POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Framework for Rapid Development and Portable Execution of Packet-Handling Applications

Original

A Framework for Rapid Development and Portable Execution of Packet-Handling Applications / Baldi, Mario; Risso,
FULVIO GIOVANNI OTTAVIO. - STAMPA. - (2005), pp. 233-238. (Intervento presentato al convegno 5th IEEE
International Symposium on Signal Processing and Information Technology (ISSPIT 2005) tenutosi a Athens (Greece)
nel December 19-21, 2005) [10.1109/ISSPIT.2005.1577101].

Availability:
This version is available at: 11583/1494646 since:

Publisher:
IEEE

Published
DOI:10.1109/ISSPIT.2005.1577101

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

28 April 2024

A Framework for Rapid
Execution of Packet

Development and Portable

-Handling Applications

Mario Baldi and Fulvio Risso
Dipartimento di Automatica e Informatica
Politecnico di Torino
Torino, Italy
{mario.baldi,fulvio.risso}@olito.it

Abstract — This paper presents a framework that enables the
execution of packet-handling applications (such asniffers, fire-
walls, intrusion detectors, etc.) on different harevare platforms.
This framework is centered on the NetVM — a novelportable,
and efficient virtual processor targeted for packetbased process-
ing — and the NetPDL — a language dissociating apphtions
from protocol specifications. In addition, a high-evel program-
ming language that enables rapid development of p&et-based
applications is presented.

Keywords — High-speed packet processing, NetworktUdi
Machine, NetVM, NetPDL, NetPFL.

INTRODUCTION

Several network applications — such as packet mguti
traffic classification, network address translatipacket sniff-
ing, traffic analysis, traffic generation, firewal, intrusion
detection — perform some sort of packet processingieSof
them benefit from — or, in order to meet perforname-
quirements, need — specific hardware support, sucbffas
loading engines or application specific integrateidcuits
(ASICs), for some of their tasks. Even though pagketess-
ing is common to a large number of applicationgrasent no
solution exists to delegate it to a single optidizemponent.
This paper proposes a framework aiming at movingngom
packet-processing functionalities outside applacetj while
providing high processing efficiency.

tion lll provides an overview of the proposed framew
whose main component, the NetVM, is briefly descrilired
Section IV. The Network Protocol Description Langea
(NetPDL) used to describe format and protocol esaigbion
for packets handled by the NetVM is outlined in #ecV.
Programs developed in the NetVM framework can bitear
in some high-level programming language. Curremthe such
language targeted at filtering applications has lukimed and
a prototypal compiler implemented; this languagalled
NetPFL, is presented in Section VI. Section VII dsses im-
plementation alternatives for the NetVM, while SectvIll
outlines deployment scenarios for the proposed framew
i.e., how it can be integrated into applicationsl dow the
NetVM interacts with the surrounding environmenbn€lu-
sions are drawn in Section IX.

|SSUES MOTIVATIONS, AND BENEFITS

One problem with a general packet-processing coemgon
stems from thalifferent flavors of packet processing required
by applications. For example, while an applicatiight need
to filter packets to further process only a suligethem, an-
other one might need to modify the value of setédiglds in
each packet. A general packet processing compdhanful-
fills the needs of all applications would be regdito have a
large set of functionalities, hence a high compiexitnother
problem stems from thieigh degree of portability required. In
fact, the above-mentioned applications need to lggemn a

Devising a general packet-processing component is népecific location within the network (e.g., in tbackbone, at

trivial since it should providd) a large number of packet han-

dling functionalities executable witfi) high performance on a
(iii) wide range of hardware platforms. Virtual mackirse
the basis foportability andflexibility, although usually associ-
ated to poor performance. The proposed framewaockrnsered
on theNetwork Virtual Machine (NetVM) that aims at combin-
ing high performance with the common properties of virtual
machines.

The issues to be addressed in the realization di suc
framework, the motivations underlying such an effartd the
resulting potential benefits are discussed in Sedlio8ec-

This work has been carried out within the framdwof the QUASAR
project, funded by the Italian Ministry of EducatjdJniversity and Research
(MIUR) as part of the PRIN 2004 Funding Prograra.dtesentation has been
supported by the European Union under the E-NepjePr FP6-506869.

the network edge, on end systems), in some casesyt®n
must be distributed across different devices. Inegdn such
network applications must be deployed on very diffé
(hardware and software) platforms, ranging fromtemj to
network appliances, to PCs, to smartphones. In s@®es, the
whole range of potential target platforms is notrekeown
when application development takes place. Finallystnappli-
cations requirdigh performance to cope with the large amount
of packets flowing through high capacity links.

Virtual machines are the basis for the “write onoa
anywhere” paradigm, thus enabling the realization ae-
ployment of portable applications. However, genguaipose
virtual machines, such as Java and Microsoft's Calkough
widely used, do not achieve the needed performahes exe-
cuting packet handling code. Instead, the NetVM &aark
has been designed specifically as a developmengxeawlition

platform for packet handling applications. Consedlyeexe-
cution of packet handling related functions by tetVM is
optimized. Specifically, when the NetVM is deployed net-
work processors or hardware architectures packatlling
related functions can be mapped directly on undeglgpecial
purpose hardware, e.g. ASICs, CAMs, etc.

Although the NetVM may have a more limited scopentha

Java and CLR virtual machines (i.e., the NetVM ttsga
smaller range of applications), its goals are sohawnore
ambitious. In fact, the latter aim at applicatioortpbility
across platforms that, while different from hardwarel soft-
ware (i.e., operating system) point of view, areilsimn being
designed to support generic applications. Instdsel NetVM
must combine portability and performance; this ti@es in
the capability of effectively deploying availablardware re-
sources (such as processing power, memory, functiories)
notwithstanding the significantly different architee and
components of the various hardware platforms targeted

The NetVM framework has the potential to bring tbé f
lowing contributions:

« simplify and speedup the development of optimizackpt
handling applications, such as traffic monitors, teosi
firewalls because developers are no longer requiretal
with low-level packet processing;

e functional modules can be developed and made almila

for reuse in new applications. This has the twofalgan-
tage of {) making development faster arig @pplications
more reliable and performing since they are basedta-
ble and optimized modules;

e enable efficient mapping of the execution of sofewa

modules performing specific tasks onto optimizechpo-
nents of custom hardware architectures;

e provide a unifying programming environment and offe

portability of packet handling applications acrogtedent
hardware and software platforms;

« the NetVM architecture could be used as a referelece
sign architecture for the implementation of hardwgnte-
grated) packet handling systems;

e provide a new tool for specification, fast protatyg and
implementation of hardware (integrated) networkayg-
tems targeted to a specific packet handling apjicat

1. THENETVM FRAMEWORK

The main objective of the framework presented is work
is to enable development of demanding, portabléeialcan-
dling applications, i.e., applications that caneffeciently exe-
cuted onvarious hardware platforms. The Network Virtual
Machine (NetVM), the centerpiece of such framewadkjnes
a new architecture for a (virtual) network processosuch a
way that code execution exploits the high perforoeanffered
by network processors and ad-hoc hardware includeakt-
work systems, while also providing code portabitityd a rea-

(NetlL), includes packet handling specific instians that
virtualize ASICs and network processor functionatgjrhence

enabling “easy” mapping on them.
—
—
(NetPDL)
1

Compiler
v

Other tools
NetVM Bytecode
(NetlL)

NetVM or
Ahead-Of-Time / Just in Time
compiler

Network processor or other
hardware system

Figure 1 Architectural Vision.

Network Processing Program
(High Level
Programming Language)

Optional components, only on
systems that want to execute
native code (not NetiL)

Application developers are not required to writelNebde
as programs are generally written in a high-levegpmming
language designed for networking applications, ifipatty for
packet processing. NetPFL, one of these high-lpveyram-
ming languages, enables manipulations of packedsfialds
whose format is described through the Network Rait®e-
scription Language (NetPDL) [2]. As shown in the fmart of
Figure 1, high-level code (e.g., NetPFL code) drel ieeded
protocol definitions stored in a NetPDL databasecarapiled
into NetlL code that can be executed by the NetVM.

NetlL code is translated into native code for tleedware
architecture on which it is supposed to run. Altjouthe
NetVM can be implemented as an actual virtual meghiie.,
it can interpret NetlL instructions during executisnch a so-
lution might not fulfill the performance requiremerdf many
applications; therefore a NetlL compiler — possialy ahead-
of-time (AOT) or Just in Time (JIT) compiler — mighé used
to achieve maximum performance. Availability oftual ma-
chine implementation or compilers for various haadsvplat-
forms guarantees portability; mapping of NetIL rmstions on
specific hardware components ensures high performance

Since the NetVM framework makes implementation of

packet handling functionalities simple and enalttesr effi-
cient execution on multiple hardware platforms, igim be-
come a reference architecture and a platform fopatipg the
development and execution of network applicatiorecket
handling code written with a high-level programmlagguage
and the needed packet descriptions are ultimatelypitednnto
native code, which is able to run effectively oe target sys-
tem. In particular, the NetVM framework could bepesally
beneficial for application development on networkgessors.
In fact one of the problems hindering widespreaplalenent
of network processors is their programming complexsgch
device offers its own programming environment thstially
includes a C-like compiler, but the programminggiaage is
different not only from vendor to vendor, but evestween
different lines of products of a single vendor. Tisislue to the
fact that C language is usually enriched with fessguhat could

sonable degree of programmability. To this purpoke t help network application development (e.g. in oreenable
NetVM bytecode, called NetVM Intermediate Languageexploiting some hardware characteristics of thevaek proc-

essor at best), while some features of the langubhgedre not

needed for packet processing) are disabled. Beiagitine on
a platform by platform basis, portability is notaganteed.
Moreover, the most effective way to program theseicds
(while obtaining applications that efficiently ram them) still
remains writing native assembly language, which iseti
consuming, error-prone, and requires a deep knaeled the
target machine. Consequently, with either programgmap-
proach porting code from a platform to another (gen be-
longing to the same manufacturer) is a nightmare.

The NetVM framework offers a solution to these peafs.
Moreover, if proven to be effective, the NetVM odddecome
a reference design for networking systems, as furttayo-
rated in Section VII.

V. THENETVM

The main architectural choices of the NetVM wereveti
by flexibility, smplicity, and efficiency and leveraged on the
experiences matured in the field of Network Proicgs$nit
(NPU) architectures, which are specifically targeti network
packet processing. The resulting NetVM architectarmodu-
lar and built around the concept @¢frocessing Element
(NetPE), which virtualizes (or, it could be saisl,imspired by)
the micro-engine of a NPU

y NetPE,
(e.g. filtering)

=l

NetPE,
(e.0. session statistics)|8

‘ Classification

Figure 2 NetVM configuration example.

is that no general-purpose registers are providet the in-
structions that need to store or process a value oskef the
stack. Each NetPE has its own stack.

The execution model isvent-based, i.e. a NetPE is acti-
vated by external events, each one triggering icpar por-
tion of code. Typical events are the arrival ofaghet from an
input port, the request of a packet on an outputqrahe expi-
ration of a timer.

TABLE | NETIL INSTRUCTIONCATEGORIES

Category Description Example Description
Used to initialize the .
Initialization execution of a NetPE|set . share Set the size of the

program shared memory

Copy a memory

buffer from a por-
tion of the memory
to another
Compare the top of
the stack with an

8bit field in mem-

Transfer data within

d
memory peopy

Data transfer

Used to compare a
value in a memory

. field.eq.8
%uﬁeragamstthetop retd.-eq

Pattern matchin

of the stack ory
Flow Control Used tq control the j urp Unconditional
execution flow branch
Swaps the two top
Stack Used to manage the swap elements of the
management |stack
stack
Aritmethig and |Used to compute sim Rotate right the
A . ror value at the top of
Logic ple expressions
the stack

The NetVM Intermediate Language (NetlL) defines the

NetPE instruction set that is similar to the oneaofeneric
stack machine, with specific additions to supplogt particular
architecture and application area of this virtuakhine. Appli-
cation specific instructions have been inspiredhéimstruction

A NetPE is a virtual CPU — with its packet-procegsin S€t of network processors. Opcodes can be subdivitted

specific instruction set and a local memory — #segcutes an
assembly program that performs an individual fumciitside
the NetVM and maintains a private state. A NetVMIlaagion

is executed by several NetPEs (for example, Figwgieovs an
application deploying two NetPEs), each one dealiitg only

few tasks, but executing them efficiently. Complésuctures
can be built by interconnecting various NetPEs thathange

data through theiports. Moreover, as shown in Figure 2, Net-

PEs can use specialized functional units (coprocessord
different types of memory to exchange data. Thisutesdriew
derives from the observation that many packet-hagdippli-
cations can be decomposed in simple blocks, thusipps
exploiting parallelism or pipelining to achieve teetperform-
ance, since independent packets or processing blocks be
distributed to various NetPEs executing concurrenilje
modular approach is not new: other software sabstidike

several groups; the most important ones are listd@BLE |.

; Push Port Handl er
segment . push

.locals 5

. maxst acksi ze 10
pop
push 12
upl oad. 16

; pop the "calling" port ID

; push the location of the ethertype

; load the ethertype field

push 2048 ; push 0x800 (=IP)

jcnp. eq send_pkt ; conpare the 2 topnpst values; junp if true
ret ; otherwi se do nothing and return

send_pkt :
pkt.send outl ; send the packet to port outl
ret ; return

ends

Figure 3 NetlL code to filter IPv4 packets.

While more details on NetlL can be found in [1]gtie 3
shows a sample NetIL code that filters IPv4 packetsapsu-

Netfilter or Click have demonstrated its goodness and the parajated into Ethernet frames and returns them on mamber 1

lel architecture of many network processors (basechultiple
low-complexity microengines) follows the same pijite.

Like most existing virtual processors, the NetvMnée
the NetPE, has atack-based design. A stack-based virtual
processor grants portability, a plain and compeasgitiiction set
and a simple virtual machine. The consequenceisfctioice

of the NetPE executing it. This NetlL program candoen-
pared with an equivalent program (see Figure 4jHerBerke-
ley Packet Filter (BPF) [4], probably the best-kmowirtual
machine in the packet processing arena. A first eoispn
highlights that the NetlIL is definitely richer thdme BPF as-
sembly, which gives an insight about the possibditghe for-
mer. However, a NetlL program is far less compte:“core”

of the IPv4 filter program in Figure 3 is six ingttions com-
pared to the tree of the BPF equivalent shown guuiféi 4. This
stems from a major NetVM architectural choice: alstaased
virtual machine is less efficient than a registaséd virtual
machine (such as the BPF). Anyway, an AOT/JIT coengian
overcome this limitation.

(0) Tdn [12]
(1) jeq #0x800 jt 2 jf 3
(2) ret #1514

(3) ret #0

; load the ethertype field

; if true, junp to (2), else to (3)
; return the packet |ength

; return false

Figure 4 BPF code to filter IPv4 packets.

V. NETPDL

Instructions of the high-level programming languagéhe
NetVM framework operate on packet descriptions emitivith
the Network Protocol Description Language (NetPDL) [2] and

The above objectives have driven several choicethen
XML-based specification of NetPDL. A sample of NetPI3
provided in Figure 5 that shows an excerpt of thieektet
header description. Each primitive consists o&l@ment char-
acterized by severattributes. For instance, a header field is an
element, the field size being an attribute of tleenent. More-
over, Figure 5 exemplifies that a NetPDL protocesatiption
consists of two complementary parts. Tpeeket format de-
scription contains the list and format of the feeltbnstituting a
packet header; the Ethernet header consists ofe8l-fength
fieldsl, whose length is respectively 6, 6, and 2 bytes.pFb-
tocol encapsulation description, delimited by theencapsu-
| ati on> element, specifies how to determine the protoasl (
indicated by the value of thepr ot or ef > element) at the
higher layer, i.e., how to interpret the sequerfdeytes consti-
tuting the payload. In the sample in Figure 5,ithntification
of the higher layer protocol is based on the vaiet ype

stored into a universal protocol description dasaba— the
NetPDL database. Having been designed witimplicity in
mind, NetPDL is an application-independent langufagethe
description ofpacket header formats and protocol encapsula-
tions and does not support the description of a protterapo-
ral behavior — e.g., a protocol state machine. NetRbased
on the eXtensible Markup Language (XML) that is draing
the preferred way for exchanging structured datevdsen dif-
ferent applications. For this reason several t@ddyoth stand-
alone programs and libraries, exist for dealing wWiNIL
documents and can be leveraged on.

field, contained in thewi t ch expression.

<protocol nanme="ethernet">
<f or mat >
<fields>
<field type="fixed"
<field type="fixed"
<field type="fixed"
</fields>
<for mat >

name="dst" size="6"/>
nane="src" size="6"/>
nane="type" size="2"/>

<encapsul ati on>
<swi tch expr="type">
<case val ue="0x0800"> <protoref name="1P"/> </case>
<case val ue="0x0806"> <protoref name="ARP"/> </case>
</ swi tch>
</ encapsul ati on>
</ protocol >

NetPDL is the basis for enabling application indejser,
seamless packet processing because it offers a dneétho
uniquely identify each protocol and each field. @goncrete
example, among other things NetPDL provides a uniguee
(e.g.i p. src) for the entities dealt with by packet processingl.
and usually referred to differently, e.g., “IP somraddress
field”, or “IP source address”, or “ip source”, diP‘source”.
Moreover, the protocol header database can be dgabyni
changed to include new protocols or protocol festuwithout
even restarting applications.

Figure 5 Excerpt of the NetPDL description of tteefnet Header.

NETPFL

The Network Packet Filtering Language (NetPFL) &na-
ple high-level programming language targeted toegging
network-oriented processing code for the NetVMupports a
filter — action model: a filter is applied to thagket and, if this
is satisfied, the corresponding action is taken.ré&ractions
involve returning a packet on a specified portssiging a

Co — . packet (e.g. for calculating protocol distributidatistics), re-
1. Smplicity: the syntax should be intuitive so that (1) it Cany,, ying the content of a set of fields in the packéters can be

lbe easily un((jjerstood witlhgut a deep knovxl/)Iedgg of thfased onij protocols (i.e., the filter is satisfied by a ket
anguage and (2) protocol descriptions can be ewritts- containing a message of a given protocol) ai}ifi¢ld values
ing a simple text editor. i.e. an expression involving one or more fields ¢ @r more

2. Completeness: the language must include a set of basebrotocol headers). Filters are applied to theastref packets
primitives suitable to describe packet headers ofitbst entering the executing NetPE through its ports.

common (present and possibly future) protocols, thus de
fining the way they can be processed. An externa-piu
mechanism is provided for dealing with packet header
formats that cannot be described by NetPDL primitives.

3. Extensibility: the language must support the addition of Figure 6 High-level code to filter IPv4 packetsNetPFL and tcpdump.
new primitives to the small set of base elements, atigwi
for the language to be tailored to a wide rangeppfica-
tions. Backward compatibility is ensured by applicasi
being able to skip over unknown primitives.

4. Efficiency: the performance of applications deploying
NetPDL databases must be comparable to the one-of ap
plications based on “hardwired” packet descriptions.

NetPDL was designed with the following objectives.

Net PFL:
t cpdunp:

ethernet.type ==
ether proto 0x800

0x800 ReturnPacket on port 1

Figure 6 shows a sample NetPFL program and offers a
glance of the (low) complexity of an applicatiom fbe NetVM
framework. The code in Figure 6 consists of arfittased on a
field value and a traffic capture action. It instsithe NetvVM

1 For simplicity, Preamble, Start Frame DelimitendaFrame Check Se-
quence are not shown in this sample description.

to return on its port number 1 all Ethernet frantes tontain
the valueOx0800 in theiret her net . t ype field. In other
words, this code implements a filter for IPv4 pdske

For the sake of comparison, the same Figure shbess t

definition of the same filter with the widely known
tcpdump [3] packet filtering application. The comipan
shows that, even though the NetVM provides theibfiéty of

a generic packet-processing engine, defining a pafiker
with NetPFL is not more complicated than specifyindor
tcpdump, i.e., a utility specifically optimized fpacket filter-
ing. Hence, the increased flexibility of the Net\i#/not traded
for increased programming complexity, as well as($agnifi-
cantly) lower performance, as discussed in the sestion.

The NetPFL code in Figure 6 is translated into KtelL
bytecode shown in Figure 3 that can be interpréigda
NetVM implementation or compiled (through AOT/JImto
native code on the target platform. Compiling tbpdump
filter within libpcap yields the BPF assembly cadé-igure 4.

such a compiler can translate NetVM bytecode ir@6 ms-
sembler (therefore making use of the processostegi in-
stead of operating on a stack) or into code basdti@instruc-
tion set of a specific network processor. A comrmbjection
is that a program written in C and compiled nativier a gen-
eral-purpose target platform may run faster tharsttme pro-
gram written in NetlL and transformed into nativede by an
AOT/JIT compiler. However, the situation may be eiént if
the target platform is a NPU or a network specificdware
architecture, for which writing optimized nativedeomight be
difficult and cumbersome. Instead, AOT/JIT comileray be
very efficient in exploiting the hardware resourcéshe target
machines. In particular, NetlL network-specific mistions
can be efficiently mapped onto custom functionatsu(e.g.,
ASICs and FPGASs) that have been designed to optireally
cute their tasks. Furthermore, writing program&@tPFL has
the additional advantage that packet processing wo€lrther
automatically optimized by that compiler, which iements
not only compiler-related optimization techniquesit lalso
application (i.e., packet processing) related oatidns.

One of the biggest advantages of the NetPFL/NetPDL to

NetIL compilation (shown in the top part of Figurgig that
developers do not need to care about protocol eulcdjoss.
For instance, when writing code to filter out any8Rpacket,
the compiler checks the NetPDL database for anyilgess
IPv6 encapsulation (e.g. IPv6 in Ethernet, or IRV&LAN in
Ethernet, etc.). This offers an unprecedented dexfréexibil-
ity because encapsulation is managed through NetHBd, f
which are automatically updated when the protoetéliase is
replaced by a new one.

NetPFL is only an example of high-level languageywh
ever we envision the realization of more NetlL cderg, thus
enabling the generation of NetVM code from the nusn-
mon programming languages (e.g. C, possibly with spate
work-specific extensions).

VII. NETVM | MPLEMENTATION

The NetVM aims at providing programmers with an arch
tectural reference, so that they can concentratevtat to do
on packets, rather than how to do that. This has bealt with
once for all during the NetVM implementation. Thésction
focuses on how to implement the NetVM on both endesys
and network nodes.

The first option is software emulation of the refeze de-
sign: NetVM bytecode is interpreted and for eadirurction a
piece of native code is executed to perform theesponding
function. This option is applicable to any platfolfranging
from personal computers to smartphones), it doegetptire
specific hardware, but features the worst perfocaamBetter
performance can be achieved by leveraging on spduifd-
ware, where available, to execute specific instonstiof the
NetVM bytecode. Being based on on-the-fly intergietaof
NetIL instructions, both options possibly enable dyigam
downloading of code, i.e., changes to an executiagram.

A third implementation option that further improvper-
formance consists in creating an AOT/JIT compilex, & tool
that inspects NetlL code and translates it intoiaespecific
code, as shown in the bottom part of Figure 1. Kamnmple,

A fourth option is to implement the NetVM architer in
hardware, i.e., the architecture of the virtual hiae could be
used as the basis for the design of a hardwarétectire for
network processing (e.g., a network processor). ADVHbro-
gram implementing the NetVM reference design candsel to
create a new FPGA chip that implements the NetVM.

Taking this a step further, the NetVM code impletivena
set of packet processing functionalities (e.g., &/Neprogram
that tracks the amount of IPv6 traffic) could benpiled in the
hardware description of a hardware system that imgtds
such functionalities. In other words, gates on aGA&Ran be
configured not to implement the NetVM environmemit to
execute the specific program that has to be mappet ©his
solution trades some flexibility (running a new agetion re-
quires reconfiguring the FPGA gates) for maximuficieincy.

In general, the NetVM framework can be effectivabed
for fast prototyping, specification, and implemdinta of net-
work oriented hardware systems. Currently, only aopypal
NetVM implementation according to the aforementibriiest
option — i.e., a NetVM emulation — is available.i¥kection
presents a few numerical results as a first quanstavalua-
tion of the proposed architecture. TABLE Il shows time
needed by the NetVM and the BPF to execute an fiRedng
program, i.e., the code shown in Figure 3 and Figurks ex-
pected, the BPF outperforms the NetVM because, asoned
before, the NetlL program is far less compact thatefuiva-
lent BPF assembly. However, the performance diffexen
should be cancelled by an AOT compiler (currenthgilable
only for the BPF) translating virtual machine askbmnto
native code.

TABLE Il PERFORMANCE OFNETVM EMULATION.

Virtual Machine
NetvM

CPU clock cycles for executing the “IPv4” filter
392

BPF 64

VIIL.

Translating NetlL instructions into native code réingh
AOT/JIT compilation) tailored to the characteristafsthe tar-
get platform according to the third aforementiomaglemen-
tation option significantly improves performancéidjustifies
the choice of a stack-based machine, which isnisitally
slower, since its instructions are much simpleredranslated
into native code. The implementation of a JIT cdergs part
of our future work on the NetVM.

D EPLOYMENT

The NetVM can be considered a black box that perfor
some processing on data, more likely packets. Irossible
configuration, an input socket accepts “raw” paskethile end
results are sent out through an output socket. Asatemof
fact, the NetVM does not have a preferred locatiorits exe-
cution in real systems. In other words, a NetVM barimple-
mented as a chip on a network interface or onwarktdevice
blade, as a kernel module in an operating systers, lzedper
module in a user-level application, etc. The Net\@vivery
flexible and fits in significantly different hardwea and soft-
ware architectures, provided that its input and wuports are
properly connected to the rest of the system anddteformat
is compliant with NetVM rules. Currently, the NetVKas
been implemented as a user-level module in the é&&ef5)
library, but a porting to the kernel level is pladnin order to
increase the efficiency in the real-time processifgackets
received though the network interface cards.

Applications

Packet Traffic

Traffic
Statistics

NetvM
Class
Interface |

Packet
Filter

Packet Fields
Extractor

Stream
Reassembler

NetPDL

protocol
database

Figure 7 NetBee packet processing framework.

NetBee

The NetVM is targeted to simple packet processingrap
tions, although at very high speed. Therefore NB&/M does
not aim at supporting the development of complef®iegtions
(e.g. a stateful firewall); instead, a firewall camploit the
NetVM (and its framework) for its low-level procasgi This
vision is presented in Figure 7: the NetVM is a keynponent
of the NetBee library, which implements a set afgessing
modules (e.g. a stream reassembly) that use the vinderl
processing capabilities of the NetVM.

A further step of deployment is depicted in Fig8reéhat
presents a scenario where all network devices hdwdiliain
NetVM component, no matter how this is implementbé-
velopers can take advantage of having both the sastric-
tion set and the same reference architecture othallplat-
forms, which constitutes a distributed processingrenment
where different network nodes execute NetVM prograwor-
dinated by a remote console. Once NetVM suppoprbeided
by commonly deployed network gear, distributed @pgibns

IX.

could be based on downloading NetVM code on varioets
work nodes (e.g. through some existing configuraiwoto-
cols, such as SNMP) and possibly collecting thalteyielded
by its execution. This would open the path to npawverful
network-based applications.

User application

Ethernet phone

\ Send an alarm when a SIP

Getasummaryof b N e _——<L_ T
each TCP sessjeh

Local SZ——5,
workstation

Remote
ol workstation

Reassembly all TCP sessions on port™

8888 and look for keyword “MP3” in there

Figure 8 NetVM deployment scenario.

CONCLUSIONS

This paper presents a framework for fast developroén
network applications. Its key components are thdVMe
(Network Virtual Machine), targeted to the efficiesxecution
of simple packet processing code, the NetPDL (NekviRyo-
tocol Description Language), dissociating appligaidrom
protocol header formats, and a high-level languagsuch as
the Network Packet Filtering Language (NetPFL) — Vait-
ing packet handling programs. The NetVM sets an tctuiral
reference for program development; since it mayslable
on various hardware platforms and NetlL progranes @ort-
able, this lays the basis for distributed networlcpssing.

The vision presented in this paper is currently urigsel-
opment in the open-source NetBee library, whichrély
available on the web [5].

ACKNOWLEDGEMENTS

We would like to thank the several people who cbotad
to this project, among the others Loris Degioanrignica
Varenni, Olivier Morandi, Francesco Andriani, Livitorrero,
Andrea Vesco, Leonardo Scucchia and Gianluca Dho.

REFERENCES

[1] L. Degioanni, M. Baldi, D. Buffa, F. Risso, Ktirano, G. Varenni,
“Network Virtual Machine (NetVM): A New Architecter for Efficient
and Portable Network Applications8" IEEE International Conference
on Telecommunications (ConTEL 2005), Zagreb (Croatia), June 2005.

[2] F. Risso, M. Baldi, "NetPDL: An Extensible XMhased Language for
Packet Header Description, to appear iCorhputer Networks
(COMNET), Elsevier.

[3] V. Jacobson, C. Leres and S. McCanne, libptapyrence Berkeley
Laboratory, Berkeley, CA. Initial public releasendu1994. Currently
Available at http://www.tcpdump.org.

[4] S. McCanne and V. Jacobson, “The BSD PacketefFilA New
Architecture for User-level Packet Capture”. Praiiegs of the1993
Winter USENIX Technical Conference, San Diego, CA, Jan. 1993.

[5] Computer Networks Group (NetGroup) at Politeendi Torino. The
NetBee Library, available at http://www.nbee.ofgdgust 2004,

