
03 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Comparative Evaluation of Packet Classification Algorithms for Implementation on Resource Constrained Systems /
Varenni, G.; Stirano, F.; Alessio, E.; Baldi, Mario; Degioanni, L.; Risso, FULVIO GIOVANNI OTTAVIO. - STAMPA. -
1:(2005), pp. 135-139. (Intervento presentato al convegno 8th International Conference on Telecommunications
(ConTEL 2005) tenutosi a Zagreb (Croatia) nel June 15-17, 2005) [10.1109/CONTEL.2005.185835].

Original

Comparative Evaluation of Packet Classification Algorithms for Implementation on Resource
Constrained Systems

Publisher:

Published
DOI:10.1109/CONTEL.2005.185835

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/1494576 since:

IEEE

Comparative Evaluation of Packet Classification
Algorithms for Implementation on Resource

Constrained Systems
Gianluca Varenni*, Federico Stirano***, Elisa Alessio**, Mario Baldi*, Loris Degioanni*, Fulvio Risso*

* Politecnico di Torino, Dipartimento di Automatica e Informatica, Torino, Italy
**Telecom Italia Labs - System On Chip, Torino, Italy

***Istituto Superiore Mario Boella, Torino, Italy

{gianluca.varenni,mario.baldi,loris.degioanni,fulvio.risso}@polito.it; stirano@ismb.it; elisa.alessio@tilab.com

Abstract – This paper provides a comparative evaluation

of a number of known classification algorithms that have
been considered for both software and hardware implemen-
tation. Differently from other sources, the comparison has
been carried out on implementations based on the same
principles and design choices. Performance measurements
are obtained by feeding the implemented classifiers with
various traffic traces in the same test scenario. The com-
parison also takes into account implementation feasibility of
the considered algorithms in resource constrained systems
(e.g. embedded processors on special purpose network plat-
forms). In particular, the comparison focuses on achieving a
good compromise between performance, memory usage,
flexibility and code portability to different target platforms.

I. INTRODUCTION
A vast literature on classification algorithms and their

performance does exist, but our work is necessary, hence
relevant since existing evaluations do not allow a signifi-
cant comparison based on real-life data. In fact, a com-
parison based on existing literature could be carried out
only according to analytical worst-case bounds. Even
though figures on the performance of classification algo-
rithm implementations in real-life scenarios can be found,
they are part of studies on a single algorithm: the meas-
urement scenarios are different and the implementations
are not uniform, consequently the results are not compa-
rable.

This work studies known classification algorithms with
respect to their suitability for being (i) deployed for
common networking applications (i.e., not optimized for
a specific one), and (ii) implemented in embedded sys-
tems, i.e., systems with strict requirements, limited re-
source availability, and no specific hardware support,
such as content addressable memories.

A (packet) classifier is a collection of rules — usually
called ruleset — that is used to partition network traffic
into different groups, sometimes called flows or buckets.
Every rule specifies a subset of the network traffic, for
example “IP traffic”, or “traffic sent from host 1.2.3.4”,
thus somehow characterizing packets grouped into that
flow. When a packet satisfies a rule, the packet is said to
match the given rule. A classification algorithm deter-
mines whether a packet matches at least one rule of a
classifier.

Packet classifiers are widely used in IP networking
where rules usually involve one or more packet header
fields (e.g. IP source address, TCP destination port). Each

rule R is composed of i components, so that each compo-
nent R[i] applies to a specific header field. When more
than one field is considered, the classifier is said to be
multifield. As an example, Table 1 shows a small multi-
field ruleset that includes value/mask rules on the source
and destination IP addresses.

Packet classifiers are widely used for various network
applications, many of which related to quality of service
(QoS) provision, and consequently in several types of
network devices that might be implemented as or com-
posed of embedded systems. Examples of QoS related
applications of packet classifiers are:
− Traffic conditioning and shaping appliances; they use

multifield classifiers, usually on session tuples, to
separate traffic flows in order to be able to apply on
them admission, marking and shaping policies. Traffic
conditioning appliances or functionality are fundamen-
tal whenever in the deployment of both the IntServ [1]
and DiffServ [2][3] approach.

− IntServ routers; they use multifield classifiers, usually
on session tuples, to separate traffic flows in order to
store packets in different queues on which scheduling
algorithms suitable to provide the required QoS are
applied.

− DiffServ routers; they use single field classifiers based
with a limited ruleset concerning the value of the DS
(Differentiated Services) field [3] to separate packets
belonging to different traffic classes in order to handle
them according to the corresponding per-hop behavior
(PHB).
This work aims at identifying classification algorithms

that can be effectively implemented on embedded sys-
tems and deployed in any of the above listed applications.
Execution in embedded systems imposes strict limits on
the characteristics of the algorithms, such as simple
(static) memory management, limited code size, limited
CPU usage requirements, limited data storage necessities,

 IP source IP destination
Rule

1
Value = 130.192.1.0
Mask = 255.255.255.0

Value = 130.192.2.0
Mask = 255.255.255.0

Rule
2

Value = 130.192.2.0
Mask = 255.255.255.0

Value = 130.192.1.0
Mask = 255.255.255.0

Rule
3

Value = 130.192.0.0
Mask = 255.255.0.0

Value = 130.192.3.0
Mask = 255.255.255.0

TABLE 1. SAMPLE MULTIFIELD RULESET

adaptability to various hardware platforms and architec-
tures.

Our work, and this paper describing it, was organized
as follows. The various algorithms proposed in the litera-
ture (Section B) as well as the metrics commonly de-
ployed to evaluate them (Section A) are first surveyed.
The implementation objectives and the guidelines fol-
lowed to develop software for embedded systems are then
shown in Section III. Based on this, selection criteria
(Section A) are formulated and are used to identify a lim-
ited set of algorithms on which to perform a more de-
tailed and targeted comparative evaluation. Section IV
provides the results of the comparative evaluation con-
ducted with real-life traffic traces and final conclusive
remarks are provided in Section V.

II. THEORETICAL ANALYSIS OF CLASSIFICATION
ALGORITHMS

Among the others [5], the comparative survey of clas-
sification algorithms by Gupta and McKeown [4] pro-
vides a detailed comparison of the most important known
algorithms for multifield classification. Even though this
work represents a complete and interesting tutorial on
classification algorithms, it does not present any perform-
ance comparison based on real life network traffic. Our
work leverages off some of the criteria and results pre-
sented by Gupta and McKeown to select a reduced set of
classification algorithms that best fit to be implemented
in embedded systems. Another contribution of our work
lies in the detailed and homogeneous evaluation of such
selected algorithms that have been implemented with
common criteria and evaluated in a common test bed us-
ing real traffic captures.

A. Evaluation metrics and parameters
The metrics adopted are the ones commonly used by

various authors [6][7][8][9][11][12] in literature, includ-
ing Gupta and McKeown in [4]: search time, memory
consumption, and update time.

Search time (T), i.e. the amount of time needed to clas-
sify a packet, is the most obvious metric; in order to de-
vise a measurement (at least partially) independent from
the particular test bed, the search time is measured in
terms of CPU clock cycles.

Memory consumption (M) is the amount of memory
needed to store the ruleset in some specific data structure
in memory, computed either at instantiation or run time.
Memory consumption is an excellent indicator of the
compression capability of the algorithm measured as the
ratio between the ruleset size (i.e. number of rules and
number of fields) and its footprint in memory.

The update time (U) is the amount of time necessary to
insert, delete, or modify a rule in the running ruleset.

An interesting metric is represented by the number of
memory accesses performed by the algorithm, but it is
not widely used because getting this data is far from be-
ing trivial.

The three metrics previously described generally de-
pend on the following parameters:
− The number of rules N in the ruleset
− The number of fields d globally used within the R[i]

components of each rule

− The length of each field, in bits, called Wi. In order to
simplify the evaluation of the algorithms, we will use a
new fictitious parameter W, defined as W=max(Wi)
Section A will provide some insight in the implications

of such simplification on the comparative evaluation pre-
sented later.

B. Theoretical complexity of some well-known
algorithms

In order to have a first general comparison of the clas-
sification algorithms and select which to adopt for a more
thorough analysis, the theoretical worst-case bounds for
the metrics identified in Section A were taken into con-
sideration. Table 2 shows the formulas expressing the
bound for each of the metrics. Such formulas were either
taken directly from the literature, when available, or in-
ferred from a paper describing the corresponding algo-
rithm.

TABLE 2. WORST CASE BOUNDS FOR THE CONSIDERED METRICS

Algorithm Search
time (T)

Memory
usage (M)

Update
time (U)

Linear search N N 1

TRIES
Hierarchical tries [4] Wd NdW D2W
Set pruning tries
[11]

dW Nd Nd

Heap-on-Trie [6] Wd NWd WdlogN
Binary search-on-
Trie [6]

WdlogN NWd Wd-1logN

GEOMETRIC TECHNIQUES
Cross producting [7] dW Nd N/A

HEURISTICS
Hierarchical Cut-
tings [9]

D Nd N/A

Tuple Space Search
[8]

N N N

Recursive Flow
Classification [12]

D Nd N/A

Hardware based [14] and ad-hoc algorithms [10] were

not included in this evaluation since either the selected
metrics cannot be applied to them, or a comparison based
on them is meaningless due to the particular nature of
such algorithms. Instead, the linear algorithm was in-
cluded because it is widely used by software based fire-
walls (e.g. Linux netfilter/iptables [13]) and it is an excel-
lent baseline against which other algorithms can be
compared to, especially in the implementation and testing
part of this work.

The bound on the update time is not shown for some of
the algorithms since they do not explicitly support dy-
namic updates to the running ruleset. This stems from the
fact that these algorithms preprocess the ruleset into a
specific custom data structure that does not support inser-
tion or removal of rules. Instead, in order to cope with
ruleset changes the whole ruleset must be re-processed
thus yielding a new data structure. Such an approach is
usually inefficient, since the preprocessing time is typi-
cally quite high.

C. Practical issues with the theoretical complexity
The worst cases in Table 2 show quite clearly that the

linear search algorithm outperforms the other algorithms
in terms of memory consumption and update time. Its

search time performance is comparable to the other algo-
rithms when the number of rules is not large; for exam-
ple, when classifying UDP flows or TCP connections
(d=5 and W=32) the break point is one or two hundreds
rules. In fact, the search time of the other algorithms de-
pends on the total number of bits dW of the various fields
in each rule because the classification algorithm proc-
esses the classification fields bit by bit– in particular, this
is the approach used by all the algorithms based on tries.
Consequently, the linear algorithm might be particularly
interesting in cases, IPv6 addresses, in which the total
number of bits dW is high.

As a matter of fact, the theoretical analysis previously
conducted is limited by several factors:
− The performance of many classification algorithms

when used with real traffic might be very different
from the theoretical results shown in Table 2; this is
particularly true for heuristics, that are engineered to
achieve good performances in the average case, and
not in the worst case.

− The theoretical complexities shown in Table 2 have
been devised assuming that all fields used for the clas-
sification have the same length, equal to the length of
the largest one; this simplification can bring to unreal-
istic theoretical results (e.g. in the case of IPv6 session
identifiers, we consider the length of a TCP/UDP port
to be 128 bit, and this is completely misleading). A so-
lution to this problem could be to re-formulate each
metric taken into consideration using the various
fields’ lengths Wi, but this out of the scope of this pa-
per.

III. IMPLEMENTATION
An objective of this work is to identify and evaluate

the packet classification algorithms that are more suitable
for an implementation on resource constrained systems.
When writing software for an embedded system, specific
constraints have to be taken into account in order to grant
good performances and flexibility in terms of code port-
ability to different target platforms: hence, several aspects
have been considered while implementing the above
mentioned algorithms.

First of all, the main goal of our work was to write a
code portable to different target platforms, independent
from the processor and the operating system used. To ac-
complish this objective, we developed a software library
made up of pure ANSI C, trying to avoid any use of
OS/compiler support functions that could not be available
on special purpose processors. The crucial point in gener-
ating portable code is to separate the coding of functional
modules from the one related to the specific target envi-
ronment. This can be achieved by defining some sort of
API, which avoids the use of platform dependent func-
tions directly inside the code. A second consideration is
that the code should use static memory allocation, since a
dynamic allocation infrastructure is not granted to be pre-
sent on all the target platforms.

Another requirement is that the code should avoid the
use of explicit pointers in the raw data structures contain-
ing the ruleset; in fact, sometimes the code creating and
initializing the data structure and the code that classifies
packets using this structure run either on different proces-
sors (e.g. network processors using multiple processing
units) or within different address spaces (e.g. code run-

ning partially at kernel level and partially at user level on
a general purpose PC). A commonly used solution to the
problem is to make use of indirect addressing, using only
displacement pointers in the data structure, and the base
pointer outside it.

In a network embedded system we can distinguish
among data-plane functions (related to packet processing
functionalities, with high performance requirements) that
usually run on specific processor engines and control-
plane functions (for data structure initialization and con-
figuration, usually with high memory requirements) that
may run on a general purpose processor. Thus, one gen-
eral issue is to modularize the code as deeply as possible,
trying to separate the main algorithm functionalities,
which may have high performance requirements, from
the control and configuration functions that may run on a
different processor.

A. Selecting the algorithms to be implemented
Given previous considerations and taking into account

the practical issues enlightened in Section 2, we decided
which algorithms to implement to meet our objectives.
1. We excluded Cross-Producting and Set-Pruning Tries,

because their memory consumption grows as Nd,
which is extremely critical even with rather low values
of N and d (e.g. with N=100 rules and d=4 fields
memory consumption is about 108). While RFC and
HiCuts have the same worst case memory consump-
tion, they are heuristic algorithms, therefore this value
is not enough to get rid of them.

2. We excluded Heap on Tries and Binary trees on Tries,
because their memory consumption and search time is
proportional to Wd which is too large (e.g. this value is
larger that 1010, when the maximum field size W is 128
bits and the number of fields d is 5); moreover the pa-
per presenting these algorithms does not give any hint
about any working implementation of them. Although
the Hierarchical Tries algorithm has the same search
time as the two previous ones, it has not been excluded
because of its excellent characteristics referred to
memory consumption.

3. We excluded HiCuts, because this algorithm is patent
pending.

4. Tuple Space Search was excluded essentially because
it was decided that the comparative study would in-
clude a single heuristic algorithm and from the infor-
mation we gathered in the literature the implementa-
tion details of RFC seemed clearer.
In summary, we decided to implement the Linear algo-

rithm, to be used as a baseline for the comparison, the
Hierarchical Tries algorithm (the only remaining non-
heuristic algorithm after the screening described above),
and the Recursive Flow Classification algorithm.

IV. PERFORMANCE EVALUATION
Although our implementation is targeted to both gen-

eral and special purpose platforms, so far it has been vali-
dated through extensive tests only on a standard personal
computer. We did not consider tests on special purpose
platforms in the context of this work since it specifically
aims at giving a homogeneous comparison between the
implementation of various algorithms by measuring their
performance in real-life working conditions. Moreover,
the obtained experimental results are compared against

the theoretical worst-case results. However, tests on spe-
cial purpose platforms will be carried out as a future work
in an effort to evaluate the performance disparities on dif-
ferent platforms.

A. Testbed
The tests were conducted using a network trace taken

from our university link to the Italian trans-university
backbone. This trace has the following characteristics:
− duration: 6 hours
− total packets: 24 milions
− total bytes: 13 GBytes
− average traffic: 5 MBps, 1100 pps.

The implemented algorithms have been compiled with
the Microsoft Visual C++ 6.0 SP 5 compiler. We used an
Intel Pentium IV 2GHz workstation with 1GB RAM,
running Microsoft Windows XP. The measurements were
taken with the x86 assembler instruction RDTSC (Read
TimeStamp Counter), which gives the number of CPU
clock ticks from the machine bootstrap.

We used the ruleset running on the router connected to
the same link on which we captured the network trace
(the packets were captured immediately before the router
classifier); this ruleset is formed of 349 rules, each rule
working on these fields:
− source / destination IPv4 address
− Layer 4 protocol (TCP/UDP/ICMP/any)
− source / destination TCP/UDP port.

In order to evaluate the algorithms with rulesets of dif-
ferent size, we extrapolated some fictitious ruleset from
the original one. These are the new rulesets we defined:
− 2 rulesets formed of 50 rules (rules 1-50 and 51-100 of

the original ruleset)
− 2 rulesets formed of 100 rules (rules 1-100 and 101-

200 of the original ruleset)
− 1 ruleset formed of 200 rules (rules 1-200 of the origi-

nal ruleset).

B. Search time test results
This test aims at measuring the average packet classifi-

cation time for the various rulesets; the results are shown
in Table 3.

The results of this test show that the mean search time
grows linearly with the number of rules in the case of the
linear algorithm; in the case of the Hierarchical Tries al-
gorithm, the search time seems to grow linearly, too, but
the trend is much lower than the linear one. The RFC al-
gorithm, instead, shows a mean search time that is inde-
pendent on the number of rules in the ruleset.

By comparing the results in Table 3 and the worst
cases in Table 3, we can note that:
− the linear algorithm performs worse than the other two

algorithms in our tests, compared to the theoretical re-
sults;

− the Hierarchical Tries algorithm seems to be loosely
dependent on the number of rules N, while its worst
case is independent from this parameter. This behavior
could be due to the fact that the number of recursive
visits of the tries grows with the number of rules N.

TABLE 3. AVERAGE SEARCH TIME (IN CLOCK TICKS) FOR THE GIVEN
RULESET

 Number
of rules

Linear HiTrie RFC

Ruleset 1-50 50 2603 981 419
Ruleset 51-100 50 2170 560 422
Ruleset 1-100 100 4572 1014 416
Ruleset 101-200 100 4408 1141 420
Ruleset 1-200 200 8949 1276 428
Ruleset 1-349 349 17552 2032 437

C. Memory consumption test results
We measured the amount of memory needed to store

the raw data structure containing the ruleset for each al-
gorithm. The results of this test are shown in Table 4.

TABLE 4. MEMORY CONSUMPTION (IN BYTES) FOR THE GIVEN
RULESETS

 Number
of rules

Linear HiTrie RFC

Ruleset 1-50 50 2192 32708 1838596
Ruleset 51-100 50 2192 34028 1836964
Ruleset 1-100 100 4192 64588 1841668
Ruleset 101-200 100 4192 59428 1847796
Ruleset 1-200 200 8192 115068 1860148
Ruleset 1-349 349 14112 155048 6074748

The results of this test illustrate that:

− The linear algorithm consumes memory linearly with
the number of rules, and the average memory occupa-
tion per rule is about 40 bytes.

− The hierarchical tries algorithm has a memory con-
sumption that grows linearly with the number of rules,
as the linear algorithm, but the consumption per rule is
much higher, about 500 bytes per rule.

− The RFC algorithm shows an unusual behavior: mem-
ory occupation is roughly constant when there are up
to 200 rules in the classifier – about 1.8 Mbytes; with
the complete ruleset, made up of 349 rules, memory
consumption reaches 6 Mbytes. This “explosion” can
be due to the fact that the last rules contain a large
number of “any” as IP source and destination values.

D. Preprocessing time test results
The last test attempts to measure the amount of time

needed to process the various rulesets and create the in-
ternal data structures used by each classification algo-
rithm. The results of this test are shown in Table 5.

TABLE 5. PROCESSING TIME FOR THE GIVEN RULESET

 Number
of rules

Linear HiTrie RFC

Ruleset 1-50 50 10.6 µs 0.84 ms 455 ms
Ruleset 51-100 50 15.5 µs 0.87 ms 448 ms
Ruleset 1-100 100 16.7 µs 1.08 ms 857 ms
Ruleset 101-200 100 16.1 µs 1.61 ms 966 ms
Ruleset 1-200 200 25.5 µs 3.19 ms 2.91 s
Ruleset 1-349 349 43.5 µs 5.43 ms 1289 s

The outcome of this test shows that the trend is roughly

linear in the number of rules for the linear and Hierarchi-

cal Tries algorithm; moreover the latter is about 100
times slower than the former one, but the overall time to
process the original ruleset containing 349 rules seems to
be acceptable (less than 10 ms on the test platform). The
RFC algorithm shows instead a rather interesting behav-
ior: the trend is roughly linear on the number of rules up
to 200 rules, with a cost that is about three orders of mag-
nitude more expensive than the Hierarchical Tries algo-
rithm; when we compute the data structure with the entire
ruleset of 349 rules, the preprocessing time literally ex-
plodes to about 20 minutes. This explosion is generally
due to two main factors:
1. It is a heuristic algorithm, so each metric normally de-

pends on the particular ruleset used for the test.
2. Some experiments on this algorithm have shown that

this behavior is largely due to rules containing a large
number of “any” values in their components.

V. CONCLUSIONS
A continuously growing number of network appliances

are deploying packet classifiers to implement Quality of
Service, security, traffic engineering functionalities. As a
consequence, in the last years several authors have pro-
posed novel algorithms to achieve better results in terms
of classification time and memory consumption. Many
works provided case studies of such algorithms applied to
a large number of real-life rulesets and network traffic
traces. However, a fair comparison with common criteria
and test cases has not yet been provided. Our main con-
tribution in this work is filling this gap, by providing a
homogeneous evaluation of three classification algo-
rithms that have been implemented following the same
criteria.

Our tests have shown that the Recursive Flow Classifi-
cation algorithm outperforms, as expected, the other two
algorithms in terms of search time. In fact, its heuristics is
able to effectively exploit the characteristics of the real-
life rulesets considered. However, it is known that this al-
gorithm does not support dynamic updates, and our tests
have shown that its preprocessing time is unpredictable.

The Hierarchical Tries algorithm shows acceptable
performance in terms of classification time, being less
than one order of magnitude worse that RFC. Instead it
features low memory consumption, outperforming RFC
for more than one order of magnitude. In practice, we
have shown that the Hierarchical Tries algorithm is pref-
erable over RFC when memory consumption and pre-

processing time are more critical than classification time
alone.

Finally, our tests confirm that the linear algorithm, de-
spite the worst classification time with large rulesets, is
the one that assures the lowest memory consumption, the
fastest preprocessing phase, and the most flexible support
for dynamic updates.

VI. REFERENCES
[1] S. Shenker R. Braden, and D. Clark, “Integrated Service

in the Internet Architecture: An Overview,” RFC 1633,
Standards Track, July 1994.

[2] DiffServ Working Group, “Differentiated Services (diff-
serv)”, http://www.ietf.org/html.charters/diffserv-
charter.html

[3] K. Nichols, S. Blake, F. Baker, D. Black, “Definition of
the Differentiated Services Field (DS Field) in the IPv4
and IPv6 Headers”, RFC 2474, Standards Track, Dec.
1998.

[4] P. Gupta, and N. McKeown, “Algorithms for Packet
Classification”, IEEE Network Special Issue,
March/April 2001, vol. 15, no. 2, pp 24-32.

[5] C. Macian, and R. Finthammer, “An Evaluation of the
Key Design Criteria to Achieve High Update Rates in
Packet Classifiers”, IEEE Network, November-December
2001.

[6] P. Gupta, and N. McKeown, “Dynamic Algorithms with
Worst-Case Performance for Packet Classification”, Pro-
ceedings of NETWORKING 2000, France, May 2000.

[7] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel,
“Fast and Scalable Layer Four Switching”, Proceedings
of ACM SIGCOMM ’98, September 1998.

[8] V. Srinivasan, S. Suri, and G. Varghese, “Packet Classifi-
cation using Tuple Space Search”, Proceedings of ACM
SIGCOMM ’99, September 1999.

[9] P. Gupta, and N. McKeown, “Classifying Packets with
Hierarchical Intelligent Cuttings”, IEEE Micro, January-
February 2000.

[10] M. WaldVogel, G. Varghese, J. Turner, and B. Plattner,
“Scalable High Speed IP Routing Lookups”, Proceedings
of ACM SIGCOMM ’97, September 1997.

[11] P. Tsuchiya, “A Search Algorithm for Table Entries with
Non-Contiguous Wildcarding”, unpublished paper.

[12] Pankaj Gupta, and Nick McKeown, “Packet Classifica-
tion on Multiple Fields”, Proceedings of ACM
SIGCOMM ’97, August 1997.

[13] Linux NetFilter/IpTables framework, available at
http://www.netfilter.org.

[14] Sibercore Technologies, available at
http://www.sibercore.com.

