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Abstract – This paper provides a comparative evaluation 

of a number of known classification algorithms that have 
been considered for both software and hardware implemen-
tation. Differently from other sources, the comparison has 
been carried out on implementations based on the same 
principles and design choices. Performance measurements 
are obtained by feeding the implemented classifiers with 
various traffic traces in the same test scenario. The com-
parison also takes into account implementation feasibility of 
the considered algorithms in resource constrained systems 
(e.g. embedded processors on special purpose network plat-
forms). In particular, the comparison focuses on achieving a 
good compromise between performance, memory usage, 
flexibility and code portability to different target platforms.  

I. INTRODUCTION 
A vast literature on classification algorithms and their 

performance does exist, but our work is necessary, hence 
relevant since existing evaluations do not allow a signifi-
cant comparison based on real-life data. In fact, a com-
parison based on existing literature could be carried out 
only according to analytical worst-case bounds. Even 
though figures on the performance of classification algo-
rithm implementations in real-life scenarios can be found, 
they are part of studies on a single algorithm: the meas-
urement scenarios are different and the implementations 
are not uniform, consequently the results are not compa-
rable. 

This work studies known classification algorithms with 
respect to their suitability for being (i) deployed for 
common networking applications (i.e., not optimized for 
a specific one), and (ii) implemented in embedded sys-
tems, i.e., systems with strict requirements, limited re-
source availability, and no specific hardware support, 
such as content addressable memories. 

A (packet) classifier is a collection of rules — usually 
called ruleset — that is used to partition network traffic 
into different groups, sometimes called flows or buckets. 
Every rule specifies a subset of the network traffic, for 
example “IP traffic”, or “traffic sent from host 1.2.3.4”, 
thus somehow characterizing packets grouped into that 
flow. When a packet satisfies a rule, the packet is said to 
match the given rule. A classification algorithm deter-
mines whether a packet matches at least one rule of a 
classifier. 

Packet classifiers are widely used in IP networking 
where rules usually involve one or more packet header 
fields (e.g. IP source address, TCP destination port). Each 

rule R is composed of i components, so that each compo-
nent R[i] applies to a specific header field. When more 
than one field is considered, the classifier is said to be 
multifield. As an example, Table 1 shows a small multi-
field ruleset that includes value/mask rules on the source 
and destination IP addresses. 

Packet classifiers are widely used for various network 
applications, many of which related to quality of service 
(QoS) provision, and consequently in several types of 
network devices that might be implemented as or com-
posed of embedded systems. Examples of QoS related 
applications of packet classifiers are: 
− Traffic conditioning and shaping appliances; they use 

multifield classifiers, usually on session tuples, to 
separate traffic flows in order to be able to apply on 
them admission, marking and shaping policies. Traffic 
conditioning appliances or functionality are fundamen-
tal whenever in the deployment of both the IntServ [1] 
and DiffServ [2][3] approach. 

− IntServ routers; they use multifield classifiers, usually 
on session tuples, to separate traffic flows in order to 
store packets in different queues on which scheduling 
algorithms suitable to provide the required QoS are 
applied. 

− DiffServ routers; they use single field classifiers based 
with a limited ruleset concerning the value of the DS 
(Differentiated Services) field [3] to separate packets 
belonging to different traffic classes in order to handle 
them according to the corresponding per-hop behavior 
(PHB). 
This work aims at identifying classification algorithms 

that can be effectively implemented on embedded sys-
tems and deployed in any of the above listed applications. 
Execution in embedded systems imposes strict limits on 
the characteristics of the algorithms, such as simple 
(static) memory management, limited code size, limited 
CPU usage requirements, limited data storage necessities, 

 IP source IP destination 
Rule 

1 
Value  = 130.192.1.0  
Mask  = 255.255.255.0 

Value  = 130.192.2.0  
Mask  = 255.255.255.0 

Rule 
2 

Value  = 130.192.2.0  
Mask  = 255.255.255.0 

Value  = 130.192.1.0  
Mask  = 255.255.255.0 

Rule 
3 

Value = 130.192.0.0  
Mask  = 255.255.0.0 

Value  = 130.192.3.0  
Mask  = 255.255.255.0 

TABLE 1. SAMPLE MULTIFIELD RULESET 



adaptability to various hardware platforms and architec-
tures. 

Our work, and this paper describing it, was organized 
as follows. The various algorithms proposed in the litera-
ture (Section B) as well as the metrics commonly de-
ployed to evaluate them (Section A) are first surveyed. 
The implementation objectives and the guidelines fol-
lowed to develop software for embedded systems are then 
shown in Section III. Based on this, selection criteria 
(Section A) are formulated and are used to identify a lim-
ited set of algorithms on which to perform a more de-
tailed and targeted comparative evaluation. Section IV 
provides the results of the comparative evaluation con-
ducted with real-life traffic traces and final conclusive 
remarks are provided in Section V. 

II. THEORETICAL ANALYSIS OF CLASSIFICATION 
ALGORITHMS 

Among the others [5], the comparative survey of clas-
sification algorithms by Gupta and McKeown [4] pro-
vides a detailed comparison of the most important known 
algorithms for multifield classification. Even though this 
work represents a complete and interesting tutorial on 
classification algorithms, it does not present any perform-
ance comparison based on real life network traffic. Our 
work leverages off some of the criteria and results pre-
sented by Gupta and McKeown to select a reduced set of 
classification algorithms that best fit to be implemented 
in embedded systems. Another contribution of our work 
lies in the detailed and homogeneous evaluation of such 
selected algorithms that have been implemented with 
common criteria and evaluated in a common test bed us-
ing real traffic captures. 

A. Evaluation metrics and parameters 
The metrics adopted are the ones commonly used by 

various authors [6][7][8][9][11][12] in literature, includ-
ing Gupta and McKeown in [4]: search time, memory 
consumption, and update time. 

Search time (T), i.e. the amount of time needed to clas-
sify a packet, is the most obvious metric; in order to de-
vise a measurement (at least partially) independent from 
the particular test bed, the search time is measured in 
terms of CPU clock cycles. 

Memory consumption (M) is the amount of memory 
needed to store the ruleset in some specific data structure 
in memory, computed either at instantiation or run time. 
Memory consumption is an excellent indicator of the 
compression capability of the algorithm measured as the 
ratio between the ruleset size (i.e. number of rules and 
number of fields) and its footprint in memory.  

The update time (U) is the amount of time necessary to 
insert, delete, or modify a rule in the running ruleset.  

An interesting metric is represented by the number of 
memory accesses performed by the algorithm, but it is 
not widely used because getting this data is far from be-
ing trivial. 

The three metrics previously described generally de-
pend on the following parameters: 
− The number of rules N in the ruleset 
− The number of fields d globally used within the R[i] 

components of each rule 

− The length of each field, in bits, called Wi. In order to 
simplify the evaluation of the algorithms, we will use a 
new fictitious parameter W, defined as W=max(Wi) 
Section A will provide some insight in the implications 

of such simplification on the comparative evaluation pre-
sented later. 

B. Theoretical complexity of some well-known 
algorithms 

In order to have a first general comparison of the clas-
sification algorithms and select which to adopt for a more 
thorough analysis, the theoretical worst-case bounds for 
the metrics identified in Section A were taken into con-
sideration. Table 2 shows the formulas expressing the 
bound for each of the metrics. Such formulas were either 
taken directly from the literature, when available, or in-
ferred from a paper describing the corresponding algo-
rithm. 

TABLE 2. WORST CASE BOUNDS FOR THE CONSIDERED METRICS 

Algorithm Search 
time (T) 

Memory 
usage (M) 

Update 
time (U) 

Linear search N N 1

TRIES 
Hierarchical tries [4] Wd NdW D2W 
Set pruning tries 
[11] 

dW Nd Nd

Heap-on-Trie [6] Wd NWd WdlogN 
Binary search-on-
Trie [6] 

WdlogN NWd Wd-1logN 

GEOMETRIC TECHNIQUES 
Cross producting [7] dW Nd N/A 

HEURISTICS 
Hierarchical Cut-
tings [9] 

D Nd N/A 

Tuple Space Search 
[8] 

N N N

Recursive Flow  
Classification [12] 

D Nd N/A 

 
Hardware based  [14] and ad-hoc algorithms [10] were 

not included in this evaluation since either the selected 
metrics cannot be applied to them, or a comparison based 
on them is meaningless due to the particular nature of 
such algorithms. Instead, the linear algorithm was in-
cluded because it is widely used by software based fire-
walls (e.g. Linux netfilter/iptables [13]) and it is an excel-
lent baseline against which other algorithms can be 
compared to, especially in the implementation and testing 
part of this work.  

The bound on the update time is not shown for some of 
the algorithms since they do not explicitly support dy-
namic updates to the running ruleset. This stems from the 
fact that these algorithms preprocess the ruleset into a 
specific custom data structure that does not support inser-
tion or removal of rules. Instead, in order to cope with 
ruleset changes the whole ruleset must be re-processed 
thus yielding a new data structure. Such an approach is 
usually inefficient, since the preprocessing time is typi-
cally quite high. 

C. Practical issues with the theoretical complexity 
The worst cases in Table 2 show quite clearly that the 

linear search algorithm outperforms the other algorithms 
in terms of memory consumption and update time. Its 



search time performance is comparable to the other algo-
rithms when the number of rules is not large; for exam-
ple, when classifying UDP flows or TCP connections 
(d=5 and W=32) the break point is one or two hundreds 
rules. In fact, the search time of the other algorithms de-
pends on the total number of bits dW of the various fields 
in each rule because the classification algorithm proc-
esses the classification fields bit by bit– in particular, this 
is the approach used by all the algorithms based on tries. 
Consequently, the linear algorithm might be particularly 
interesting in cases, IPv6 addresses, in which the total 
number of bits dW is high. 

As a matter of fact, the theoretical analysis previously 
conducted is limited by several factors: 
− The performance of many classification algorithms 

when used with real traffic might be very different 
from the theoretical results shown in Table 2; this is 
particularly true for heuristics, that are engineered to 
achieve good performances in the average case, and 
not in the worst case. 

− The theoretical complexities shown in Table 2 have 
been devised assuming that all fields used for the clas-
sification have the same length, equal to the length of 
the largest one; this simplification can bring to unreal-
istic theoretical results (e.g. in the case of IPv6 session 
identifiers, we consider the length of a TCP/UDP port 
to be 128 bit, and this is completely misleading). A so-
lution to this problem could be to re-formulate each 
metric taken into consideration using the various 
fields’ lengths Wi, but this out of the scope of this pa-
per. 

III. IMPLEMENTATION 
An objective of this work is to identify and evaluate 

the packet classification algorithms that are more suitable 
for an implementation on resource constrained systems. 
When writing software for an embedded system, specific 
constraints have to be taken into account in order to grant 
good performances and flexibility in terms of code port-
ability to different target platforms: hence, several aspects 
have been considered while implementing the above 
mentioned algorithms. 

First of all, the main goal of our work was to write a 
code portable to different target platforms, independent 
from the processor and the operating system used. To ac-
complish this objective, we developed a software library 
made up of pure ANSI C, trying to avoid any use of 
OS/compiler support functions that could not be available 
on special purpose processors. The crucial point in gener-
ating portable code is to separate the coding of functional 
modules from the one related to the specific target envi-
ronment. This can be achieved by defining some sort of 
API, which avoids the use of platform dependent func-
tions directly inside the code. A second consideration is 
that the code should use static memory allocation, since a 
dynamic allocation infrastructure is not granted to be pre-
sent on all the target platforms. 

Another requirement is that the code should avoid the 
use of explicit pointers in the raw data structures contain-
ing the ruleset; in fact, sometimes the code creating and 
initializing the data structure and the code that classifies 
packets using this structure run either on different proces-
sors (e.g. network processors using multiple processing 
units) or within different address spaces (e.g. code run-

ning partially at kernel level and partially at user level on 
a general purpose PC). A commonly used solution to the 
problem is to make use of indirect addressing, using only 
displacement pointers in the data structure, and the base 
pointer outside it.  

In a network embedded system we can distinguish 
among data-plane functions (related to packet processing 
functionalities, with high performance requirements) that 
usually run on specific processor engines and control-
plane functions (for data structure initialization and con-
figuration, usually with high memory requirements) that 
may run on a general purpose processor. Thus, one gen-
eral issue is to modularize the code as deeply as possible, 
trying to separate the main algorithm functionalities, 
which may have high performance requirements, from 
the control and configuration functions that may run on a 
different processor. 

A. Selecting the algorithms to be implemented 
Given previous considerations and taking into account 

the practical issues enlightened in Section 2, we decided 
which algorithms to implement to meet our objectives.  
1. We excluded Cross-Producting and Set-Pruning Tries, 

because their memory consumption grows as Nd, 
which is extremely critical even with rather low values 
of N and d (e.g. with N=100 rules and d=4 fields 
memory consumption is about 108). While RFC and 
HiCuts have the same worst case memory consump-
tion, they are heuristic algorithms, therefore this value 
is not enough to get rid of them. 

2. We excluded Heap on Tries and Binary trees on Tries, 
because their memory consumption and search time is 
proportional to Wd which is too large (e.g. this value is 
larger that 1010, when the maximum field size W is 128 
bits and the number of fields d is 5); moreover the pa-
per presenting these algorithms does not give any hint 
about any working implementation of them. Although 
the Hierarchical Tries algorithm has the same search 
time as the two previous ones, it has not been excluded 
because of its excellent characteristics referred to 
memory consumption. 

3. We excluded HiCuts, because this algorithm is patent 
pending. 

4. Tuple Space Search was excluded essentially because 
it was decided that the comparative study would in-
clude a single heuristic algorithm and from the infor-
mation we gathered in the literature the implementa-
tion details of RFC seemed clearer. 
In summary, we decided to implement the Linear algo-

rithm, to be used as a baseline for the comparison, the 
Hierarchical Tries algorithm (the only remaining non-
heuristic algorithm after the screening described above), 
and the Recursive Flow Classification algorithm. 

IV. PERFORMANCE EVALUATION 
Although our implementation is targeted to both gen-

eral and special purpose platforms, so far it has been vali-
dated through extensive tests only on a standard personal 
computer. We did not consider tests on special purpose 
platforms in the context of this work since it specifically 
aims at giving a homogeneous comparison between the 
implementation of various algorithms by measuring their 
performance in real-life working conditions. Moreover, 
the obtained experimental results are compared against 



the theoretical worst-case results. However, tests on spe-
cial purpose platforms will be carried out as a future work 
in an effort to evaluate the performance disparities on dif-
ferent platforms.  

A. Testbed 
The tests were conducted using a network trace taken 

from our university link to the Italian trans-university 
backbone. This trace has the following characteristics: 
− duration: 6 hours 
− total packets: 24 milions 
− total bytes: 13 GBytes 
− average traffic: 5 MBps, 1100 pps. 

The implemented algorithms have been compiled with 
the Microsoft Visual C++ 6.0 SP 5 compiler. We used an 
Intel Pentium IV 2GHz workstation with 1GB RAM, 
running Microsoft Windows XP. The measurements were 
taken with the x86 assembler instruction RDTSC (Read 
TimeStamp Counter), which gives the number of CPU 
clock ticks from the machine bootstrap. 

We used the ruleset running on the router connected to 
the same link on which we captured the network trace 
(the packets were captured immediately before the router 
classifier); this ruleset is formed of 349 rules, each rule 
working on these fields: 
− source / destination IPv4 address 
− Layer 4 protocol (TCP/UDP/ICMP/any) 
− source / destination TCP/UDP port. 

In order to evaluate the algorithms with rulesets of dif-
ferent size, we extrapolated some fictitious ruleset from 
the original one. These are the new rulesets we defined: 
− 2 rulesets formed of 50 rules (rules 1-50 and 51-100 of 

the original ruleset) 
− 2 rulesets formed of 100 rules (rules 1-100 and 101-

200 of the original ruleset) 
− 1 ruleset formed of 200 rules (rules 1-200 of the origi-

nal ruleset). 

B. Search time test results 
This test aims at measuring the average packet classifi-

cation time for the various rulesets; the results are shown 
in Table 3.  

The results of this test show that the mean search time 
grows linearly with the number of rules in the case of the 
linear algorithm; in the case of the Hierarchical Tries al-
gorithm, the search time seems to grow linearly, too, but 
the trend is much lower than the linear one. The RFC al-
gorithm, instead, shows a mean search time that is inde-
pendent on the number of rules in the ruleset.  

By comparing the results in Table 3 and the worst 
cases in Table 3, we can note that: 
− the linear algorithm performs worse than the other two 

algorithms in our tests, compared to the theoretical re-
sults; 

− the Hierarchical Tries algorithm seems to be loosely 
dependent on the number of rules N, while its worst 
case is independent from this parameter. This behavior 
could be due to the fact that the number of recursive 
visits of the tries grows with the number of rules N. 

TABLE 3. AVERAGE SEARCH TIME (IN CLOCK TICKS) FOR THE GIVEN 
RULESET 

 Number 
of rules 

Linear HiTrie RFC 

Ruleset 1-50 50 2603 981 419
Ruleset 51-100  50 2170 560 422
Ruleset 1-100 100 4572 1014 416
Ruleset 101-200 100 4408 1141 420
Ruleset 1-200 200 8949 1276 428
Ruleset 1-349 349 17552 2032 437

 

C. Memory consumption test results 
We measured the amount of memory needed to store 

the raw data structure containing the ruleset for each al-
gorithm. The results of this test are shown in Table 4. 

TABLE 4. MEMORY CONSUMPTION (IN BYTES) FOR THE GIVEN 
RULESETS 

 Number 
of rules 

Linear HiTrie RFC 

Ruleset 1-50 50 2192 32708 1838596
Ruleset 51-100 50 2192 34028 1836964
Ruleset 1-100 100 4192 64588 1841668
Ruleset 101-200 100 4192 59428 1847796
Ruleset 1-200 200 8192 115068 1860148
Ruleset 1-349 349 14112 155048 6074748

 
The results of this test illustrate that: 

− The linear algorithm consumes memory linearly with 
the number of rules, and the average memory occupa-
tion per rule is about 40 bytes. 

− The hierarchical tries algorithm has a memory con-
sumption that grows linearly with the number of rules, 
as the linear algorithm, but the consumption per rule is 
much higher, about 500 bytes per rule. 

− The RFC algorithm shows an unusual behavior: mem-
ory occupation is roughly constant when there are up 
to 200 rules in the classifier – about 1.8 Mbytes; with 
the complete ruleset, made up of 349 rules, memory 
consumption reaches 6 Mbytes. This “explosion” can 
be due to the fact that the last rules contain a large 
number of “any” as IP source and destination values.  

D. Preprocessing time test results 
The last test attempts to measure the amount of time 

needed to process the various rulesets and create the in-
ternal data structures used by each classification algo-
rithm. The results of this test are shown in Table 5. 

TABLE 5. PROCESSING TIME FOR THE GIVEN RULESET 

 Number 
of rules 

Linear HiTrie RFC 

Ruleset 1-50 50 10.6 µs  0.84 ms 455 ms 
Ruleset 51-100 50 15.5 µs 0.87 ms 448 ms 
Ruleset 1-100 100 16.7 µs 1.08 ms 857 ms 
Ruleset 101-200 100 16.1 µs  1.61 ms 966 ms 
Ruleset 1-200 200 25.5 µs 3.19 ms 2.91 s 
Ruleset 1-349 349 43.5 µs 5.43 ms 1289 s 

 
The outcome of this test shows that the trend is roughly 

linear in the number of rules for the linear and Hierarchi-



cal Tries algorithm; moreover the latter is about 100 
times slower than the former one, but the overall time to 
process the original ruleset containing 349 rules seems to 
be acceptable (less than 10 ms on the test platform). The 
RFC algorithm shows instead a rather interesting behav-
ior: the trend is roughly linear on the number of rules up 
to 200 rules, with a cost that is about three orders of mag-
nitude more expensive than the Hierarchical Tries algo-
rithm; when we compute the data structure with the entire 
ruleset of 349 rules, the preprocessing time literally ex-
plodes to about 20 minutes. This explosion is generally 
due to two main factors: 
1. It is a heuristic algorithm, so each metric normally de-

pends on the particular ruleset used for the test. 
2. Some experiments on this algorithm have shown that 

this behavior is largely due to rules containing a large 
number of “any” values in their components. 

V. CONCLUSIONS 
A continuously growing number of network appliances 

are deploying packet classifiers to implement Quality of 
Service, security, traffic engineering functionalities. As a 
consequence, in the last years several authors have pro-
posed novel algorithms to achieve better results in terms 
of classification time and memory consumption. Many 
works provided case studies of such algorithms applied to 
a large number of real-life rulesets and network traffic 
traces. However, a fair comparison with common criteria 
and test cases has not yet been provided. Our main con-
tribution in this work is filling this gap, by providing a 
homogeneous evaluation of three classification algo-
rithms that have been implemented following the same 
criteria.  

Our tests have shown that the Recursive Flow Classifi-
cation algorithm outperforms, as expected, the other two 
algorithms in terms of search time. In fact, its heuristics is 
able to effectively exploit the characteristics of the real-
life rulesets considered. However, it is known that this al-
gorithm does not support dynamic updates, and our tests 
have shown that its preprocessing time is unpredictable. 

The Hierarchical Tries algorithm shows acceptable 
performance in terms of classification time, being less 
than one order of magnitude worse that RFC. Instead it 
features low memory consumption, outperforming RFC 
for more than one order of magnitude. In practice, we 
have shown that the Hierarchical Tries algorithm is pref-
erable over RFC when memory consumption and pre-

processing time are more critical than classification time 
alone. 

Finally, our tests confirm that the linear algorithm, de-
spite the worst classification time with large rulesets, is 
the one that assures the lowest memory consumption, the 
fastest preprocessing phase, and the most flexible support 
for dynamic updates. 
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