
28 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Framework for Rapid Development and Portable Execution of Packet-Handling Applications / Baldi, Mario; Risso,
FULVIO GIOVANNI OTTAVIO. - STAMPA. - (2005), pp. 233-238. (Intervento presentato al convegno 5th IEEE
International Symposium on Signal Processing and Information Technology (ISSPIT 2005) tenutosi a Athens (Greece)
nel December 19-21, 2005) [10.1109/ISSPIT.2005.1577101].

Original

A Framework for Rapid Development and Portable Execution of Packet-Handling Applications

Publisher:

Published
DOI:10.1109/ISSPIT.2005.1577101

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1494646 since:

IEEE

A Framework for Rapid Development and Portable
Execution of Packet-Handling Applications

Mario Baldi and Fulvio Risso
Dipartimento di Automatica e Informatica

Politecnico di Torino
Torino, Italy

{mario.baldi,fulvio.risso}@polito.it

Abstract — This paper presents a framework that enables the
execution of packet-handling applications (such as sniffers, fire-
walls, intrusion detectors, etc.) on different hardware platforms.
This framework is centered on the NetVM — a novel, portable,
and efficient virtual processor targeted for packet-based process-
ing — and the NetPDL — a language dissociating applications
from protocol specifications. In addition, a high-level program-
ming language that enables rapid development of packet-based
applications is presented.

Keywords — High-speed packet processing, Network Virtual
Machine, NetVM, NetPDL, NetPFL.

I. INTRODUCTION

Several network applications — such as packet routing,
traffic classification, network address translation, packet sniff-
ing, traffic analysis, traffic generation, firewalling, intrusion
detection — perform some sort of packet processing. Some of
them benefit from — or, in order to meet performance re-
quirements, need — specific hardware support, such as off-
loading engines or application specific integrated circuits
(ASICs), for some of their tasks. Even though packet process-
ing is common to a large number of applications, at present no
solution exists to delegate it to a single optimized component.
This paper proposes a framework aiming at moving common
packet-processing functionalities outside applications, while
providing high processing efficiency.

Devising a general packet-processing component is not
trivial since it should provide (i) a large number of packet han-
dling functionalities executable with (ii) high performance on a
(iii) wide range of hardware platforms. Virtual machines are
the basis for portability and flexibility, although usually associ-
ated to poor performance. The proposed framework is centered
on the Network Virtual Machine (NetVM) that aims at combin-
ing high performance with the common properties of virtual
machines.

The issues to be addressed in the realization of such a
framework, the motivations underlying such an effort, and the
resulting potential benefits are discussed in Section II. Sec-

 This work has been carried out within the framework of the QUASAR

project, funded by the Italian Ministry of Education, University and Research
(MIUR) as part of the PRIN 2004 Funding Program. Its presentation has been
supported by the European Union under the E-Next Project FP6-506869.

tion III provides an overview of the proposed framework
whose main component, the NetVM, is briefly described in
Section IV. The Network Protocol Description Language
(NetPDL) used to describe format and protocol encapsulation
for packets handled by the NetVM is outlined in Section V.
Programs developed in the NetVM framework can be written
in some high-level programming language. Currently, one such
language targeted at filtering applications has been defined and
a prototypal compiler implemented; this language, called
NetPFL, is presented in Section VI. Section VII discusses im-
plementation alternatives for the NetVM, while Section VIII
outlines deployment scenarios for the proposed framework,
i.e., how it can be integrated into applications and how the
NetVM interacts with the surrounding environment. Conclu-
sions are drawn in Section IX.

II. ISSUES, MOTIVATIONS, AND BENEFITS

One problem with a general packet-processing component
stems from the different flavors of packet processing required
by applications. For example, while an application might need
to filter packets to further process only a subset of them, an-
other one might need to modify the value of selected fields in
each packet. A general packet processing component that ful-
fills the needs of all applications would be required to have a
large set of functionalities, hence a high complexity. Another
problem stems from the high degree of portability required. In
fact, the above-mentioned applications need to execute in a
specific location within the network (e.g., in the backbone, at
the network edge, on end systems), in some cases, execution
must be distributed across different devices. In general, such
network applications must be deployed on very different
(hardware and software) platforms, ranging from routers, to
network appliances, to PCs, to smartphones. In some cases, the
whole range of potential target platforms is not even known
when application development takes place. Finally, most appli-
cations require high performance to cope with the large amount
of packets flowing through high capacity links.

Virtual machines are the basis for the “write once, run
anywhere” paradigm, thus enabling the realization and de-
ployment of portable applications. However, general purpose
virtual machines, such as Java and Microsoft’s CLR, although
widely used, do not achieve the needed performance when exe-
cuting packet handling code. Instead, the NetVM framework
has been designed specifically as a development and execution

platform for packet handling applications. Consequently, exe-
cution of packet handling related functions by the NetVM is
optimized. Specifically, when the NetVM is deployed on net-
work processors or hardware architectures packet handling
related functions can be mapped directly on underlying special
purpose hardware, e.g. ASICs, CAMs, etc.

Although the NetVM may have a more limited scope than
Java and CLR virtual machines (i.e., the NetVM targets a
smaller range of applications), its goals are somewhat more
ambitious. In fact, the latter aim at application portability
across platforms that, while different from hardware and soft-
ware (i.e., operating system) point of view, are similar in being
designed to support generic applications. Instead, the NetVM
must combine portability and performance; this translates in
the capability of effectively deploying available hardware re-
sources (such as processing power, memory, functional units)
notwithstanding the significantly different architecture and
components of the various hardware platforms targeted.

The NetVM framework has the potential to bring the fol-
lowing contributions:

• simplify and speedup the development of optimized packet
handling applications, such as traffic monitors, routers,
firewalls because developers are no longer required to deal
with low-level packet processing;

• functional modules can be developed and made available
for reuse in new applications. This has the twofold advan-
tage of (i) making development faster and (ii) applications
more reliable and performing since they are based on sta-
ble and optimized modules;

• enable efficient mapping of the execution of software
modules performing specific tasks onto optimized compo-
nents of custom hardware architectures;

• provide a unifying programming environment and offer
portability of packet handling applications across different
hardware and software platforms;

• the NetVM architecture could be used as a reference de-
sign architecture for the implementation of hardware (inte-
grated) packet handling systems;

• provide a new tool for specification, fast prototyping, and
implementation of hardware (integrated) networking sys-
tems targeted to a specific packet handling application.

III. THE NETVM FRAMEWORK

The main objective of the framework presented in this work
is to enable development of demanding, portable packet han-
dling applications, i.e., applications that can be efficiently exe-
cuted on various hardware platforms. The Network Virtual
Machine (NetVM), the centerpiece of such framework, defines
a new architecture for a (virtual) network processor in such a
way that code execution exploits the high performance offered
by network processors and ad-hoc hardware included in net-
work systems, while also providing code portability and a rea-
sonable degree of programmability. To this purpose the
NetVM bytecode, called NetVM Intermediate Language

(NetIL), includes packet handling specific instructions that
virtualize ASICs and network processor functional units, hence
enabling “easy” mapping on them.

Compiler

NetVM Bytecode
(NetIL)

Protocol Database

(NetPDL)

Other tools

NetVM or
Ahead-Of-Time / Just in Time
compiler

Network processor or other
hardware system

Native code

Network Processing Program

(High Level

Programming Language)

Optional components, only on
systems that want to execute
native code (not NetIL)

Figure 1 Architectural Vision.

Application developers are not required to write NetIL code
as programs are generally written in a high-level programming
language designed for networking applications, specifically for
packet processing. NetPFL, one of these high-level program-
ming languages, enables manipulations of packets and fields
whose format is described through the Network Protocol De-
scription Language (NetPDL) [2]. As shown in the top part of
Figure 1, high-level code (e.g., NetPFL code) and the needed
protocol definitions stored in a NetPDL database are compiled
into NetIL code that can be executed by the NetVM.

NetIL code is translated into native code for the hardware
architecture on which it is supposed to run. Although the
NetVM can be implemented as an actual virtual machine, i.e.,
it can interpret NetIL instructions during execution, such a so-
lution might not fulfill the performance requirements of many
applications; therefore a NetIL compiler — possibly an ahead-
of-time (AOT) or Just in Time (JIT) compiler — might be used
to achieve maximum performance. Availability of virtual ma-
chine implementation or compilers for various hardware plat-
forms guarantees portability; mapping of NetIL instructions on
specific hardware components ensures high performance.

Since the NetVM framework makes implementation of
packet handling functionalities simple and enables their effi-
cient execution on multiple hardware platforms, it might be-
come a reference architecture and a platform for supporting the
development and execution of network applications. Packet
handling code written with a high-level programming language
and the needed packet descriptions are ultimately compiled into
native code, which is able to run effectively on the target sys-
tem. In particular, the NetVM framework could be especially
beneficial for application development on network processors.
In fact one of the problems hindering widespread deployment
of network processors is their programming complexity. Each
device offers its own programming environment that usually
includes a C-like compiler, but the programming language is
different not only from vendor to vendor, but even between
different lines of products of a single vendor. This is due to the
fact that C language is usually enriched with features that could
help network application development (e.g. in order to enable
exploiting some hardware characteristics of the network proc-
essor at best), while some features of the language (that are not

needed for packet processing) are disabled. Being this done on
a platform by platform basis, portability is not guaranteed.
Moreover, the most effective way to program these devices
(while obtaining applications that efficiently run on them) still
remains writing native assembly language, which is time-
consuming, error-prone, and requires a deep knowledge of the
target machine. Consequently, with either programming ap-
proach porting code from a platform to another one (even be-
longing to the same manufacturer) is a nightmare.

The NetVM framework offers a solution to these problems.
Moreover, if proven to be effective, the NetVM could become
a reference design for networking systems, as further elabo-
rated in Section VII.

IV. THE NETVM

The main architectural choices of the NetVM were driven
by flexibility, simplicity, and efficiency and leveraged on the
experiences matured in the field of Network Processing Unit
(NPU) architectures, which are specifically targeted to network
packet processing. The resulting NetVM architecture is modu-
lar and built around the concept of Processing Element
(NetPE), which virtualizes (or, it could be said, is inspired by)
the micro-engine of a NPU.

NetVM

NetPE1
(e.g. filtering)

S
oc

ke
t

S
oc

ke
t

O
ut

pu
t

P
or

t

In
pu

t
P

or
t

Classification
coprocessor

Crypto
coprocessor

CRC
coprocessor

Shared Memory

E
xc

ha
ng

e
B

uf
fe

r
1

E
xc

ha
ng

e
B

uf
fe

r
2

NetPE2
(e.g. session statistics)In

pu
t

P
or

t

O
ut

pu
t

P
or

t

Network
Packet

Network
Data

Figure 2 NetVM configuration example.

A NetPE is a virtual CPU — with its packet-processing
specific instruction set and a local memory — that executes an
assembly program that performs an individual function inside
the NetVM and maintains a private state. A NetVM application
is executed by several NetPEs (for example, Figure 2 shows an
application deploying two NetPEs), each one dealing with only
few tasks, but executing them efficiently. Complex structures
can be built by interconnecting various NetPEs that exchange
data through their ports. Moreover, as shown in Figure 2, Net-
PEs can use specialized functional units (coprocessors) and
different types of memory to exchange data. This modular view
derives from the observation that many packet-handling appli-
cations can be decomposed in simple blocks, thus possibly
exploiting parallelism or pipelining to achieve better perform-
ance, since independent packets or processing blocks could be
distributed to various NetPEs executing concurrently. The
modular approach is not new: other software solutions, like
Netfilter or Click have demonstrated its goodness and the paral-
lel architecture of many network processors (based on multiple
low-complexity microengines) follows the same principle.

Like most existing virtual processors, the NetVM, hence
the NetPE, has a stack-based design. A stack-based virtual
processor grants portability, a plain and compact instruction set
and a simple virtual machine. The consequence of this choice

is that no general-purpose registers are provided and the in-
structions that need to store or process a value make use of the
stack. Each NetPE has its own stack.

The execution model is event-based, i.e. a NetPE is acti-
vated by external events, each one triggering a particular por-
tion of code. Typical events are the arrival of a packet from an
input port, the request of a packet on an output port or the expi-
ration of a timer.

TABLE I NETIL I NSTRUCTION CATEGORIES.

Category Description Example Description

Initialization
Used to initialize the
execution of a NetPE
program

set.share
Set the size of the
shared memory

Data transfer
Transfer data within
memory

dpcopy

Copy a memory
buffer from a por-
tion of the memory
to another

Pattern matching

Used to compare a
value in a memory
buffer against the top
of the stack

field.eq.8

Compare the top of
the stack with an
8bit field in mem-
ory

Flow Control
Used to control the
execution flow

jump
Unconditional
branch

Stack
management

Used to manage the
stack

swap
Swaps the two top
elements of the
stack

Aritmethig and
Logic

Used to compute sim-
ple expressions

ror
Rotate right the
value at the top of
the stack

The NetVM Intermediate Language (NetIL) defines the
NetPE instruction set that is similar to the one of a generic
stack machine, with specific additions to support the particular
architecture and application area of this virtual machine. Appli-
cation specific instructions have been inspired to the instruction
set of network processors. Opcodes can be subdivided into
several groups; the most important ones are listed in TABLE I.

; Push Port Handler

segment .push

.locals 5

.maxstacksize 10

pop ; pop the "calling" port ID

push 12 ; push the location of the ethertype

upload.16 ; load the ethertype field

push 2048 ; push 0x800 (=IP)

jcmp.eq send_pkt ; compare the 2 topmost values; jump if true

ret ; otherwise do nothing and return

send_pkt:

pkt.send out1 ; send the packet to port out1

ret ; return

ends
Figure 3 NetIL code to filter IPv4 packets.

While more details on NetIL can be found in [1], Figure 3
shows a sample NetIL code that filters IPv4 packets encapsu-
lated into Ethernet frames and returns them on port number 1
of the NetPE executing it. This NetIL program can be com-
pared with an equivalent program (see Figure 4) for the Berke-
ley Packet Filter (BPF) [4], probably the best-known virtual
machine in the packet processing arena. A first comparison
highlights that the NetIL is definitely richer than the BPF as-
sembly, which gives an insight about the possibility of the for-
mer. However, a NetIL program is far less compact: the “core”

of the IPv4 filter program in Figure 3 is six instructions com-
pared to the tree of the BPF equivalent shown in Figure 4. This
stems from a major NetVM architectural choice: a stack-based
virtual machine is less efficient than a register-based virtual
machine (such as the BPF). Anyway, an AOT/JIT compiler can
overcome this limitation.

(0) ldh [12] ; load the ethertype field
(1) jeq #0x800 jt 2 jf 3 ; if true, jump to (2), else to (3)

(2) ret #1514 ; return the packet length

(3) ret #0 ; return false
Figure 4 BPF code to filter IPv4 packets.

V. NETPDL

Instructions of the high-level programming language of the
NetVM framework operate on packet descriptions written with
the Network Protocol Description Language (NetPDL) [2] and
stored into a universal protocol description database — the
NetPDL database. Having been designed with simplicity in
mind, NetPDL is an application-independent language for the
description of packet header formats and protocol encapsula-
tions and does not support the description of a protocol tempo-
ral behavior — e.g., a protocol state machine. NetPDL is based
on the eXtensible Markup Language (XML) that is becoming
the preferred way for exchanging structured data between dif-
ferent applications. For this reason several tools, as both stand-
alone programs and libraries, exist for dealing with XML
documents and can be leveraged on.

NetPDL is the basis for enabling application independent,
seamless packet processing because it offers a method to
uniquely identify each protocol and each field. As a concrete
example, among other things NetPDL provides a unique name
(e.g. ip.src) for the entities dealt with by packet processing
and usually referred to differently, e.g., “IP source address
field”, or “IP source address”, or “ip source”, or “IP.source”.
Moreover, the protocol header database can be dynamically
changed to include new protocols or protocol features, without
even restarting applications.

NetPDL was designed with the following objectives.

1. Simplicity: the syntax should be intuitive so that (1) it can
be easily understood without a deep knowledge of the
language and (2) protocol descriptions can be written us-
ing a simple text editor.

2. Completeness: the language must include a set of base
primitives suitable to describe packet headers of the most
common (present and possibly future) protocols, thus de-
fining the way they can be processed. An external plug-in
mechanism is provided for dealing with packet header
formats that cannot be described by NetPDL primitives.

3. Extensibility: the language must support the addition of
new primitives to the small set of base elements, allowing
for the language to be tailored to a wide range of applica-
tions. Backward compatibility is ensured by applications
being able to skip over unknown primitives.

4. Efficiency: the performance of applications deploying
NetPDL databases must be comparable to the one of ap-
plications based on “hardwired” packet descriptions.

The above objectives have driven several choices in the
XML-based specification of NetPDL. A sample of NetPDL is
provided in Figure 5 that shows an excerpt of the Ethernet
header description. Each primitive consists of an element char-
acterized by several attributes. For instance, a header field is an
element, the field size being an attribute of the element. More-
over, Figure 5 exemplifies that a NetPDL protocol description
consists of two complementary parts. The packet format de-
scription contains the list and format of the fields constituting a
packet header; the Ethernet header consists of 3 fixed-length
fields1, whose length is respectively 6, 6, and 2 bytes. The pro-
tocol encapsulation description, delimited by the <encapsu-
lation> element, specifies how to determine the protocol (as
indicated by the value of the <protoref> element) at the
higher layer, i.e., how to interpret the sequence of bytes consti-
tuting the payload. In the sample in Figure 5, the identification
of the higher layer protocol is based on the value of the type
field, contained in the switch expression.

<protocol name="ethernet">
<format>

<fields>
<field type="fixed" name="dst" size="6"/>
<field type="fixed" name="src" size="6"/>
<field type="fixed" name="type" size="2"/>

</fields>
<format>

<encapsulation>
<switch expr="type">

<case value="0x0800"> <protoref name="IP"/> </case>
<case value="0x0806"> <protoref name="ARP"/> </case>

</switch>
</encapsulation>

</protocol>
Figure 5 Excerpt of the NetPDL description of the Ethernet Header.

VI. NETPFL

The Network Packet Filtering Language (NetPFL) is a sim-
ple high-level programming language targeted to generating
network-oriented processing code for the NetVM. It supports a
filter – action model: a filter is applied to the packet and, if this
is satisfied, the corresponding action is taken. Current actions
involve returning a packet on a specified port, classifying a
packet (e.g. for calculating protocol distribution statistics), re-
turning the content of a set of fields in the packet. Filters can be
based on (i) protocols (i.e., the filter is satisfied by a packet
containing a message of a given protocol) and (ii) field values
(i.e. an expression involving one or more fields of one or more
protocol headers). Filters are applied to the stream of packets
entering the executing NetPE through its ports.

NetPFL: ethernet.type == 0x800 ReturnPacket on port 1

tcpdump: ether proto 0x800

Figure 6 High-level code to filter IPv4 packets, in NetPFL and tcpdump.

Figure 6 shows a sample NetPFL program and offers a
glance of the (low) complexity of an application for the NetVM
framework. The code in Figure 6 consists of a filter based on a
field value and a traffic capture action. It instructs the NetVM

1 For simplicity, Preamble, Start Frame Delimiter, and Frame Check Se-

quence are not shown in this sample description.

to return on its port number 1 all Ethernet frames that contain
the value 0x0800 in their ethernet.type field. In other
words, this code implements a filter for IPv4 packets.

For the sake of comparison, the same Figure shows the
definition of the same filter with the widely known
tcpdump [3] packet filtering application. The comparison
shows that, even though the NetVM provides the flexibility of
a generic packet-processing engine, defining a packet filter
with NetPFL is not more complicated than specifying it for
tcpdump, i.e., a utility specifically optimized for packet filter-
ing. Hence, the increased flexibility of the NetVM is not traded
for increased programming complexity, as well as for (signifi-
cantly) lower performance, as discussed in the next section.

The NetPFL code in Figure 6 is translated into the NetIL
bytecode shown in Figure 3 that can be interpreted by a
NetVM implementation or compiled (through AOT/JIT) into
native code on the target platform. Compiling the tcpdump
filter within libpcap yields the BPF assembly code in Figure 4.

One of the biggest advantages of the NetPFL/NetPDL to
NetIL compilation (shown in the top part of Figure 1) is that
developers do not need to care about protocol encapsulations.
For instance, when writing code to filter out any IPv6 packet,
the compiler checks the NetPDL database for any possible
IPv6 encapsulation (e.g. IPv6 in Ethernet, or IPv6 in VLAN in
Ethernet, etc.). This offers an unprecedented degree of flexibil-
ity because encapsulation is managed through NetPDL files,
which are automatically updated when the protocol database is
replaced by a new one.

NetPFL is only an example of high-level language; how-
ever we envision the realization of more NetIL compilers, thus
enabling the generation of NetVM code from the most com-
mon programming languages (e.g. C, possibly with some net-
work-specific extensions).

VII. NETVM I MPLEMENTATION

The NetVM aims at providing programmers with an archi-
tectural reference, so that they can concentrate on what to do
on packets, rather than how to do that. This has been dealt with
once for all during the NetVM implementation. This section
focuses on how to implement the NetVM on both end-systems
and network nodes.

The first option is software emulation of the reference de-
sign: NetVM bytecode is interpreted and for each instruction a
piece of native code is executed to perform the corresponding
function. This option is applicable to any platform (ranging
from personal computers to smartphones), it does not require
specific hardware, but features the worst performance. Better
performance can be achieved by leveraging on specific hard-
ware, where available, to execute specific instructions of the
NetVM bytecode. Being based on on-the-fly interpretation of
NetIL instructions, both options possibly enable dynamic
downloading of code, i.e., changes to an executing program.

A third implementation option that further improves per-
formance consists in creating an AOT/JIT compiler, i.e. a tool
that inspects NetIL code and translates it into device-specific
code, as shown in the bottom part of Figure 1. For example,

such a compiler can translate NetVM bytecode into x86 as-
sembler (therefore making use of the processor registers in-
stead of operating on a stack) or into code based on the instruc-
tion set of a specific network processor. A common objection
is that a program written in C and compiled natively for a gen-
eral-purpose target platform may run faster than the same pro-
gram written in NetIL and transformed into native code by an
AOT/JIT compiler. However, the situation may be different if
the target platform is a NPU or a network specific hardware
architecture, for which writing optimized native code might be
difficult and cumbersome. Instead, AOT/JIT compilers may be
very efficient in exploiting the hardware resources of the target
machines. In particular, NetIL network-specific instructions
can be efficiently mapped onto custom functional units (e.g.,
ASICs and FPGAs) that have been designed to optimally exe-
cute their tasks. Furthermore, writing programs in NetPFL has
the additional advantage that packet processing code is further
automatically optimized by that compiler, which implements
not only compiler-related optimization techniques, but also
application (i.e., packet processing) related optimizations.

A fourth option is to implement the NetVM architecture in
hardware, i.e., the architecture of the virtual machine could be
used as the basis for the design of a hardware architecture for
network processing (e.g., a network processor). A VHDL pro-
gram implementing the NetVM reference design can be used to
create a new FPGA chip that implements the NetVM.

Taking this a step further, the NetVM code implementing a
set of packet processing functionalities (e.g., a NetVM program
that tracks the amount of IPv6 traffic) could be compiled in the
hardware description of a hardware system that implements
such functionalities. In other words, gates on an FPGA can be
configured not to implement the NetVM environment, but to
execute the specific program that has to be mapped on it. This
solution trades some flexibility (running a new application re-
quires reconfiguring the FPGA gates) for maximum efficiency.

In general, the NetVM framework can be effectively used
for fast prototyping, specification, and implementation of net-
work oriented hardware systems. Currently, only a prototypal
NetVM implementation according to the aforementioned first
option — i.e., a NetVM emulation — is available. This section
presents a few numerical results as a first quantitative evalua-
tion of the proposed architecture. TABLE II shows the time
needed by the NetVM and the BPF to execute an IPv4 filtering
program, i.e., the code shown in Figure 3 and Figure 4. As ex-
pected, the BPF outperforms the NetVM because, as mentioned
before, the NetIL program is far less compact that the equiva-
lent BPF assembly. However, the performance difference
should be cancelled by an AOT compiler (currently available
only for the BPF) translating virtual machine assembly into
native code.

TABLE II PERFORMANCE OF NETVM EMULATION .

Virtual Machine CPU clock cycles for executing the “IPv4” filter

NetVM 392

BPF 64

Translating NetIL instructions into native code (through
AOT/JIT compilation) tailored to the characteristics of the tar-
get platform according to the third aforementioned implemen-
tation option significantly improves performance. This justifies
the choice of a stack-based machine, which is intrinsically
slower, since its instructions are much simpler to be translated
into native code. The implementation of a JIT compiler is part
of our future work on the NetVM.

VIII. D EPLOYMENT

The NetVM can be considered a black box that performs
some processing on data, more likely packets. In a possible
configuration, an input socket accepts “raw” packets, while end
results are sent out through an output socket. As a matter of
fact, the NetVM does not have a preferred location for its exe-
cution in real systems. In other words, a NetVM can be imple-
mented as a chip on a network interface or on a network device
blade, as a kernel module in an operating system, as a helper
module in a user-level application, etc. The NetVM is very
flexible and fits in significantly different hardware and soft-
ware architectures, provided that its input and output ports are
properly connected to the rest of the system and the data format
is compliant with NetVM rules. Currently, the NetVM has
been implemented as a user-level module in the NetBee [5]
library, but a porting to the kernel level is planned in order to
increase the efficiency in the real-time processing of packets
received though the network interface cards.

NetPDL
protocol

database

NAT Firewall IDS
Traffic
Monitor

L4/7
Switches

Access
List

Applications

L3
forwarding

Packet
Capture

Packet
Filter

Traffic
Statistics

Stream
Reassembler

Packet Fields
Extractor

. . .

NetVM

. . .

NetBee

NetBee API

NetVM
Class

Interface

NetPFL

Figure 7 NetBee packet processing framework.

The NetVM is targeted to simple packet processing opera-
tions, although at very high speed. Therefore, the NetVM does
not aim at supporting the development of complete applications
(e.g. a stateful firewall); instead, a firewall can exploit the
NetVM (and its framework) for its low-level processing. This
vision is presented in Figure 7: the NetVM is a key component
of the NetBee library, which implements a set of processing
modules (e.g. a stream reassembly) that use the underlying
processing capabilities of the NetVM.

A further step of deployment is depicted in Figure 8 that
presents a scenario where all network devices have a built-in
NetVM component, no matter how this is implemented. De-
velopers can take advantage of having both the same instruc-
tion set and the same reference architecture on all the plat-
forms, which constitutes a distributed processing environment
where different network nodes execute NetVM programs coor-
dinated by a remote console. Once NetVM support be provided
by commonly deployed network gear, distributed applications

could be based on downloading NetVM code on various net-
work nodes (e.g. through some existing configuration proto-
cols, such as SNMP) and possibly collecting the results yielded
by its execution. This would open the path to new, powerful
network-based applications.

User application
Ethernet phone

Router

ADSL ModemRemote
workstation

Local
workstation

Count IPv6 and IPv6-
in-IPv4 packets

Send an alarm when a SIP
INVITE is received

Reassembly all TCP sessions on port
8888 and look for keyword “MP3” in there

Capture PPPOE packets

Get a summary of
each TCP session

Figure 8 NetVM deployment scenario.

IX. CONCLUSIONS

This paper presents a framework for fast development of
network applications. Its key components are the NetVM
(Network Virtual Machine), targeted to the efficient execution
of simple packet processing code, the NetPDL (Network Pro-
tocol Description Language), dissociating applications from
protocol header formats, and a high-level language — such as
the Network Packet Filtering Language (NetPFL) — for writ-
ing packet handling programs. The NetVM sets an architectural
reference for program development; since it may be available
on various hardware platforms and NetIL programs are port-
able, this lays the basis for distributed network processing.

The vision presented in this paper is currently under devel-
opment in the open-source NetBee library, which is freely
available on the web [5].

ACKNOWLEDGEMENTS

We would like to thank the several people who contributed
to this project, among the others Loris Degioanni, Gianluca
Varenni, Olivier Morandi, Francesco Andriani, Livio Torrero,
Andrea Vesco, Leonardo Scucchia and Gianluca Dho.

REFERENCES
[1] L. Degioanni, M. Baldi, D. Buffa, F. Risso, F. Stirano, G. Varenni,

“Network Virtual Machine (NetVM): A New Architecture for Efficient
and Portable Network Applications,” 8th IEEE International Conference
on Telecommunications (ConTEL 2005), Zagreb (Croatia), June 2005.

[2] F. Risso, M. Baldi, "NetPDL: An Extensible XML-based Language for
Packet Header Description, to appear in "Computer Networks
(COMNET), Elsevier.

[3] V. Jacobson, C. Leres and S. McCanne, libpcap, Lawrence Berkeley
Laboratory, Berkeley, CA. Initial public release June 1994. Currently
Available at http://www.tcpdump.org.

[4] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New
Architecture for User-level Packet Capture”. Proceedings of the 1993
Winter USENIX Technical Conference, San Diego, CA, Jan. 1993.

[5] Computer Networks Group (NetGroup) at Politecnico di Torino. The
NetBee Library, available at http://www.nbee.org/, August 2004.

