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A reactive BGK-type model: influence of elastic collisions
and chemical interactions

R. Monaco�, M. Pandolfi Bianchi� and A. J. Soares†

�Dipartimento di Matematica, Politecnico di Torino, C. Duca degli Abruzzi 24, 10129 Torino, Italy
†Departamento de Matemática, Universidade do Minho Gualtar, 4710-057 Braga, Portugal

Abstract. A BGK-type model for a reactive multicomponent gas undergoing chemical bimolecular reactions is here pre-
sented. The mathematical and physical consistency of the model is stated in detail. The relaxation process towards local
Maxwellians, depending on mass and numerical densities of each species, as well as on common mean velocity and tempera-
ture, is investigated with respect to chemical equilibrium. Such a trend is numerically tested within the hydrogen-air reaction
mechanism.

INTRODUCTION

A large piece of research works has been addressed to simplified kinetic models of the Boltzmann equation, stimulated
by the mathematical complexity of the true collision operator. A wide literature evidentiates the relevance of BGK-type
models and their reliability also for computing gas transport properties far from equilibrium, assuming relaxation of
the distribution function towards either a local Maxwellian or an anisotropic Gaussian [1, 2]. Extensions of BGK-type
models to multicomponent systems can be found in [3], and more recently in [4] where a model satisfying the main
properties of the true Boltzmann collision operator is presented. On this line, it seems to be a new interesting topic
to deal with a BGK approximation of the extended Boltzmann equation for chemically reacting gases. The general
structure of chemistry source terms, conservation and equilibrium properties in kinetic equations have been widely
focused in [5]. More in detail considering bimolecular reactions, the exact kinetic equations which will be referred to
in this work are those derived in paper [6].

A first attempt to build a BGK-type model for a mixture of four gas species with bimolecular chemical reaction of
type

A1 � A2 �� A3 � A4 (1)

has been performed in paper [7], where the kinetic equations have been written in the form

∂ fi

∂ t
�v �∇ fi � νi ��fi�v�� fi�v��� �Ri� f � �f ��v�� i � 1� � � � �4� (2)

In Equation (2) �fi denotes the local Maxwellian distribution of species i depending on the number densities n i of each
i-species, common mean velocity u and temperature T , i. e.

�fi�v� � ni

�
mi

2πkBT

� 3
2

exp

�
�

mi�v�u�2

2kBT

�
� (3)

The term �Ri approximates the true reactive operator R i, introduced in Ref. [6], which includes the effects of the
inelastic chemical process. In �Ri the chemical gain term involves mechanical equilibrium and chemical disequilibrium
in such a way that the model verifies the indifferentiability principle and conservation of mass, momentum and total
energy (kinetic plus internal chemical bond energy). Moreover the H�theorem holds true under a suitable hypothesis.
In the last part of the paper the behavior of the model is numerically tested with respect to its trend to equilibrium for
different initial conditions, in order to show the influence of elastic collisions and reactive interactions. The numerical
experiments are performed for the elementary reaction occurring in the Hydrogen-Air reaction mechanism, namely
H2O � H �� OH �H2 which is typical in Hydrogen combustion applications.
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KINETIC MODEL

With reference to Eq. (2), the microscopic state of a mixture of four gas species, say A i , i � 1� � � � �4, is defined by
the one–particle distribution function f i � fi�t�x�v�� t � IR�� x� IR3� v � IR3 for each species Ai with molecular mass
mi and internal energy Ei such that m1 �m2 � m3 �m4. In addition, setting ∆E � E3 �E4�E1�E2 � 0 the forward
reaction turns out to be the endothermic one. The time and space dependence, if useless, will be omitted in the sequel.

Exact equations. The exact kinetic equations for the reactive gas mixture are given by

∂ fi

∂ t
�v �∇ fi � Ji� f ��v��Ri� f ��v� � f � � f1� � � � � f4� � (4)

Ji� f ��v� � Gi� f ��v��Li� f ��v� � Ri� f ��v� � Gi� f ��v��Li� f ��v� � (5)

The gain and loss terms Gi, Li due to elastic collisions, and Gi, Li due to chemical reactions, are not reported here for
brevity, but can be recovered in paper [6]. They satisfy the following properties

�
IR3

Ji� f ��v�dv � 0 � i � 1� � � � �4 (6)

�
IR3

R1� f ��v�dv �
�
IR3

R2� f ��v�dv ��
�
IR3

R3� f ��v�dv ��
�
IR3

R4� f ��v�dv � (7)

The former is typical of the elastic collision operator and accounts for conservation of the particle numbers of
each species, the latter is due to the fact that the evolution of each species is predicted by chemical exchanges
according to the bimolecular reaction (1). For what concerns mechanical equilibrium, each J i� f ��v� vanishes when
f is a Maxwellian given by (3). Conversely, for what concerns chemical equilibrium, each R i� f ��v� vanishes if the
distribution functions are Maxwellian and, in addition, the following condition holds

�m3m4�
3 �f1�v��f2�w� � �m1m2�

3 �f3�v1��f4�w1� � (8)

In Eq. (8), v, w and v1, w1 are the pre and post-collisional velocities, respectively.
The post-collisional velocities, Ω� being the unit vector of the relative post collisional velocity, are given by

v1 � r1v� r2w� r4VΩ� � w1 � r1v� r2w� r3VΩ� �

ri �
mi

m1 �m2
� V �

�
�w�v�2

µ
�

2∆E
r1m2

� µ �
m3m4

m1m2
� (9)

Condition (8), as it can be easily seen, implies the mass–action–law of chemical equilibrium

n1n2

n3n4
� µ�

3
2 exp

�
∆E
kBT

�
� (10)

Approximated equations. Following the procedure adopted in paper [7], the BGK-type approximation of the exact
equations (4) consists in inserting in both elastic and inelastic gain terms Maxwellian distributions with parameters n i
which do not satisfy condition (10) and, thus, do not imply chemical equilibrium. Such a procedure is justified since,
in general [8], the relaxation time of elastic collision is of some order of magnitude smaller than the one of chemical
interactions. The BGK equations then read

∂ fi

∂ t
�v �∇ fi � �Ji� f � �f ��v�� �Ri� f � �f ��v� � i � 1� � � � �4� (11)

where �Ji� f � �f ��v� and �Ri� f � �f ��v� approximate the true collision operators Ji and Ri, according to the above said
conjecture and assuming that the distribution functions satisfy conditions

�
IR3

ϕi�v� fi�v�dv �

�
IR3

ϕi�v��fi�v�dv� (12)
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with ϕi alternatively equal to mi, miv or 1
2 miv2 �Ei . Conditions (12) imply that the distributions f i and �fi , which

possess the same moments n� ρu� T (ρ being the total density), will be different only for what deals with the
computation of higher moments.
The explicit expressions of �Ji and �Ri will be here reported from paper [7], avoiding the details of their deduction.
Adopting constant cross sections of Maxwell molecules, α i j , the BGK-type approximation of the elastic collision gain
and loss terms, leads to the expression

�Ji� f � �f ��v� � νi ��fi�v�� fi�v�� � νi � 4π
4

∑
j�1

αi jn j � (13)

Conversely, the inelastic collision gain and loss terms have the expressions

�R1� f � �f ��v� � γ�T �n4 �f3�η�T �n2 f1 � �R2� f � �f ��v� � γ�T �n3 �f4�η�T �n1 f2�R3� f � �f ��v� � η�T �n2 �f1� γ�T �n4 f3 � �R4� f � �f ��v� � η�T �n1 �f2� γ�T �n3 f4 (14)

where

γ�T � �
4πβ θ S�T �

kBT
� η�T � � γ �T ��µ�

3
2 exp

�
�

∆E
kBT

�
� θ �

m3m4

m1 �m2
�

S�T � �
ξ
π

�
2πkBT

θ
exp

�
�

θ ξ 2

2kBT

�
�

�
kBT
θ

�ξ 2
��

1� er f

	�
θ

2kBT
ξ


�
(15)

ξ being the exothermic threshold velocity, β a scalar factor and k B the Boltzmann constant. Expressions (14) have
been derived using the proper cross sections, related to exothermic and endothermic reactions, proposed in paper [9].

CONSISTENCY OF THE MODEL

On the line of standard procedures and notations of classical kinetic theory [10], and by using assumption (12), the
following properties can be proven.

Property 1 The approximated elastic collision term �Ji is such that

�
IR 3

�Ji� f � �f ��v�dv � 4π
4

∑
j�1

αi jn j

�
IR 3

��fi�v�� fi�v��dv � 0 � i � 1� � � � �4 (16)

This property means that elastic collisions only, when modeled by the BGK equations (2), do not modify the species
of the incoming particles. In fact, from condition (16), it results

�
IR3

�
∂ fi

∂ t
�v �∇ fi

�
elast

dv � 0 ��

�
dni

dt

�
elast

� 0 � (17)

Property 2 The approximated reactive collision terms �Ri, i � 1� � � � �4, are such that
�

IR 3
�R1� f � �f ��v�dv �

�
IR 3

�R2� f � �f ��v�dv � �

�
IR 3

�R3� f � �f ��v�dv � �

�
IR 3

�R4� f � �f ��v�dv� (18)

This property implies �
dn1

dt

�
inelast

�

�
dn2

dt

�
inelast

��

�
dn3

dt

�
inelast

��

�
dn4

dt

�
inelast

(19)

which agrees with the fact that through inelastic collisions with chemical reaction (1), if one particle of A 1�species is
lost then also an A2�particle vanishes with creation of two particles of A3 and A4�species, and viceversa. Moreover,
Eqs. (19) assures that the BGK approximated model reproduces the laws of chemical kinetics.
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Conservation laws. Conservation of mass, momentum and total energy can be stated through the following

Property 3 For every choice of collision invariants ϕ i�v�, namely mi, miv or 1
2miv2 �Ei , the BGK-type collision

operator verifies the following equality

∑
i

�
IR 3

��Ji� f � �f ��v�� �Ri� f � �f ��v� ϕi�v�dv � 0 (20)

Entropy inequality. Elastic collisions and chemical reactions contribute to increase the entropy of the system, according
to the next

Property 4 Let H and H be the functionals defined by

H�x� t� � ∑
i

�
IR 3

fi log

�
fi

m3
i

�
dv � H�x� t� � ∑

i

�
IR 3

fi log

�
fi

m3
i

�
v dv � (21)

Then
∂H
∂ t

�x� t� � divH�x� t� � 0 � (22)

provided that
4

∑
i�2

�
IR 3

log

�
fi�fi

� �Ri� f � �f ��v�dv � 0 � (23)

Moreover one has
∂H
∂ t

�x� t� � divH�x� t� � 0 if and only if

�fi � fi and �m3m4�
3 �f1�v��f2�w� � �m1m2�

3 �f3�v1��f4�w1� � (24)

The constraint (23) is purely mathematical. Nevertheless in the numerical experiments of the next Section this
constraint has been checked finding a relative error whose order is 10�4 at most. It obviously converges to zero
approaching to equilibrium.

Indifferentiability principle. When all gas species are assumed to have same mass m and frequency ν , it is straightfor-
ward to show that the total distribution f � ∑i fi verifies the single species BGK equation.

NUMERICAL EXPERIMENTS

In this section some numerical tests for the proposed model, in the spatial homogeneous case and for the Hydrogen-Air
reversible reaction, are presented in order to evaluate the trend to thermodynamical equilibrium and the influence of
elastic collisions towards inelastic interactions.

With reference to Fig.1, non-symmetric bimodal distributions are assumed as initial data for f 1� � � � � f4. The corre-
sponding macroscopic quantities (in mole /l for number densities and Kelvin degrees for temperature) are

n1 � 0�0375� n2 � 0�0075� n3 � 0�225� n4 � 0�3375� u � 0� T � 1200

We set αi j � α � 1 and β � 15; for such values the ratio of the elastic and inelastic collision frequencies, that is
ω�T � � 4πα�γ�T �, ranges between 50 and 75.

In Figs. 1a-1d the distributions f1 and f4 ( f2 and f3 behave analogously) are plotted versus v at different successive
times. Since the reaction is prevalently exothermic f 1 and f4 correspond, respectively, to distribution of product and
reactant of the chemical process. It can be observed that, due to the assumptions on the BGK-type mechanism of
collisions, the product distribution assumes a “Maxwellian” shape rather quickly, whereas the reactant distribution
converges slower to such a shape.

In the last picture �d� both product and reactant have reached the equilibrium configuration which prescribes, with
respect to initial data, a loss of the reactant H2 and a gain of the product H2O.
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FIGURE 1. Distributions f1�v� and f4�v� at different times.

In Fig.2, the influence of elastic collisions towards chemical interactions is shown, by plotting n 1� � � � �n4 versus time
for the same initial data of Fig.1. In particular in Fig.2a α � 1 and in Fig.2b α � 5 (so that ω now ranges approximately
between 250 and 400). It can be noted that the increase of α accelerates the trend to equilibrium which, in the pictures,
is measured by the critical time tc, defined as the time when n2 reaches the 90% of its asymptotic equilibrium value
(tc � 0�12 for α � 1 and tc � 0�0585 for α � 5). Moreover the equilibrium values of the number densities are affected
by the value of α , since elastic collisions change significantly the temperature of the mixture, influencing the mass
action law (10).
In Fig.3, the time evolution of the densities computed by the BGK model are compared to those obtained by the
reactive Euler equations in the spatial homogeneous case, derived in paper [9], i.e.

dni

dt
� λiŜ� i � 1� � � � �4� λ1 � λ2 � 1� λ3 � λ4 ��1

dT
dt

�
2
3

∆EŜ
kBn

� Ŝ�T � � γ�T �

�
n3n4�

η�T �

γ�T �
n1n2

�
� n �

4

∑
i�1

ni � (25)

Such equations give the time evolution towards chemical equilibrium of the physical state of a mixture which, at
the microscopic scale, is in mechanical equilibrium (no elastic influence). < To make the comparison reasonable, the
initial distributions of the BGK model have been chosen close to Maxwellians (symmetric bimodal distributions).
They provide the values n1 � 0�05, n2 � 0�1, n3 � 0�3, n4 � 0�45, u � 0 and T � 1600, which are chosen as initial
data for the Euler equations, as well. In such conditions, it can be underlined that the trend to equilibrium of the two
models is quite similar, with an equilibrium reached a bit faster for the Euler model (t c � 0�065 against tc � 0�0795)
and asymptotic values only slightly different. Finally in Fig.3a the entropy production profile σ (in arbitrary scale) is
also provided, showing its monotone and concave shape.
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FIGURE 2. Time-evolution of number densities for two different values of α .
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FIGURE 3. Entropy profile σ and comparison of trend to equilibrium for BGK and Euler equations.

ACKNOWLEDGMENTS

The paper is partially supported by the National Research Project COFIN 2003 “Non linear mathematical problems of
wave propagation and stability in models of continuous media” (Prof. T. Ruggeri), and Minho University Mathematics
Centre (Financiamento plurianual, CMAT-FCT).

REFERENCES

1. C.D. Levermore, J. Stat. Phys. 83, 1021 (1996)
2. P. Andries, P. Le Tallec, J.P. Perlat, B. Perthame, European J. Mechanics (B fluids), 813 (2000)
3. V. Garzò, A. Santos, J.J. Brey, Phys. Fluids 1, 380 (1988)
4. P. Andries, K. Aoki, P. Perthame, J. Stat. Phys. 106, 993 (2002)
5. V. Giovangigli, Multicomponent Flow Modeling, Boston, USA: Birkhäuser (1999)
6. A. Rossani, G. Spiga, Physica A 272, 563 (1999)
7. R. Monaco, M. Pandolfi Bianchi, in New trends in Mathematical Physics (World Scientific, Singapore) in press 2004)
8. K. K. Kuo, Principles of Combustion (John Wiley & Sons, Inc., 1986)
9. F. Conforto, R. Monaco, F. Schürrer, I. Ziegler, J. Phys. A: Math. Gen. 36, 5381 (2003)
10. C. Cercignani, Rarefied Gas Dynamics (Cambridge University Press, Cambridge, 2000)

75

Downloaded 23 Nov 2012 to 130.192.181.148. Redistribution subject to AIP license or copyright; see http://proceedings.aip.org/about/rights_permissions


	copyright: 


