4) (2003) 655–667.

26

[13] I. Ghamlouche, T. G. Crainic, M. Gendreau, Path Relinking, Cycle-based
Neighbourhoods and Capacitated Multicommodity Network Design, An-
nals of Operations Research 131 (2004) 109–133.

[14] F. Glover, Tabu search - part I, ORSA Journal of Computing 1 (3) (1989)
190–206.

[15] F. Glover, Tabu search - part II, ORSA Journal of Computing 2 (1) (1990)
4–32.

[16] F. Glover, Ejection Chains, Reference Structures and Alternating Path
Methods for Traveling Salesman Problems, Discrete Applied Mathematics
49 (1992) 231–255.

[17] M. C. Golumbric, Algorithmic Graph Theory and Perfect Graphs, Aca-
demic Press, New York, USA, 1980.

[18] D. S. Johnson, Near-optimal bin packing algorithms, Ph.D. thesis, Dept.
of Mathematics, M.I.T., Cambridge, MA (1973).

[19] A. Lodi, S. Martello, M. Monaci, Two-dimensional packing problems: a
survey, European Journal of Operational Research 141 (2002) 241–252.

[20] A. Lodi, S. Martello, D. Vigo, Approximation algorithms for the oriented
two-dimensional bin packing problem, European Journal of Operational
Research 112 (1999) 158–166.

[21] A. Lodi, S. Martello, D. Vigo, Heuristic and metaheuristic approaches for
a class of two-dimensional bin packing problems, INFORMS Journal on
Computing 11 (1999) 345–357.

[22] A. Lodi, S. Martello, D. Vigo, Heuristic algorithms for the three-
dimensional bin packing problem, European Journal of Operational Re-
search 141 (2002) 410–420.

[23] A. Lodi, S. Martello, D. Vigo, Tspack: A unified tabu search code for
multi-dimensional bin packing problems, Annals of Operations Research
131 (2004) 203–213.

[24] S. Martello, D. Pisinger, D. Vigo, The three-dimensional bin packing prob-
lem, Operations Research 48 (2) (2000) 256–267.

[25] G. Perboli, Bounds and heuristics for the packing prob-
lems, Ph.D. thesis, Politecnico di Torino, available at
http://www.orgroup.polito.it/People/perboli/phd-thesys.pdf (2002).

[26] C. Rego, C. Roucairol, A Parallel Tabu Search Algorithm Using Ejection
Chains for the VRP, in: I. Osman, J. Kelly (Eds.), Meta-Heuristics: Theory
& Applications, Kluwer Academic Publishers, Norwell, MA, 1996 253–295.

27

[27] P. Thompson, J. Orlin, The theory of cyclic transfers, Tech. rep., Opera-
tions Research Center, MIT, Cambridge, MA (1989).

[28] P. Thompson, H. Psaraftis, Cyclic transfer algorithms for multivehicle rout-
ing and scheduling problems, Operations Research 41 (1993) 935–946.

[29] G. Wäscher, H. Haussner, H. Schumann, An improved typology of cutting
and packing problems, European Journal of Operational Research forth-
coming, doi http://dx.doi.org/10.1016/j.ejor.2005.12.047.

28

